• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Degradation of Vinyl Chloride and 1,2-Dichloroethane by Advanced Reduction Processes

Liu, Xu 16 December 2013 (has links)
A new treatment technology, called Advanced Reduction Process (ARP), was developed by combining UV irradiation with reducing reagents to produce highly reactive species that degrade contaminants rapidly. Vinyl chloride (VC) and 1,2-dichloroethane (1,2-DCA) pose threats to humans and the environment due to their high toxicity and carcinogenicity. In this study, batch experiments were conducted under anaerobic conditions to investigate the degradations of VC and 1,2-DCA with various ARP that combined UV with dithionite, sulfite, sulfide or ferrous iron. Complete degradation of both target compounds was achieved by all ARP and the reactions were found to follow pseudo-first-order decay kinetics. The effects of pH, sulfite dose, UV light intensity and initial contaminant concentration on the degradation kinetics were investigated in the photochemical degradation of VC and 1,2-DCA by the sulfite/UV ARP. The rate constants were generally promoted by raising the solution pH. The optimal pH conditions for VC and 1,2-DCA degradation were pH 9 and pH 11,respectively. Higher sulfite dose and light intensity were found to increase the rate constants linearly for both target contaminants. A near reciprocal relation between the rate constant and initial concentration of target compounds was observed in the degradation of 1,2-DCA. The rate constant was observed to be generally independent of VC concentration, but with a slight increase at lower concentrations. A degradation mechanism was proposed that described reactions between target contaminants and reactive species such as the sulfite radical and hydrated electron that were produced in the photolysis of sulfite solution. A mechanistic model that described major reactions in the ARP system was developed and explained the dependence of the rate constant on those experimental factors. Chloride ion and chloroethane were detected as the major degradation products at acid and neutral pH. An increase in pH promoted the extent of dechlorination with complete dechlorination being observed at pH 11 for both VC and 1,2-DCA. Due to the rapid degradation kinetics in these ARPs, this new treatment technology may be applied to remove various contaminants in water and wastewater.
2

Oxidative of organic compounds by oxysulfur radicals in the presence of transition metal ions and sulfite / Élimination oxydative de composés organiques par les radicaux oxysulfures en présence de métaux de transition et sulfite

Yuan, Yanan 25 May 2018 (has links)
Ces dernières années, de plus en plus de composés organiques réfractaires et toxiques ont été détectés dans les eaux usées. Un bon nombre de ces polluants organiques sont difficilement dégradés par des traitements classiques. Les procédés d’oxydation avancée à base de radicaux sulfates (SR-AOP) sont apparus comme une méthode innovante dans le domaine de la décontamination oxydative des eaux polluées. Des études antérieures ont porté sur ces SR-AOP utilisant du peroxodisulfate (PS) ou du peroxomonosulfate (PMS) comme oxydants, en particulier des couples «métaux de transition et oxydants» (systèmes Fe (II)/PS, systèmes Ni(II)/PMS et Co (II))/PMS), où il a été confirmé que SO4•-·présentent des avantages (sélectivité) par rapport au radical hydroxyle (HO•) pour la décontamination des eaux usées contenant des polluants organiques.Dans cette thèse, nous avons généré des radicaux tels que le radical sulfite SO3•-, le radical sulfate SO4•-, le radical peroxomonosulfate SO5•- à partir d’ions métalliques (Cr(VI), le Co(II), le Fe(III)) capables d’activer le sulfite pour la dégradation des composés organiques. L'efficacité d'élimination et le mécanisme d'oxydation ont été étudiés et le rôle des espèces soufrées a été élucidé. / In recent years, more and more refractory and toxic organic compounds are detected in wastewater. Many of these organic pollutants can hardly be degraded by conventional water treatments. Sulfate radical based advanced oxidation process (SR-AOPs), have emerged as a promising method in the field of oxidative decontamination of polluted water. Past studies focused on this SR-AOPs with peroxydisulfate (PS) or peroxymonosulfate (PMS) as oxidants, especially the ‘transition metal + oxidants’ (i.e. Fe(II)/PS system, Ni(II)/PMS system and Co(II)/PMS system), which has been confirmed that SO4·− has advantages over HO in the decontamination of wastewater containing organic pollutants. In this PhD thesis, oxysulfur radicals including sulfite radical SO3·−, sulfate radical SO4·−, peroxymonosulfate radical SO5·− produced by transition metal ions such as Cr(VI), Co(II), Fe(III) activated sulfite were used to degrade organic compounds. The removal efficiency, the oxidation mechanism were examined, and and the role of sulfur species were elucidated.
