Spelling suggestions: "subject:"superconductors."" "subject:"uperconductors.""
561 |
[en] VORTEX STATES IN UNCONVENTIONAL SUPERCONDUCTORS / [pt] ESTADOS DE VORTICES EM SUPERCONDUTORES NAO-CONVENCIONAISMARCO E SILVA DE MELO TAVORA 12 June 2003 (has links)
[pt] A teoria de Bardin, Cooper e Schrieffer (BSC) teve enorme
sucesso na explicação das propriedades da maior parte dos
materiais supercondutores. Esses materiais, onde a teoria
BCS se aplica, são denominados supercondutores
convencionais. A observação do aparecimento de
supercondutividade não-convencional em diversos materiais
reabriu as discussões sobre o fenômeno. Enquanto a
transição para fase supercondutora em materiais
convencionais envolve apenas a quebra da simetria de
calibre, no caso dos materiais não-convencionais, a mesma é
caracterizada pela quebra de diversas simetrias adicionais.
O mecanismo microscópico da supercondutividade nessas novas
classes de materiais ainda é uma questão em aberto. no
entanto, muitas propriedades físicas podem ser extraídas
apenas de conciderações sobre as simetrias do parâmetro de
ordem supercondutor, que está intimamente ligadoá função de
onda do par de Cooper. Neste trabalho são analisadas
algumas propriedades destes novos supercondutores baseadas
em critérios de simetria. Um enfoque especial é dado à
classe dos supercondutores não-convencionais onde há uma
quebra de simetria de reversão temporal. Para estes
materiais são previstas algumas propriedade bem pouco
usuais. Quando a estrutura cristalina tiver alta simetria,
é possível o surgimento de uma polarização de um spin no
condensado. Nestes casos, a magnetização intrínseca pode
levar à formação de uma fase espontânea de vórtices. Ocorre
também uma forte anisotropia na resposta do supercondutor
frente à aplicação de campos magnéticos externos. / [en] The theory of Bardeen, Cooper and Schrieffer (BCS) had
great success in explaining most properties of
superconducting materials. These materials, where BCS
applies, are denominated conventional superconductors. the
experimental evidence of unconventional superconductivity
in several materials reopened discussions about the
phenomenon. While, in conventional materials, the
superconducting phase involves only the breaking of gauge
symmetry, in the unconventional materials the phase is
characterized by several additional broken symmetries. The
microscope mechanism of superconductivity in this new
classes of materials is still an open question. However,
many phisical properties can be understood considering only
symmetries of the superconducting order parameter, which is
intimately linked to Cooper pair wave function. In this
work some properties of these new superconductors are
analyzed based symmetry criteria. Special emphasis is given
to the class of unconventional superconductors where time-
reversal symmetry is broken. For these materials, some
unusual properties are predicted. When the crystal
structure has high symmetry, the appearence of a spin
polarization in the condensate is possible. In these cases,
an intrinsic magnetization can lead to the information of
a spontanous vortex phase. A strong anisotropic response
to an externally applied magnetic field also occurs.
