• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 3
  • 2
  • 1
  • Tagged with
  • 17
  • 10
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The functional significance of mitochondrial supercomplexes in C. elegans

Suthammarak, Wichit January 2011 (has links)
No description available.
2

Protein Factors Regulating Mitochondrial Respiratory Supercomplexes

Parmar, Gaganvir 30 June 2021 (has links)
Mitochondrial ATP production is achieved using the electron transport chain (ETC), whereby the controlled oxidation of biomolecules is coupled to the activity of ATP synthase. ETC complexes organize into supramolecular structures called supercomplexes (ETC SCs). Protein factors regulating ETC SCs remain largely unknown despite their fundamental implications to mitochondrial respiratory function. Recent knock-out studies have delineated external ETC proteins HIGD1A and HIGD2A as assembly factors of ETC complexes III and IV, and their incorporation into SCs. In order to clarify the primary functions of HIGD1A and HIGD2A, as well as other previously uncharacterized HIG1 protein family members, stable overexpression (OE) models of each HIG1 protein were generated in HEK293t cells to preform comparative studies. We uncover a general dichotomy in the effects observed from HIGD2A vs. HIGD1A/1B/1C OE. Furthermore, we demonstrate that the previously unstudied protein family member HIGD1C is a negative regulator of complex IV SCs. A very limited number of protein factors specifically regulating the I1III2IV1 “respirasome” ETC SC have been identified. We propose a new framework where select complex I accessory subunits regulate respirasome assembly through protein-protein interactions between ETC complexes. Through specific point mutations to one such subunit, we generate a novel cell model with selective disassembly of the respirasome but otherwise functional individual ETC complexes. We demonstrate that respirasome disassembly limits respiration and modifies electron transfer pathways within the ETC. These findings to respirasome assembly and function may represent just a portion of higher order regulation that we are beginning to describe within eukaryotic metabolism.
3

Mitochondrial protein assemblies: Biogenesis of the cytochrome c oxidase and mitophagic signaling complexes

Levchenko, Mariia 02 December 2015 (has links)
No description available.
4

Zastoupení komponent ATP synthasomu v různých tkáních potkana a u pacientů s defektem ATP synthasy / The content of components of ATP synthasome in different rat tissues and in patients with defects in ATP synthase

Mikulová, Tereza January 2012 (has links)
The complexes of oxidative phosphorylation (OXPHOS) are situated in the inner mitochondrial membrane in higher structural and functional complexes, so-called supercomplexes, which facilitates substrate channeling. ATP synthase is also able to organize in higher structures. In mammalian mitochondria, ATP synthase is usually present in a dimeric form. There is evidence of its trimerization and even tetramerization. Furthermore, it seems that ATP synthase catalyzing the phosphorylation of ADP to ATP, adenine nucleotide translocator (ANT) ensuring the exchange of ADP for newly synthesized ATP across the inner mitochondrial membrane and phosphate carrier (PiC) allowing the import of inorganic phosphate (Pi) into the matrix of mitochondria are assembled in a supercomplex called ATP synthasome. This association among the components of phosphorylative apparatus seems to increase the efficiency of processes leading to the ATP synthesis. First, we studied amounts of the components of phosphorylative apparatus in connection with various ATP synthase contents among mitochondria isolated from nine rat tissues. Mitochondrial proteins were separated by denaturing electrophoresis (SDS-PAGE) and their content was analyzed using specific antibodies. In agreement with our expectations, the highest content of...
5

���Mitochondrial decay in the aging rat heart : changes in fatty acid-supported bioenergetics and macromolecular organization of the electron transport system

