• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 355
  • 61
  • 32
  • 10
  • 9
  • 8
  • 7
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 678
  • 265
  • 233
  • 102
  • 94
  • 88
  • 83
  • 74
  • 67
  • 53
  • 52
  • 46
  • 45
  • 45
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
591

Charge transfer at the high-temperature superconductor/liquid electrolyte interface

Le Poul, Nicolas January 2001 (has links)
No description available.
592

Magnetothermal properties near quantum criticality in the itinerant metamagnet Sr₃Ru₂O₇

Rost, Andreas W. January 2009 (has links)
The search for novel quantum states is a fundamental theme in condensed matter physics. The almost boundless number of possible materials and complexity of the theory of electrons in solids make this both an experimentally and theoretically exciting and challenging research field. Particularly, the concept of quantum criticality resulted in a range of discoveries of novel quantum phases, which can become thermodynamically stable in the vicinity of a second order phase transition at zero temperature due to the existence of quantum critical fluctuations. One of the materials in which a novel quantum phase is believed to form close to a proposed quantum critical point is Sr₃Ru₂O₇. In this quasi-two-dimensional metal, the critical end point of a line of metamagnetic first order phase transitions can be suppressed towards zero temperature, theoretically leading to a quantum critical end point. Before reaching absolute zero, one experimentally observes the formation of an anomalous phase region, which has unusual ‘nematic-like’ transport properties. In this thesis magnetocaloric effect and specific heat measurements are used to systematically study the entropy of Sr₃Ru₂O₇ as a function of both magnetic field and temperature. It is shown that the boundaries of the anomalous phase region are consistent with true thermodynamic equilibrium phase transitions, separating the novel quantum phase from the surrounding ‘normal’ states. The anomalous phase is found to have a higher entropy than the low and high field states as well as a temperature dependence of the specific heat which deviates from standard Fermi liquid predictions. Furthermore, it is shown that the entropy in the surrounding ‘normal’ states increases significantly towards the metamagnetic region. In combination with data from other experiments it is concluded that these changes in entropy are most likely caused by many body effects related to the underlying quantum phase transition.
593

An investigation of stoichiometetry and thermo-mechanical processing parameters of (Pb,Bi)←2Sr←2Ca←2Cu←3O←x superconducting tapes

Feltham, Stuart Paul January 2001 (has links)
No description available.
594

Magnetic separation using high-T←c superconductors

Bolt, Livia January 2001 (has links)
No description available.
595

The magnetic properties of superconductors

Lloyd, Sion January 1999 (has links)
No description available.
596

A study of structure-property relationships in layered copper oxides

Hyatt, Neil January 2000 (has links)
No description available.
597

Characterisation of practical high temperature superconductors in pulsed magnetic fields and development of associated technology

Saleh, Paul Matthew January 2000 (has links)
No description available.
598

Specific heat measurements on chevrel phase materials exhibiting coexistence of superconductivity and magnetism