|
562 |
TermoestatÃstica do Movimento Superamortecido de PartÃculas Interagentes / Thermostatistics of Overdamped Motion of Interacting ParticlesGeorge Frederick Tavares da Silva 25 January 2013 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / As equaÃÃes nÃo lineares de Fokker-Planck - EFPNL sÃo equaÃÃes diferenciais capazes de descrever macroscopicamente sistemas fÃsicos e quÃmicos que apresentam algum tipo de difusÃo anÃmala. Como exemplos de aplicaÃÃes de importÃncia cientÃfica e tecnolÃgica, podemos citar o processo de transporte em meios porosos, a dinÃmica de crescimento de superfÃcies, difusÃo de polÃmeros do tipo micelas quebrÃveis e dinÃmica de vÃrtices em supercondutores do tipo II. Para este Ãltimo, sabe-se que o movimento de vÃrtices causa dissipaÃÃo de energia, e a interaÃÃo entre eles pode ser representada por uma funÃÃo do tipo Bessel modificada. Portanto, no sentido de modelar vÃrtices em supercondutores, estudamos o movimento de partÃculas interagentes em regime de superamortecimento e em contato com um reservatÃrio tÃrmico a temperatura T, utilizando esse mesmo tipo de interaÃÃo para vÃrtices. Mostramos entÃo, por meio do formalismo das equaÃÃes nÃo lineares de Fokker-Planck, que hà uma associaÃÃo do sistema em estudo, no limite de temperatura T=0, com a estatÃstica generalizada de Tsallis. Para comprovar essa relaÃÃo direta utilizamos o conhecido teorema H e suas generalizaÃÃes, o qual permite uma relaÃÃo entre o funcional entrÃpico generalizado com uma famÃlia de EFPNL. Mostramos ainda que para temperaturas relativamente altas, o sistema deve ser melhor representado pela estatÃstica padrÃo de Boltzmann-Gibbs, pois a funÃÃo distribuiÃÃo de partÃculas, no estado estacionÃrio, tem a forma de uma gaussiana. AlÃm dos resultados analÃticos para a funÃÃo distribuiÃÃo, resultados numÃricos foram obtidos para o movimento superamortecido de partÃculas interagentes por meio de DinÃmica Molecular com a inclusÃo de um ruÃdo branco (aditivo), confirmando assim os resultados teÃricos. / The Fokker-Planck equations of nonlinear - EFPNL are differential equations able to describe macroscopic physical and chemical systems that have some type of anomalous diffusion. Examples of applications of scientific and technological importance, we may cite the case of transport in porous media, the growth dynamics of surfaces, diffusion of polymerlike breakable micelles and the dynamics of interacting vortices in type II superconductors. For the latter, it is known that the vortex motion causes power dissipation, and the interaction between them can be represented by a modified Bessel function type. Therefore, in order to model vortices in superconductors, we study the overdamped motion of interacting particles in contact with a thermal reservoir at temperature T, using the same type of interaction for vortices. We show, by means of the nonlinear Fokker-Planck equations formalism, that there is an association of the system under study, in the temperature limit T = 0, with the generalized Tsallis statistics. To prove this direct relation, we use the well-known H theorem and its generalizations, which allows an unambiguous relationship between the generalized entropy function with EFPNL. We show that even for relatively high temperatures, the system should be better represented by the Boltzmann-Gibbs standard statistical, since the distribution function of particles in the steady state, has the form of a Gaussian. In addition to the analytical results for the distribution function, numerical results for overdamped motion of interacting particles were obtained by molecular dynamics with the addition of white noise (additive) thus confirming the theoretical results.
|
563 |
Vortex statics and dynamics in anisotropic and/or magnetic superconductors. / Statique et dynamique des vortex dans les supraconducteurs anisotropiques et/ou magnétiquesBespalov, Anton 29 September 2014 (has links)
Récemment, les études des propriétés de vortex Abrikosov dans des systèmes fortement anisotropes et magnétiques ont été stimulées par la découverte des supraconducteurs à base de fer et des supraconducteurs ferromagnétiques.Dans cette thèse nous étudions la statique et la dynamique de vortex dans ces systèmes. D’abord, le problème de l'interaction de vortex avec un petit défaut a été examiné dans le cadre de la théorie de Ginzburg-Landau. Le potentiel de pinning pour une cavité cylindrique elliptique a été calculé. D'autre part, la conductivité d'un supraconducteur anisotrope à l'état mixte a été analysée en détail dans le cadre de la théorie de Ginzburg-Landau dépendant du temps.Une partie significative de la thèse est consacrée à l'étude de l'interaction entre lesondes de spin (magnons) et vortex dans les supraconducteurs ferromagnétiques.Nous avons démontré que le spectre de magnon acquiert une structure de bande en présence d'un réseau de vortex idéal. En utilisant les équations phénoménologiques de London et de Landau-Lifshitz-Gilbert, nous avons étudié les réponses ac et dc de vortex dans les supraconducteurs ferromagnétiques. Enfin, nous avons examiné l'état de vortex dans des structures hybrides supraconducteur(S)-ferromagnétique(F)(par exemple, super-réseaux FS) avec une forte dispersion spatiale de la susceptibilité magnétique. Dans ces systèmes l'électrodynamique supraconductrice peut être fortement non locale, qui mène à l'attraction des vortex et à une transition de phase du premier ordre dans la phase de vortex. / Recently, the studies of the properties of Abrikosov vortices in strongly anisotropicand magnetic media have been stimulated by the discovery of the iron-based andferromagnetic superconductors. In this thesis an analysis of vortex statics anddynamics in such systems has been carried out. Firstly, the problem of vortex pinningon a small defect has been considered. Within the Ginzburg-Landau theory thepinning potential for a cavity in the form of an elliptical cylinder has been derived.Secondly, the flux-flow conductivity of an anisotropic superconductor has beenanalyzed in detail within the time-dependent Ginzburg-Landau theory.A significant part of the thesis is devoted to the study of interplay between spinwaves (magnons) and vortices in ferromagnetic superconductors. We havedemonstrated that the magnon spectrum acquires a Bloch-like band structure in thepresence of an ideal vortex lattice. Using the phenomenological London and Landau-Lifshitz-Gilbert equations, we studied the ac and dc responses of vortices inferromagnetic superconductors. Finally, we investigated the vortex state insuperconductor-ferromagnet (FS) hybrid structures (e. g., FS superlattices) withstrong spatial dispersion of the magnetic susceptibility. In such systems thesuperconducting electrodynamics may be strongly nonlocal, which leads to theattraction of vortices and to a first order phase transition at the lower critical field.