3

Reatividade química de um novo nitrosilsulfito complexo trans-[Ru(NH3)4(isn)(N(O)SO3)](PF6), e desenvolvimento de filmes de amido doadores de óxido nítrico / Chemical reactivity of a new nitrosylsulphito complex trans-[Ru(NH3)4(isn)(N(O)SO3)](PF6), and development of a nitric oxide releasing starch-based film.

Roveda Júnior, Antonio Carlos 03 February 2016 (has links)
Na busca por novos materiais doadores de óxido nítrico (NO), o presente trabalho descreve o desenvolvimento de um filme à base de amido de mandioca, no qual foi incorporado um nitrosilo complexo de rutênio, e o estudo da liberação de NO nesse material. O nitrosilo complexo trans-[Ru(NH3)4(isn)NO](BF4)3 (RuNOisn; isn = isonicotinamida) apresenta a propriedade de liberar NO de forma controlada, por meio de fotólise (λirr = 310-370 nm) e de redução química. A incorporação desse complexo em filmes de amido foi realizada em condições brandas, resultando em um novo material para o armazenamento e liberação de NO, designado como CSx-RuNOisn. Os ensaios espectroscópicos indicaram que a esfera de coordenação do complexo RuNOisn permaneceu inalterada durante a produção dos filmes. A exposição de CSx-RuNOisn à luz (λirr = 355 nm) levou à liberação de NO e provavelmente à formação do fotoproduto trans [RuIII(NH3)4isn(H2O)]3+ no filme. A reação desse aquocomplexo de rutênio(III) com solução aquosa contendo nitrito de sódio regenerou o complexo de partida, RuNOisn. A identificação e quantificação do NO liberado durante a fotólise foi efetuada por meio da reação com oximioglobina. Durante o tempo de irradiação de 17 minutos, foram liberados 5,02 ± 0,12 μM de NO (10, 04 ± 0,24 nmol NO em 2 mL). Os ensaios de liberação de NO desencadeada por redução foram realizados utilizando-se L-cisteína como redutor. O fluxo de NO liberado a partir da reação com cisteína perdurou por mais de 7 horas, alcançando-se concentrações fisiologicamente relevantes, com fluxo médio de 1,9 pmol NO s-1 cm-2 de filme. Esse valor é comparável àquele produzido por células endoteliais, em que o fluxo de NO é de 1,67 pmol s-1 cm-2. Os resultados preliminares de degradação dos filmes in vivo sugerem que o material foi degradado pelo organismo em 30 dias. Todos os resultados alcançados sugerem que o filme CSx-RuNOisn é um candidato promissor para aplicações em meio biológico. Um novo complexo de rutênio contendo o ligante nitrosilsulfito (N(O)SO3 -) foi isolado, trans [Ru(NH3)4(isn)(N(O)SO3)](X) (isn = isonicotinamida, X = PF6- ou SiPF6 2-), e a sua estrutura cristalina determinada por difração de raio-X. A síntese desse complexo foi realizada por meio da reação entre trans-[Ru(NH3)4(isn)(NO)]3+ e íons sulfito (SO32-). O ataque nucleofílico do SO32- ocorreu no nitrogênio do ligante nitrosônio (NO) coordenado ao centro metálico de rutênio ([Ru-NO+]), originando o ligante O=N-SO3-: [RuNO+]3+ + SO32- →[Ru(N(O)SO3)]+. Observou-se que em meio aquoso, no intervalo de pH de 7,4 a 5,2 o complexo trans [Ru(NH3)4(isn)(N(O)SO3)]+ é estável, e a velocidade de decomposição (labilização do ligante isn) variou de k = 0,86 a 3,07 × 10-5 s-1. Em soluções mais ácidas (tampão ácido acético/acetato pH 4,2, 3,9, ou 1,0 M ácido trifluoroacético) o complexo trans-[Ru(NH3)4(isn)(N(O)SO3)]+ decompõe-se formando o respectivo nitrosilo complexo trans- [RuII(NH3)4(isn)NO+]3+. A reação do íon trans-[Ru(NH3)4(isn)(N(O)SO3)]+ com íons hidróxido (OH-) dá origem ao respectivo nitro complexo trans-[Ru(NH3)4(isn)(NO2)]+, que foi caracterizado por RMN de 15N e por