Leigh, Nigel Royston January 2001 (has links)
A probe for measuring the specific heat of superconductors at low temperatures and in high magnetic fields has been built and commissioned. The probe has been tested using the relaxation method on samples of copper and the accuracy of the data is 1.3 % between 5 K and 30 K, data taken using the long range pulse method has a resolution of 10 mK. Specific heat measurements have been performed on members of the series (Pb(_1)-(_x))Cu(_1.8x)Mo(_6)S(_8), (Sn(_1-x))Eu(_x)Mo(_6)S(_8) and (Pb(_1-x)M(_x))Mo(_6)S(_8) where M = Gd and Eu, from 3 K up to 30 K and in magnetic fields up to 15 T. Additional results from resistivity, susceptibility, magnetisation. X-ray diffraction, transmission electron microscopy and electron dispersive-ray measurements are also presented. These data have been compared to results from other authors and are analysed in terms of the BCS and GLAG theories of superconductivity and the magnetic properties of these materials. The mean field model has been used to calculate numerically the magnetic contribution to the specific heat (cm) of both ferromagnetic and antiferromagnetic systems as a function of temperature and applied field both above and below the ordering temperature. In addition an approximate analytic form for the magnetisation has been used to calculate Cm above the ordering temperature. Expressions have been derived for the saturation value of the peak in C(_m): C(^sat)(_m) = 1.1245n(_cell)RJI(J+1) and the temperature dependence of the peak with applied field ȡ(μ(_o)H(_ext))/ȡT(_peak)=6.540/g(_J)(J+1). They allow the simple calculation of the values of J and g(_J)(J + 1) from specific heat data. The magnetic contribution to the specific heat of the samples (Sn(_0.65)Eu(0.35)Mo(_6)S(_8)) and (Sn(0.50)Eu(_0.50)Mo(_6)S(_8)) have been modelled using these calculations and excellent agreement is found by considering the magnetic ions as free ions. The sample is accurately modelled by including an additional minority phase (Gd(_2)S(_3)). The approximate expressions have also been used to analyse data on high temperature superconductors producing values of J and g(_J)}{J + 1) consistent with a doublet ground state. The properties of Chevrel phase materials have been determined as a function of doping level. The critical temperature is degraded by doping but an increase in the critical current density is observed in the series (Pb(_1-x)Cu(_1-8x)Mo(_6)S(_8) for very low levels of doping. Increases of up to 28 % in the upper critical field, that are probably due to the compensation effect and an increase in the normal state resistivity, are also observed in the series (Sn(_1-x)Eu(_x)Mo(_6)S(_8)) at high levels of doping and in the series (Pb(_1-x)Gd(_x)Mo(_6)s(_8) for low levels of doping.
599

The fabrication of a high temperature superconducting magnet and critical current characterisation of the component Bi₂Sr₂Ca₂Cu₃Oₓ tapes and filaments in high magnetic fields

Sneary, Adrian Bernard January 2000 (has links)
The transport critical current density (J(_c)) of a 37 filament Bi-2223/Ag tape has been measured as a function of field and temperature from 4.2 K up to 90 K. Data have been obtained over a large current range from 10 mA up to 100 A and in fields up to 23 T with the tape in 3 orientations with respect to field. These comprehensive data have been used to test the predictions of the flux creep and weak link models used to explain J(_c) in Bi-2223 tapes. The J(_c)(B,T) dependence of optimised Bi-2223 tapes has been calculated using a curved film model. The model assumes perfect grain connectivity and that the local superconducting properties are equivalent to those in the best reported thin films. A comparison between the calculations and measured J(_c)(B,T) dependencies suggest that in high fields at 20 K, J(_c) in presently available industrially processed tapes is only a factor of 8 below the performance of ideal fully optimised tapes. Transport measurements have been made on Bi-2223 single filaments extracted from an alloy sheathed multifilamentary tape in liquid nitrogen at 77 K in fields up to 300 mT with the field aligned parallel and perpendicular to the a-b planes. Further Jc(B,T) data have been taken in a variable temperature insert at temperatures between 60 to 90 K in fields up to 15 T. In a study of the electric field-current density {E-J) characteristics of the c-axis orientated data at 77 K, negative curvature is observed in traces below 280 mT. However, the 280 mT trace exhibits both positive and negative curvature in different current regimes in contrast to the predictions of standard theory. A laboratory scale Bi-2223 superconducting magnet producing a maximum field of 1.29 T at 4.2 K has been designed and fabricated. The magnet comprises 6 resin impregnated double wound pancakes with a 40 mm bore fabricated via the react and wind route. Critical current density measurements have been made as a function of magnetic field, angle and strain at 4.2 K and 77 K on short samples of the constituent tape. The E-J characteristics of all component coils have been measured and a comparison with short sample data shows that minimal additional damage occurred beyond that produced by the bending strain on the tape and the long length variation in J(_c). Sufficient detail is provided for the non-specialist to assess the potential use of brittle superconducting tapes for magnet technology and construct a laboratory scale magnet.
600