|
564 |
Magnetic fields near microstructured surfaces : application to atom chipsZhang, Bo January 2008 (has links)
Microfabricated solid-state surfaces, also called atom chip', have become a well-established technique to trap and manipulate atoms. This has simplified applications in atom interferometry, quantum information processing, and studies of many-body systems. Magnetic trapping potentials with arbitrary geommetries are generated with atom chip by miniaturized current-carrying conductors integrated on a solid substrate. Atoms can be trapped and cooled to microKelvin and even nanoKelvin temperatures in such microchip trap. However, cold atoms can be significantly perturbed by the chip surface, typically held at room temperature. The magnetic field fluctuations generated by thermal currents in the chip elements may induce spin flips of atoms and result in loss, heating and decoherence. In this thesis, we extend previous work on spin flip rates induced by magnetic noise and consider the more complex geometries that are typically encountered in atom chips: layered structures and metallic wires of finite cross-section. We also discuss a few aspects of atom chips traps built with superconducting structures that have been suggested as a means to suppress magnetic field fluctuations. The thesis describes calculations of spin flip rates based on magnetic Green functions that are computed analytically and numerically. For a chip with a top metallic layer, the magnetic noise depends essentially on the thickness of that layer, as long as the layers below have a much smaller conductivity. Based on this result, scaling laws for loss rates above a thin metallic layer are derived. A good agreement with experiments is obtained in the regime where the atom-surface distance is comparable to the skin depth of metal.
Since in the experiments, metallic layers are always etched to separate wires carrying different currents, the impact of the finite lateral wire size on the magnetic noise has been taken into account. The local spectrum of the magnetic field near a metallic microstructure has been investigated numerically with the help of boundary integral equations. The magnetic noise significantly depends on polarizations above flat wires with finite lateral width, in stark contrast to an infinitely wide wire. Correlations between multiple wires are also taken into account. In the last part, superconducting atom chips are considered. Magnetic traps generated by superconducting wires in the Meissner state and the mixed state are studied analytically by a conformal mapping method and also numerically. The properties of the traps created by superconducting wires are investigated and compared to normal conducting wires: they behave qualitatively quite similar and open a route to further trap miniaturization, due to the advantage of low magnetic noise. We discuss critical currents and fields for several geometries. / Mikrotechnologische Oberflächen, sogenannte Atomchips, sind eine etablierte Methode zum Speichern und Manipulieren von Atomen geworden. Das hat Anwendungen in der Atom-Interferometrie, Quanteninformationsverarbeitung und Vielteilchensystemen vereinfacht. Magnetische Fallenpotentiale mit beliebigen Geometrien werden durch Atomchips mit miniaturisierten stromführenden Leiterbahnen auf einer Festkörperunterlage realisiert. Atome können bei Temperaturen im $mu$ K oder sogar nK-Bereich in einer solchen Falle gespeichert und gekühlt werden. Allerdings können kalte Atome signifikant durch die Chip-Oberfläche gestört werden, die sich typischerweise auf Raumtemperatur befindet. Die durch thermische Ströme im Chip erzeugten magnetischen Feldfluktuationen können Spin-Flips der Atome induzieren und Verlust, Erwärmung und Dekohärenz zur Folge haben. In dieser Dissertation erweitern wir frühere Arbeiten über durch magnetisches Rauschen induzierte Spin-Flip-Ratenund betrachten kompliziertere Geometrien, wie sie typischerweise auf einem Atom-Chip anzutreffen sind: Geschichtete Strukturen und metallische Leitungen mit endlichem Querschnitt. Wir diskutieren auch einige Aspekte von Aomchips aus Supraleitenden Strukturen die als Mittel zur Unterdrückung magnetischer Feldfluktuationen vorgeschlagen wurden. Die Arbeit beschreibt analytische und numerische Rechnungen von Spin-Flip Raten auf Grundlage magnetischer Greensfunktionen. Für