Gomez Ramirez, Luis A. (Luis Alejandro) 07 December 2012 (has links)
Decline in cardiac pump function is a hallmark of aging where mitochondrial decay is an important underlying cause. Although certainly multifactorial in nature, both dysfunction of the machinery involved in the chemiosmotic process of energy transduction and lower capacity to maintain fatty acid-driven respiration are identified as intrinsic factors of mitochondrial decay in the aged myocardium. Age-associated destabilization of electron transport supercomplexes as a potential factor of mitochondrial decay in the rat heart. Defective operation of the electron transport chain (ETC) constitutes a key mechanism involved in the age-associated loss of mitochondrial energy metabolism. Nevertheless, the molecular events underlying inefficient electron flux that ultimately leads to higher superoxide appearance and impaired respiration are not fully known. As recent biophysical evidence shows that the ETC may form large macromolecular assemblies (i.e. supercomplexes) that disintegrate in certain pathologies (e.g. heart failure or Barth syndrome) reminiscent of aging, we investigated the hypothesis that alterations in supercomplexes are partly responsible for the age-related loss of cardiac ETC function. In this dissertation, age-associated changes in supercomplex organization and stability were investigated in subsarcolemmal (SSM) and interfibrillary (IFM) mitochondria isolated from cardiac tissue from young (3-5 months) and old (24-28 months) male Fischer 344 rats. Blue native-PAGE (BN-PAGE) analysis of digitonin-solubilized mitochondrial membranes coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to investigate supercomplex organization. Results show that both SSM and IFM display supercomplexes comprised of various stoichiometries of complexes I, III and IV (never complex II), which typically organize as high mass (1500-2300 kDa) assemblies containing up to four copies of complex IV (i.e. I���III���IV[subscript N]-type supercomplexes). Interestingly, analysis of IFM proteins showed that, in general, supercomplex levels declined by up to 15 % (p < 0.05) with age; however, different degrees of supercomplex deterioration were observed, depending on the particular supercomplex investigated. Supercomplexes of the highest molecular weights (i.e. 1900-2300 kDa), which were also composed of the most complex stoichiometries (i.e. I1III2IVN, N ��� 2), were primarily lost with age. In particular, I���III���IV���, I���III���IV��� and I���III���IV��� supercomplexes were found to decline by 13% (p < 0.05), 30% (p < 0.05) and 45% (p < 0.05), respectively, on an age basis. Therefore, the age-associated loss of supercomplexes in IFM stems from destabilization of the assemblies that comprise several copies of complex IV, which could partially limit proper electron transfer to O��� for its reduction, affecting mitochondrial respiratory capacity. In contrast to IFM, the aging defects of SSM supercomplexes appeared to be confined to the assembly comprised of only one copy of complex IV (I���III���IV���, 1700 kDa) (37% loss; p = 0.06), while the higher molecular weight supercomplex sub-types that were most affected in IFM (i.e. I���III���IV[subscript N], N ��� 2) were not significantly altered with age. Thus, the results from this dissertation indicate that mitochondria from different subcellular locations in the myocyte show different degrees of supercomplex destabilization in the aging rat heart. The more robust supercomplex deficits noted for IFM fit well with previous observations that electron transport characteristics of this subpopulation are more adversely affected with age than SSM. Although the underlying factor(s) of supercomplex deterioration are not fully known, the hypothesis that age-related alterations of certain constituents of the IMM (e.g. cardiolipin) may be important factors of supercomplex destabilization in cardiac mitochondria was investigated in this dissertation. To this end, LC-MS/MS characterization of supercomplex proteins and HPLC analysis of cardiolipin were used as approaches to elucidate potential factor(s) of supercomplex destabilization in the aging rat heart. Age-related alterations of cardiolipin levels and its acyl-chain content showed a strong parallel to the age-associated destabilization of supercomplexes. Specifically, cardiolipin levels declined by 10% (p < 0.05) in IFM, the mitochondrial subpopulation displaying the highest degree of supercomplex deterioration. In addition, the content of (18:2)���-cardiolipin, the predominant species in the heart, was found to decline by 50% (p < 0.05) on average in both populations of cardiac mitochondria. Therefore, the data presented in this dissertation indicate that changes in cardiolipin may be at least one of the factors involved in supercomplex destabilization in the aging heart. Age-related decline in carnitine palmitoyltransferase I (CPT1) activity as a mitochondrial lesion that limits fatty acid catabolism in the rat heart. Loss of fatty acid utilization, another intrinsic factor of mitochondrial decay in the aged myocardium, has been associated with age-related alterations in the activity of carnitine palmitoyltransferase 1 (CPT1), the rate-controlling enzyme for overall fatty acid ��-oxidation. Nevertheless, the exact molecular mechanism involved in the age-related loss of fatty acid-driven bioenergetics is not fully understood. In this dissertation, it was also investigated whether the aging lesion for fatty oxidation lies in a particular mitochondrial subpopulation or more generally results from cardiac decrements in L-carnitine levels. In order to clarify the role of each one of these factors, the effect of long-term dietary supplementation with the L-carnitine analogue, acetyl-L-carnitine (ALCAR), was also investigated. Results show that aging selectively decreases CPT1 activity in IFM by reducing enzyme catalytic efficiency for palmitoyl-CoA. IFM displayed a 28% (p < 0.05) loss of CPT1 activity, which correlated with a decline (41%, p < 0.05) in palmitoyl-CoA-driven state 3 respiration. Interestingly, SSM had preserved enzyme function and efficiently utilized palmitate. Analysis of IFM CPT1 kinetics showed both diminished V[subscript max] and K[subscript m] (60% and 49% respectively, p < 0.05) when palmitoyl-CoA was the substrate. However, no age-related changes in enzyme kinetics were evident with respect to L-carnitine. ALCAR supplementation restored CPT1 activity in heart IFM, but not apparently through remediation of L-carnitine levels. Rather, ALCAR influenced enzyme activity over time, potentially by modulating conditions in the aging heart that ultimately affect palmitoyl-CoA binding and CPT1 kinetics. In conclusion, this dissertation presents a characterization of age-associated alterations in the macromolecular organization of the IMM components that could partly explain the loss of mitochondrial oxidative capacity that affects the aging heart. In addition, the characterization of an age-related lesion of the controlling enzyme for ��-oxidation is presented as another important factor that limits mitochondrial function and energy metabolism in cardiac mitochondria. / Graduation date: 2013
6