espectroscopia eletrônica. As constantes de velocidade para essa reação são k = 6,16 ± 0,22 M-1 s-1 à T = 25oC, e k = 2,15 ± 0,07 M-1 s-1 à T = 15oC. A reação entre o nitrosilo complexo trans [RuII(NH3)4(isn)NO+]3+ e íons OH- também resulta na formação do nitro complexo trans-[Ru(NH3)4(isn)(NO2)]+. Neste caso, a constante de velocidade foi estimada entre k = 47-58 M-1 s-1 à T = 25oC, e o valor obtido experimentalmente à T = 15oC foi de k = 10,53 ± 0,29 M-1 s-1. O espectro eletrônico do íon complexo trans [Ru(NH3)4(isn)(N(O)SO3)]+ em meio aquoso apresentou uma banda larga com λ max = 362 nm (ε ∼6000 M-1 cm-1), atribuída por cálculos teóricos às seguintes transições: transferência de carga do metal para o ligante (TCML) Ru → N(O)SO3 e Ru → isn, e também d → d. Os ensaios preliminares de fotólise (λ irrad = 355 nm) do complexo trans[Ru(NH3)4(isn)(N(O)SO3)](PF6) em solução de tampão fosfato (pH 7,4) sugerem a formação das seguintes espécies nos intervalos iniciais de fotólise: i) NO, ii) SO3 •-, e iii) isn (labilizado do complexo). O mecanismo para a formação desses produtos ainda está sob investigação. / Aiming the production of new nitric oxide releasing materials (NORM), this work reports the development of a cassava starch based film, in which a ruthenium nitrosyl complex was impregnated, and evaluate the NO release from this film. Ruthenium nitrosyl complex trans-[Ru(NH3)4(isn)NO](BF4)3 (RuNOisn; isn = isonicotinamide) is able to release NO in a controlled manner through both photolysis (λirr = 310-370 nm) and chemical reduction. The incorporation of such complex into the starch-based films was performed under mild conditions, yielding a new material able to store and release NO, abbreviated as CSx-RuNOisn. Spectroscopic analysis of CSx-RuNOisn indicated that the coordination sphere of RuNOisn remained intact during film production. Exposure of CSx-RuNOisn to long wave UV-light (λirr = 355 nm) leads to NO release and likely to the formation of the paramagnetic photoproduct trans-[RuIII(NH3)4isn(H2O)]3+ in the film. Reaction of this aquoruthenium(III) complex with aqueous nitrite regenerates RuNOisn in the film. Delivery of NO upon photolysis of CSx-RuNO isn was verified and quantified by trapping with oxymyoglobin. The calculated concentration of NO released from the film was 5.02 ± 0.12 μM (10.04 ± 0.24 nmol NO in a 2 mL) after approximately 17 min of irradiation (500 laser pulses at 2 s intervals). Moreover, NO release upon chemical reduction was carried out using L-cysteine as a reductant. Cysteine-mediated NO delivery from CSx-RuNOisn persisted for more than 7 h, during which physiologically relevant NO concentrations were liberated (average flux of 1.9 pmol NO s-1 cm-2 of film). This value is comparable to that produced by endothelial cells (1.67 pmol s-1 cm-2). Preliminary results about the biodegradation of the films in vivo suggest that the films were completely absorbed by the organism in a period of 30 days. These results suggest that CSx-RuNOisn is a promising candidate for use in biological applications. A new nitrosylsulphito complex bearing the ligand (N(O)SO3-) was isolated, trans-[Ru(NH3)4(isn)(N(O)SO3)](X) (isn = isonicotinamide, X = PF6- or SiPF6-), and its structure was determined by X-Ray crystallography. This complex was obtained by the reaction between trans-[Ru(NH3)4(isn)(NO)]3+ and sulfite ions (SO32-). X-Ray results confirmed that the nucleophilic attack of the sulphite anion (SO32-) was on the nitrogen atom of the nitrosyl ligand (NO) coordinated to the ruthenium center ([Ru-NO+]), yielding the ligand O=N-SO3-: [RuNO+]3+ + SO32- → [Ru(N(O)SO3)]+. Complex trans- [Ru(NH3)4(isn)(N(O)SO3)]+ is stable in aqueous solution from pH 7.4 to 5.2, and the decomposition rates (k) (due to the isn labilization) are in the range of k = 0.86-3.07 × 10-5 s-1. In more acidic conditions, (acetate buffer pH 4.2, 3.9, and trifluoroacetic acid solution 1.0 M) complex trans-[Ru(NH3)4(isn)(N(O)SO3)]+ is converted into the respective nitrosyl trans-[RuII(NH3)4(isn)NO+]3+. Reaction of trans-[Ru(NH3)4(isn)(N(O)SO3)]+ and hydroxide ions (OH-) yielded the nitro complex trans-[Ru(NH3)4(isn)(NO2)]+, which was characterized by 15N NMR and electronic spectroscopy. Rate constants for such reaction are k = 6.16 ± 0.22 M-1 s-1 at 25oC, and k = 2.15 ± 0.07 M-1 s-1 at 15oC. In the case of complex trans-[RuII(NH3)4(isn)NO+]3+, its reaction with OH- also yield the nitro complex trans-[Ru(NH3)4(isn)(NO2)]+. The estimated rate constant for such reaction was k = 46.9-57.6 M-1 s-1 at 25oC, and the experimental value obtained at 15oC was k = 10.53 ± 0.29 M-1 s-1. The ion complex trans-[Ru(NH3)4(isn)(N(O)SO3)]+ showed an intense and broad band at 362 nm (ε∼6000 M-1 cm-1) in aqueous solutions, which was assigned by DFT calculations to the following transitions: metal to ligand charge transfer (MLCT) Ru→N(O)SO3 and Ru→isn, and d→d as well. Preliminary photolysis assays (λirrad = 355 nm) performed with complex trans-[Ru(NH3)4(isn)(N(O)SO3)](PF6) in phosphate buffer solution (pH 7,4) suggests that the following species have been formed (in the initial photolysis period): i) NO, ii) SO3•-, and iii) isn (labilized). The whole mechanism to yield such products is still under investigation.
4

Reatividade química de um novo nitrosilsulfito complexo trans-[Ru(NH3)4(isn)(N(O)SO3)](PF6), e desenvolvimento de filmes de amido doadores de óxido nítrico / Chemical reactivity of a new nitrosylsulphito complex trans-[Ru(NH3)4(isn)(N(O)SO3)](PF6), and development of a nitric oxide releasing starch-based film.

Antonio Carlos Roveda Júnior 03 February 2016 (has links)
Na busca por novos materiais doadores de óxido nítrico (NO), o presente trabalho descreve o desenvolvimento de um filme à base de amido de mandioca, no qual foi incorporado um nitrosilo complexo de rutênio, e o estudo da liberação de NO nesse material. O nitrosilo complexo trans-[Ru(NH3)4(isn)NO](BF4)3 (RuNOisn; isn = isonicotinamida) apresenta a propriedade de liberar NO de forma controlada, por meio de fotólise (λirr = 310-370 nm) e de redução química. A incorporação desse complexo em filmes de amido foi realizada em condições brandas, resultando em um novo material para o armazenamento e liberação de NO, designado como CSx-RuNOisn. Os ensaios espectroscópicos indicaram que a esfera de coordenação do complexo RuNOisn permaneceu inalterada durante a produção dos filmes. A exposição de CSx-RuNOisn à luz (λirr = 355 nm) levou à liberação de NO e provavelmente à formação do fotoproduto trans [RuIII(NH3)4isn(H2O)]3+ no filme. A reação desse aquocomplexo de rutênio(III) com solução aquosa contendo nitrito de sódio regenerou o complexo de partida, RuNOisn. A identificação e quantificação do NO liberado durante a fotólise foi efetuada por meio da reação com oximioglobina. Durante o tempo de irradiação de 17 minutos, foram liberados 5,02 ± 0,12 μM de NO (10, 04 ± 0,24 nmol NO em 2 mL). Os ensaios de liberação de NO desencadeada por redução foram realizados utilizando-se L-cisteína como