einen Chip mit einem metallischen Top-Layer hängt das magnetische Rauschen hauptsächlich von der Dicke des Layers ab, solange die unteren Layer eine deutlich kleinere Leitfähigkeit haben. Auf Grundlage dieses Ergebnisses werden Skalengesetze für Verlustraten über einem dünnen metallischen Leiter hergeleitet. Eine gute Übereinstimmung mit Experimenten wird in dem Bereich erreicht, wo der Abstand zwischen Atom und Oberfläche in der Größenordnung der Eindringtiefe des Metalls ist. Da in Experimenten metallische Layer immer geätzt werden, um verschiedene stromleitende Bahnen vonenander zu trennen, wurde der Einfluß eines endlichen Querschnittsauf das magnetische Rauschen berücksichtigt. Das lokale Spektrum des magnetischen Feldes in der Nähe einer metallischen Mikrostruktur wurde mit Hilfe von Randintegralen numerisch untersucht. Das magnetische Rauschen hängt signifikant von der Polarisierung über flachen Leiterbahnen mit endlichem Querschnitt ab, im Unterschied zu einem unendlich breiten Leiter. Es wurden auch Korrelationen zwischen mehreren Leitern berücksichtigt. Im letzten Teil werden supraleitende Atomchips betrachtet. Magnetische Fallen, die von supraleitenden Bahnen im Meissner Zustand und im gemischten Zustand sind werden analytisch durch die Methode der konformen Abbildung und numerisch untersucht. Die Eigenschaften der durch supraleitende Bahnen erzeugten Fallen werden erforscht und mit normal leitenden verglichen: Sie verhalten sich qualitativ sehr ähnlich und öffnen einen Weg zur weiteren Miniaturisierung von Fallen, wegen dem Vorteil von geringem magnetischem Rauschen. Wir diskutieren kritische Ströme und Felder für einige Geometrien.
|
565 |
Structural and Electrical Transport Properties of Doped Nd-123 SuperconductorsGhorbani, Shaban Reza January 2003 (has links)
It is generally believed that one of the key parameterscontrolling the normal state and superconducting properties ofhigh temperature superconductors is the charge carrierconcentrationpin the CuO2planes.By changing the non-isovalent dopingconcentration on the RE site as well as the oxygen content in(RE)Ba2Cu3O7−δ, an excellent tool is obtained tovary the hole concentration over a wide range from theunderdoped up to the overdoped regime.In the present thesis thefocus is on the doping effects on the structural and normalstate electrical properties in Nd-123 doped with Ca, La, Pr,Ca-Pr, and Ca-Th.T he effects of doping have been investigatedby X-ray and neutron powder diffraction, and by measurements ofthe resistivity, thermoelectric powerS, and Hall coefficient RH.T he thermoelectric power is a powerful tool forstudies of high temperature superconductivity and is highlysensitive to details of the electronic band structure.Sas a function of temperature has been analyzed in twodifferent two band models.The parameters of these models arerelated to charactristic features of the electron bands and asemiempirical physical description of the doping dependence ofSis obtained.So me important results are following: (i)The valence of Pr in the RE-123 family.Results from thestructural investigations, the critical temperature Tc, and thethermoelectric power indicated a valence +4 at low dopingconcentration, which is in agreement with results of chargeneutral doping in the RE-123 family.(ii)Hole localization. The results of bond valence sum (BVS)calculations from neutron diffraction data showed that holelocalization on the Pr+4site was the main reason for the decrease of thehole concentration p.Differ ent types of localization wereinferred by S measurements for Ca-Th and Ca-Pr dopings.(iii)Competition between added charge and disorder. Theresults of RH measurements indicated that Ca doping introduceddisorder in the CuO2planes in addition to added charge.This could bethe main reason for the observed small decrease of thebandwidth of the density of states in the description of aphenomenological narrow band model.(iv) Empirical parabolic relation between γ and p.S data were analyzed and well described by a two-band modelwith an additional linear T term, γT.An empiricalparabolic relation for γ as a function of holeconcentration has been found. <b>Key words:</b>high temperature superconductors, criticaltemperature, resistivity, thermoelectric power, Hallcoefficient, X-ray diffraction, Neutron diffraction, NdBa2Cu3O7−δ, hole concentration,substitution.