Mitochondrial copper homeostasis in mammalian cells / Mitochondrialer Kupfermetabolismus in Säugerzellen

Oswald, Corina 05 October 2010 (has links) (PDF)
Assembly of cytochrome c oxidase (COX), the terminal enzyme of the mitochondrial respiratory chain, requires a concerted activity of a number of chaperones and factors for the correct insertion of subunits, accessory proteins, cofactors and prosthetic groups. Most of the fundamental biological knowledge concerning mitochondrial copper homeostasis and insertion of copper into COX derives from investigations in the yeast Saccharomyces cerevisiae. In this organism, Cox17 was the first identified factor involved in this pathway. It is a low molecular weight protein containing highly conserved twin Cx9C motifs and is localized in the cytoplasm as well as in the mitochondrial intermembrane space. It was shown that copper-binding is essential for its function. So far, the role of Cox17 in the mammalian mitochondrial copper metabolism has not been well elucidated. Homozygous disruption of the mouse COX17 gene leads to COX deficiency followed by embryonic death, which implies an indispensable role for Cox17 in cell survival. In this thesis, the role of COX17 in the biogenesis of the respiratory chain in HeLa cells was explored by use of siRNA. The knockdown of COX17 results in a reduced steady-state concentration of the copper-bearing subunits of COX and affects growth of HeLa cells accompagnied by an accumulation of ROS and apoptotic cells. Furthermore, in accordance with its predicted function as a copper chaperone and its role in formation of the binuclear copper center of COX, COX17 siRNA knockdown affects COX-activity and -assembly. It is now well accepted that the multienzyme complexes of the respiratory chain are organized in vivo as supramolecular functional structures, so called supercomplexes. While the abundance of COX dimers seems to be unaffected, blue native gel electrophoresis reveals the disappearance of COX-containing supercomplexes as an early response. Accumulation of a novel ~150 kDa complex containing Cox1, but not Cox2 could be observed. This observation may indicate that the absence of Cox17 interferes with copper delivery to Cox2, but not to Cox1. Data presented here suggest that supercomplex formation is not simply due to assembly of completely assembled complexes. Instead an interdependent assembly scenario for the formation of supercomplexes is proposed that requires the coordinated synthesis and association of individual complexes.
7

Mitochondrie jako cíl při rezistenci rakoviny prsu k terapii / Targeting mitochondria to overcome resistance of breast cancer to therapy

Rohlenová, Kateřina January 2016 (has links)
(EN) Tumours are heterogeneous and consist of multiple populations of cells. The population of cells with tumour-initiating capability is known as cancer stem cells (CSC). Cells with increased stemness properties and elevated resistance to anti-cancer treatment have been shown to be highly affected upon decline of mitochondrial respiration, linking the concept of CSCs to deregulated bioenergetics. Consistently, functional electron transport chain (ETC) is crucial in tumorigenesis. Expression of HER2 oncogene, associated with resistance to treatment in breast cancer, has been connected with regulation of mitochondrial function. We therefore investigated the possibility that manipulation of mitochondrial bioenergetics via disruption of ETC eliminates the conventional therapy-resistant populations of tumour, such as CSCs and HER2high cells. We demonstrate that HER2high cells and tumours have increased complex I-driven respiration and increased assembly of respiratory supercomplexes (SC). These cells are highly sensitive to MitoTam, a novel mitochondria-targeted derivative of tamoxifen, acting as a CI inhibitor and SC disruptor. MitoTam was able to overcome resistance to tamoxifen, and to reduce the metastatic potential of HER2high cells. Higher sensitivity of HER2high cells to MitoTam is dependent on...
8