Growth of superconducting and ferroelectric heterostructures / Crescimento de heteroestruturas supercondutoras e ferroelétricas

Oliveira, Felipe Ferraz Morgado de 20 December 2018 (has links)
The phase diagram of complex oxides is very diverse due to the strong interaction between electrons in the electronic structure. It is possible to probe those interactions by changing electrostatically the carrier density, the main concept behind the Field-Effect Transistors (FET) which is the building blocks of nanoelectronics devices. In the case of high-TC superconductor copper oxides, it is possible to use this concept to switch between superconducting and insulator phases, for example using an adjacent liquid electrolyte layer to inject charges in a superconducting film. With that in mind, the objective of this work was to establish protocols to grow superconductor and ferroelectric films for future fabrication of superconducting FET devices. We optimized the deposition conditions for the growth of a single layer of superconductor YBa2Cu3O7–x and the ferroelectric barium titanate on SrTiO3 substrates by pulsed laser deposition (PLD). Several techniques were employed to study the properties of the thin films, such as X-ray diffraction, atomic force microscope, X-ray photoelectron spectroscopy, resistance vs temperature and ferroelectric hysteresis. Regarding the superconductors thin films, we observed several relations between the superconducting features and the growth parameters. For instance, lower growth temperatures contribute to the nucleation of a-axis oriented grains meanwhile higher growth temperature tends to be c-axis oriented. Regarding the frequency of the laser (proportional to the growth rate), it seems that lower frequency is related to higher surface roughness and the presence of non-superconducting contributions. As it increases, the roughness decrease and the sample presents a sharper superconducting transition. Finally, we also did the first steps towards the field effect device by growing a heterostructure thin film consisting of a superconductor and ferroelectric material. The sample grew c-axis oriented on strontium titanate substrate, though with a high value of surface roughness. / O diagrama de fase dos óxidos complexos é muito diverso devido à forte interação entre os elétrons na estrutura eletrônica. É possível sondar essas interações alterando eletrostaticamente a densidade da portadores, o principal conceito por trás dos transistores de efeito de campo (FET), que é o elemento fundamental dos dispositivos nanoeletrônicos. No caso de supercondutores de alta temperatura a base de óxidos de cobre, é possível usar este conceito para alternar entre fases supercondutoras e isolantes, por exemplo utilizando uma camada adjacente de eletrólito líquido para injetar cargas no filme supercondutor. Com isso em mente, o objetivo desse trabalho foi estabelecer protocolos para crescer filmes supercondutores e ferroelétricos para fabricações futuras de dipositivos FET supercodutores. Nós optimizamos as condições de deposição para o crescimento de uma única camada do supercondutor YBa2Cu3O7–x e do ferroeléctrico titanato de bário em substratos SrTiO3 por deposição de laser pulsado (PLD). Diversas técnicas foram empregadas para estudar as propriedades dos filmes finos, como difração de raios-X, microscopia de força atômica, espectroscopia de fotoelétrons de raios-X, resistência vs temperatura e histerese ferroelétrica. Em relação aos filmes finos supercondutores, observamos várias relações das propriedades supercondutoras com os parâmetros de crescimento. Por exemplo, temperaturas de crescimento mais baixas contribuem para a nucleação de grãos orientados no eixo a, enquanto a temperatura de crescimento mais alta tende a ser orientada para o eixo c. Em relação à frequência do laser (proporcional à taxa de crescimento), há um indício que valores menores de frequência está relacionada à maior rugosidade superficial e à presença de contribuições não supercondutoras. À medida que aumenta a frequência, a rugosidade diminui e a amostra apresenta uma transição supercondutora mais nítida. Por fim, também fizemos os primeiros passos em direção ao dispositivo de efeito de campo, desenvolvendo um filme fino de heteroestrutura com um material supercondutor e ferroelétrico. A amostra cresceu orientada no eixo c em substrato de titanato de estrôncio com alto valor de rugosidade superficial.

Page generated in 0.0458 seconds