|
566 |
Electronic structure of selected aromatic hydrocarbon systems investigated with electron energy-loss spectroscopyRoth, Friedrich 27 May 2013 (has links) (PDF)
Organic materials with fascinating/intriguing electronic properties have been the driving force for many research activities in the past, and in particular for important progress in materials science covering both new functional materials as well as theoretical developments. In addition, charge transfer, i. e., the addition or removal of charges to or from molecules in organic solids is one route to modify and control their electronic properties. Recently, the discovery of superconductivity in several alkali metal intercalated hydrocarbon systems (picene, phenanthrene, coronene and 1,2;8,9-dibenzopentacene) with rather high transition temperatures has opened a new chapter in organic material science as well as solid-state physics.
The search for a microscopic understanding of the mechanism that drives materials superconducting always has initiated a large number of scientific activities, and there are numerous examples where these activities have provided major advancement. A basic foundation of this understanding is the knowledge of the electronic properties of the material under investigation.
In this context, this thesis reports first, very detailed insight into the electronic structure of both undoped as well as potassium doped picene, coronene and 1,2;8,9-dibenzopentacene using electron energy-loss spectroscopy (EELS) as main experimental method. Additionally, also photoemission spectroscopy experiments have been performed to investigate the occupied electronic density of states close to the chemical potential. In order to learn more about the electronic structure we have compared the results we obtained from EELS and photoemission spectroscopy with theoretical calculations based on Density functional theory (DFT) using the local-density approximation (LDA).
We identify the peculiar case of very close lying conduction bands that upon doping harbour the electrons that form the Cooper-pairs in the superconducting state. Moreover, the presented data display substantial changes in the electronic excitation spectrum upon doping, whereas in the doped case the appearance of one new peak (for picene) and several new peaks (for coronene and 1,2;8,9-dibenzopentacene) in the former optical gap is reported. By using a Kramers–Kronig analysis (KKA) it is possible to gain information about the nature of this doping introduced excitations. In particular, in case of picene, the new low energy feature can be assigned to a charge carrier plasmon. Interestingly, this plasmon disperses negatively upon increasing momentum transfer, which deviates significantly from the traditional picture of metals based on the homogeneous electron gas. The comparison with calculations of the loss function of potassium intercalated picene shows how this finding is the result of the competition between metallicity and electronic localization on the molecular units.
Furthermore, core level excitation measurements show the reduction of the lowest lying C 1s excitation feature, which clearly demonstrates that potassium intercalation leads to a filling of the conduction bands with electrons. Additionally, the measurements of potassium intercalated 1,2;8,9-dibenzopentacene clearly indicate the formation of particular doped phases with compositions K_xdibenzopentacene (x = 1, 2, 3), whereas the data suggest that K_1dibenzopentacene has an insulating ground state with an energy gap of about 0.9 eV, while K_2dibenzopentacene and K_3dibenzopentacene might well be metallic, because of the absent of an energy gap in the electronic excitation spectra.
Interestingly, a comparison of the photoemission as well as EELS spectra of undoped 1,2;8,9-dibenzopentacene and pentacene reveal that the electronic states close to the Fermi level and the electronic excitation spectra of the two materials are extremely similar, which is due to the fact, that the additional two benzene rings in 1,2;8,9-dibenzopentacene virtually do not contribute to the delocalized pi molecular orbitals close to the Fermi level. This close electronic similarity is in contrast to the behavior upon potassium doping, where evidence for a Mott state has been reported in the case of pentacene.