Mitochondrial copper homeostasis in mammalian cells

Oswald, Corina 13 August 2010 (has links)
Assembly of cytochrome c oxidase (COX), the terminal enzyme of the mitochondrial respiratory chain, requires a concerted activity of a number of chaperones and factors for the correct insertion of subunits, accessory proteins, cofactors and prosthetic groups. Most of the fundamental biological knowledge concerning mitochondrial copper homeostasis and insertion of copper into COX derives from investigations in the yeast Saccharomyces cerevisiae. In this organism, Cox17 was the first identified factor involved in this pathway. It is a low molecular weight protein containing highly conserved twin Cx9C motifs and is localized in the cytoplasm as well as in the mitochondrial intermembrane space. It was shown that copper-binding is essential for its function. So far, the role of Cox17 in the mammalian mitochondrial copper metabolism has not been well elucidated. Homozygous disruption of the mouse COX17 gene leads to COX deficiency followed by embryonic death, which implies an indispensable role for Cox17 in cell survival. In this thesis, the role of COX17 in the biogenesis of the respiratory chain in HeLa cells was explored by use of siRNA. The knockdown of COX17 results in a reduced steady-state concentration of the copper-bearing subunits of COX and affects growth of HeLa cells accompagnied by an accumulation of ROS and apoptotic cells. Furthermore, in accordance with its predicted function as a copper chaperone and its role in formation of the binuclear copper center of COX, COX17 siRNA knockdown affects COX-activity and -assembly. It is now well accepted that the multienzyme complexes of the respiratory chain are organized in vivo as supramolecular functional structures, so called supercomplexes. While the abundance of COX dimers seems to be unaffected, blue native gel electrophoresis reveals the disappearance of COX-containing supercomplexes as an early response. Accumulation of a novel ~150 kDa complex containing Cox1, but not Cox2 could be observed. This observation may indicate that the absence of Cox17 interferes with copper delivery to Cox2, but not to Cox1. Data presented here suggest that supercomplex formation is not simply due to assembly of completely assembled complexes. Instead an interdependent assembly scenario for the formation of supercomplexes is proposed that requires the coordinated synthesis and association of individual complexes.:List of Figures and Tables Abbreviations Abstract 1 Indroduction 1.1 Mitochondria and the respriratory chain 1.2 The human mitochondrial genome 1.3 Homoplasmy and heteroplasmy 1.4 Mitochondrial disorders 1.4.1 Mutations in mitochondrial DNA 1.4.2 Mutations in nuclear DNA 1.5 Cytochrome c oxidase 1.6 Cytochrome c oxidase assembly 1.7 Copper and its trafficking in the cell 1.8 Mitochondrial copper metabolism 1.9 Cox17 1.10 Aims of the thesis 2 Materials and Methods 2.1 Materials 2.1.1 Chemicals and reagents 2.1.2 Antibodies 2.1.3 Plasmid 2.1.4 Kits 2.1.5 Marker 2.1.6 Enzymes 2.1.7 Primers 2.1.8 siRNAs 2.2 Methods 2.2.1 Cell culture 2.2.1.1 Cell culture: HeLa cells 2.2.1.2 Cell culture: HeLa cells transfected with pTurboRFP-mito 2.2.1.3 Subcultivation 2.2.1.4 Determination of cell number 2.2.1.5 Cell storage and thawing 2.2.2 Transient transfection of HeLa cells 2.2.3 Transfection of HeLa cells with pTurboRFP-mito 2.2.4 Immunocytochemistry 2.2.5 RNA extraction and quantitative real-time PCR 2.2.6 Isolation of mitochondria 2.2.6.1 Isolation of mitochondria for BN-PAGE Analysis 2.2.6.2 Isolation of mitochondria for localization studies 2.2.6.3 Isolation of bovine heart mitochondria 2.2.7 Proteinase K treatment of mitochondria and mitoplasts 2.2.8 Photometric activity assay 2.2.8.1 Citrate synthase activity 2.2.8.2 Cytochrome c oxidase activity 2.2.9 Blue native polyacrylamide gel electrophoresis (BN-PAGE) 2.2.9.1 In gel activity assay 2.2.9.2 2D-BN/SDS-PAGE 2.2.10 SDS-PAGE and Western blot analysis 2.2.11 Direct stochastic optical reconstruction microscopy (dSTORM) 2.2.12 Flow cytometric phenotyping 2.2.12.1 Determination of cell cyle phase 2.2.12.2 Identification of apoptotic cells 2.2.12.3 Detection of ROS 2.2.13 Oxygen measurement 2.2.14 Cu–His supplementation 3 Results 3.1 Subcellular localization of Cox17 3.2 Transient knockdown of COX17 in HeLa cells 3.2.1 Knockdown of COX17 mRNA 3.2.2 Knockdown of Cox17 protein 3.2.3 Effect of COX17 knockdown on the steady-state levels of OXPHOS subunits 3.2.4 Effect of COX17 knockdown on the steady-state levels of copperbearing COX subunits 3.2.5 Subdiffraction-resolution fluorescence imaging 3.3 Phenotypical characterization 3.3.1 Growth analyis 3.3.2 Cell cycle analysis 3.3.3 Apoptosis assay 3.3.4 Detection of ROS 3.3.5 Oxygen measurement 3.4 Cytochrome c oxidase activity 3.5 Characterization of mt OXPHOS complexes 3.5.1 BN-PAGE/in gel activity assays 3.5.2 Supramolecular organization of COX 3.5.3 Molecular organization of Cox17 3.5.4 Molecular organisation of copper-bearing COX subunits Cox1 and Cox2 3.5.5 Supramolecular organization of RC complexes 3.5.6 dSTORM of supercomplexes 3.6 Copper supplementation 4 Discussion 4.1 Dual localization of human Cox17 4.2 COX17 knockdown affects steady-state levels of copper-bearing COX subunits Cox1 and Cox2 4.3 Supramolecular organization of RC is affected as an early response to COX17 knockdown 4.4 Cox17 is primarily engaged in copper delivery to Sco1/Sco2 4.5 Copper supplementation alone cannot rescue the COX17 phenotype 4.6 Outlook 5 Appendix 6 PhD publication record 7 References
9