redutor. O fluxo de NO liberado a partir da reação com cisteína perdurou por mais de 7 horas, alcançando-se concentrações fisiologicamente relevantes, com fluxo médio de 1,9 pmol NO s-1 cm-2 de filme. Esse valor é comparável àquele produzido por células endoteliais, em que o fluxo de NO é de 1,67 pmol s-1 cm-2. Os resultados preliminares de degradação dos filmes in vivo sugerem que o material foi degradado pelo organismo em 30 dias. Todos os resultados alcançados sugerem que o filme CSx-RuNOisn é um candidato promissor para aplicações em meio biológico. Um novo complexo de rutênio contendo o ligante nitrosilsulfito (N(O)SO3 -) foi isolado, trans [Ru(NH3)4(isn)(N(O)SO3)](X) (isn = isonicotinamida, X = PF6- ou SiPF6 2-), e a sua estrutura cristalina determinada por difração de raio-X. A síntese desse complexo foi realizada por meio da reação entre trans-[Ru(NH3)4(isn)(NO)]3+ e íons sulfito (SO32-). O ataque nucleofílico do SO32- ocorreu no nitrogênio do ligante nitrosônio (NO) coordenado ao centro metálico de rutênio ([Ru-NO+]), originando o ligante O=N-SO3-: [RuNO+]3+ + SO32- →[Ru(N(O)SO3)]+. Observou-se que em meio aquoso, no intervalo de pH de 7,4 a 5,2 o complexo trans [Ru(NH3)4(isn)(N(O)SO3)]+ é estável, e a velocidade de decomposição (labilização do ligante isn) variou de k = 0,86 a 3,07 × 10-5 s-1. Em soluções mais ácidas (tampão ácido acético/acetato pH 4,2, 3,9, ou 1,0 M ácido trifluoroacético) o complexo trans-[Ru(NH3)4(isn)(N(O)SO3)]+ decompõe-se formando o respectivo nitrosilo complexo trans- [RuII(NH3)4(isn)NO+]3+. A reação do íon trans-[Ru(NH3)4(isn)(N(O)SO3)]+ com íons hidróxido (OH-) dá origem ao respectivo nitro complexo trans-[Ru(NH3)4(isn)(NO2)]+, que foi caracterizado por RMN de 15N e por espectroscopia eletrônica. As constantes de velocidade para essa reação são k = 6,16 ± 0,22 M-1 s-1 à T = 25oC, e k = 2,15 ± 0,07 M-1 s-1 à T = 15oC. A reação entre o nitrosilo complexo trans [RuII(NH3)4(isn)NO+]3+ e íons OH- também resulta na formação do nitro complexo trans-[Ru(NH3)4(isn)(NO2)]+. Neste caso, a constante de velocidade foi estimada entre k = 47-58 M-1 s-1 à T = 25oC, e o valor obtido experimentalmente à T = 15oC foi de k = 10,53 ± 0,29 M-1 s-1. O espectro eletrônico do íon complexo trans [Ru(NH3)4(isn)(N(O)SO3)]+ em meio aquoso apresentou uma banda larga com λ max = 362 nm (ε ∼6000 M-1 cm-1), atribuída por cálculos teóricos às seguintes transições: transferência de carga do metal para o ligante (TCML) Ru → N(O)SO3 e Ru → isn, e também d → d. Os ensaios preliminares de fotólise (λ irrad = 355 nm) do complexo trans[Ru(NH3)4(isn)(N(O)SO3)](PF6) em solução de tampão fosfato (pH 7,4) sugerem a formação das seguintes espécies nos intervalos iniciais de fotólise: i) NO, ii) SO3 •-, e iii) isn (labilizado do complexo). O mecanismo para a formação desses produtos ainda está sob investigação. / Aiming the production of new nitric oxide releasing materials (NORM), this work reports the development of a cassava starch based film, in which a ruthenium nitrosyl complex was impregnated, and evaluate the NO release from this film. Ruthenium nitrosyl complex trans-[Ru(NH3)4(isn)NO](BF4)3 (RuNOisn; isn = isonicotinamide) is able to release NO in a controlled manner through both photolysis (λirr = 310-370 nm) and chemical reduction. The incorporation of such complex into the starch-based films was performed under mild conditions, yielding a new material able to store and release NO, abbreviated as CSx-RuNOisn. Spectroscopic analysis of CSx-RuNOisn