Strukturní a funkční interakce mitochondriálního systému fosforylace ADP / Structural and Functional Interactions of Mitochondrial ADP-Phosphorylating Apparatus

Nůsková, Hana January 2016 (has links)
The complexes of the oxidative phosphorylation (OXPHOS) system in the inner mitochondrial membrane are organised into structural and functional super-assemblies, so-called supercomplexes. This type of organisation enables substrate channelling and hence improves the overall OXPHOS efficiency. ATP synthase associates into dimers and higher oligomers. Within the supercomplex of ATP synthasome, it interacts with ADP/ATP translocase (ANT), which exchanges synthesised ATP for cytosolic ADP, and inorganic phosphate carrier (PiC), which imports phosphate into the mitochondrial matrix. The existence of this supercomplex is generally accepted. Experimental evidence is however still lacking. In this thesis, structural interactions between ATP synthase, ANT and PiC were studied in detail. In addition, the interdependence of their expression was examined either under physiological conditions in rat tissues or using model cell lines with ATP synthase deficiencies of different origin. Specifically, they included mutations in the nuclear genes ATP5E and TMEM70 that code for subunit ε and the ancillary factor of ATP synthase biogenesis TMEM70, respectively, and a microdeletion at the interface of genes MT-ATP6 and MT-COX3 that impairs the mitochondrial translation of both subunit a of ATP synthase and subunit Cox3...
10

Strukturní a funkční interakce mitochondriálního systému fosforylace ADP / Structural and Functional Interactions of Mitochondrial ADP-Phosphorylating Apparatus

Nůsková, Hana January 2016 (has links)
The complexes of the oxidative phosphorylation (OXPHOS) system in the inner mitochondrial membrane are organised into structural and functional super-assemblies, so-called supercomplexes. This type of organisation enables substrate channelling and hence improves the overall OXPHOS efficiency. ATP synthase associates into dimers and higher oligomers. Within the supercomplex of ATP synthasome, it interacts with ADP/ATP translocase (ANT), which exchanges synthesised ATP for cytosolic ADP, and inorganic phosphate carrier (PiC), which imports phosphate into the mitochondrial matrix. The existence of this supercomplex is generally accepted. Experimental evidence is however still lacking. In this thesis, structural interactions between ATP synthase, ANT and PiC were studied in detail. In addition, the interdependence of their expression was examined either under physiological conditions in rat tissues or using model cell lines with ATP synthase deficiencies of different origin. Specifically, they included mutations in the nuclear genes ATP5E and TMEM70 that code for subunit ε and the ancillary factor of ATP synthase biogenesis TMEM70, respectively, and a microdeletion at the interface of genes MT-ATP6 and MT-COX3 that impairs the mitochondrial translation of both subunit a of ATP synthase and subunit Cox3...

Page generated in 0.0557 seconds