indicated that the coordination sphere of RuNOisn remained intact during film production. Exposure of CSx-RuNOisn to long wave UV-light (λirr = 355 nm) leads to NO release and likely to the formation of the paramagnetic photoproduct trans-[RuIII(NH3)4isn(H2O)]3+ in the film. Reaction of this aquoruthenium(III) complex with aqueous nitrite regenerates RuNOisn in the film. Delivery of NO upon photolysis of CSx-RuNO isn was verified and quantified by trapping with oxymyoglobin. The calculated concentration of NO released from the film was 5.02 ± 0.12 μM (10.04 ± 0.24 nmol NO in a 2 mL) after approximately 17 min of irradiation (500 laser pulses at 2 s intervals). Moreover, NO release upon chemical reduction was carried out using L-cysteine as a reductant. Cysteine-mediated NO delivery from CSx-RuNOisn persisted for more than 7 h, during which physiologically relevant NO concentrations were liberated (average flux of 1.9 pmol NO s-1 cm-2 of film). This value is comparable to that produced by endothelial cells (1.67 pmol s-1 cm-2). Preliminary results about the biodegradation of the films in vivo suggest that the films were completely absorbed by the organism in a period of 30 days. These results suggest that CSx-RuNOisn is a promising candidate for use in biological applications. A new nitrosylsulphito complex bearing the ligand (N(O)SO3-) was isolated, trans-[Ru(NH3)4(isn)(N(O)SO3)](X) (isn = isonicotinamide, X = PF6- or SiPF6-), and its structure was determined by X-Ray crystallography. This complex was obtained by the reaction between trans-[Ru(NH3)4(isn)(NO)]3+ and sulfite ions (SO32-). X-Ray results confirmed that the nucleophilic attack of the sulphite anion (SO32-) was on the nitrogen atom of the nitrosyl ligand (NO) coordinated to the ruthenium center ([Ru-NO+]), yielding the ligand O=N-SO3-: [RuNO+]3+ + SO32- → [Ru(N(O)SO3)]+. Complex trans- [Ru(NH3)4(isn)(N(O)SO3)]+ is stable in aqueous solution from pH 7.4 to 5.2, and the decomposition rates (k) (due to the isn labilization) are in the range of k = 0.86-3.07 × 10-5 s-1. In more acidic conditions, (acetate buffer pH 4.2, 3.9, and trifluoroacetic acid solution 1.0 M) complex trans-[Ru(NH3)4(isn)(N(O)SO3)]+ is converted into the respective nitrosyl trans-[RuII(NH3)4(isn)NO+]3+. Reaction of trans-[Ru(NH3)4(isn)(N(O)SO3)]+ and hydroxide ions (OH-) yielded the nitro complex trans-[Ru(NH3)4(isn)(NO2)]+, which was characterized by 15N NMR and electronic spectroscopy. Rate constants for such reaction are k = 6.16 ± 0.22 M-1 s-1 at 25oC, and k = 2.15 ± 0.07 M-1 s-1 at 15oC. In the case of complex trans-[RuII(NH3)4(isn)NO+]3+, its reaction with OH- also yield the nitro complex trans-[Ru(NH3)4(isn)(NO2)]+. The estimated rate constant for such reaction was k = 46.9-57.6 M-1 s-1 at 25oC, and the experimental value obtained at 15oC was k = 10.53 ± 0.29 M-1 s-1. The ion complex trans-[Ru(NH3)4(isn)(N(O)SO3)]+ showed an intense and broad band at 362 nm (ε∼6000 M-1 cm-1) in aqueous solutions, which was assigned by DFT calculations to the following transitions: metal to ligand charge transfer (MLCT) Ru→N(O)SO3 and Ru→isn, and d→d as well. Preliminary photolysis assays (λirrad = 355 nm) performed with complex trans-[Ru(NH3)4(isn)(N(O)SO3)](PF6) in phosphate buffer solution (pH 7,4) suggests that the following species have been formed (in the initial photolysis period): i) NO, ii) SO3•-, and iii) isn (labilized). The whole mechanism to yield such products is still under investigation.

Page generated in 0.0645 seconds