A comparison of the low energy excitation spectra of chrysene with picene (phenacenes) as well as tetracene with pentacene (acenes) crystals reveal a significant difference between the former and the latter two materials. While for the phenacenes (zigzag arrangement) the excitation onset is characterized by up to five weak excitation features with only small anisotropy and without visible Davydov splitting within the a*, b*-planes, the acene (linear arrangement) spectra are dominated by a large excitation close to the onset and a sizable Davydov splitting. The presented data show further that the spectral shape of the pentacene excitation spectrum provides clear evidence for a large admixture of molecular Frenkel-type excitons with charge-transfer excitations resulting in excited states with a significantly mixed character. This conclusion is in good agreement with recent advanced calculations which predicted a charge-transfer admixture to the lowest singlet excitation which is significantly dependent upon the length of the acene molecules. Moreover, also for picene and chrysene we observe differences which point towards an increased charge-transfer contribution to the singlet excitation spectrum in the former.
Finally, investigations of the electronic properties of undoped and potassium doped chrysene, a close relative of picene, show that the doping introduced changes are in a similar range such as observed in case of picene. Interestingly, due to the analogy between the observed changes in the electronic structure upon potassium doping between chrysene and picene and further similarity in the crystal structure we speculate that chrysene is a promising candidate for another aromatic hydrocabon superconductor.
|
567 |
Effect of BaZrO3 Addition and Film Growth on Superconducting Properties of (Nd,Eu,Gd)Ba2Cu3Oy Thin FilmsIchino, Yusuke, Yoshida, Yutaka, Inoue, Kouichi, Ozaki, Toshinori, Takai, Yoshiaki, Matsumoto, Kaname, Mukaida, Masashi, Kita, Ryusuke, Ichinose, Ataru, Horii, Shigeru 06 1900 (has links)
No description available.
|
568 |
Crystal growth and physical properties of Ferro-pnictidesAswartham, Saicharan 29 November 2012 (has links) (PDF)
The thesis work presented here emphasizes important aspects of crystal growth and the influence of chemical substitution in Fe-As superconductors. High temperature solution growth technique is one of most powerful and widely used technique to grow single crystals of various materials. The biggest advantage of high temperature solution growth technique is the, possibility of growing single crystals from both congruently and incongruently melting materials. Solution growth technique has the potential to control high vapour pressures, given the fact that, in Fe-based superconductors elements with high vapour pressure like As, K, Li and Na have to be handled during the crystal growth procedure. In this scenario high temperature solution growth is the best suitable growth technique to synthesize sizable homogeneous single crystals.
Using self-flux high temperature solution growth technique, large centimeter-sized high quality single crystals of BaFe2As2 were grown. This pristine compound BaFe2As2 undergoes structural and magnetic transition at TS/N=137 K. By suppressing this magnetic transition and stabilizing tetragonal phase with chemical substitution, like Co-doping and Na-doping, bulk superconductivity is achieved. Superconducting transitions of as high as Tc = 34 K with Na substitution and Tc = 25 K with Co-doping were obtained. A combined electronic phase diagram has been achieved for both electron doping with Co and hole doping with Na in BaFe2As2.
Single crystals of LiFe1−xCoxAs with x = 0, 0.025, 0.05 and 0.075 were grown by a self-flux high temperature solution growth technique. The charge doping in LiFeAs is achieved with the Co-doping in Fe atoms. The superconducting properties investigated by means of temperature dependent magnetization and resistivity revealed that superconductivity is shifted to lower temperatures and with higher amount of charge carriers superconductivity is killed.
Single crystals of KFe2As2 were grown with two different fluxes, namely, FeAs-flux and KAs-flux. The superconducting transition is found to be at 3.8K in both the crystals. The influence of doping with selected elements like Na, Rh, Co and Cr has been investigated systematically in KFe2As2 single crystals. With Na-doping at the K-site, yield (K1−xNax)Fe2As2; superconductivity is suppressed to lower temperatures.
Substitution of Co and Cr at Fe site, yield K(Fe0.95Co0.05)2As2, K(Fe0.95Cr0.05)2As2 superconductivity is rapidly killed. Single crystals of (Ba0.6Eu0.4)(Fe1−xCox)2As2 with x = 0, 0.05, 0.1, 0.15 and 0.2 were grown with solution growth technique using Fe-As flux and investigated with several physical measurements.
The growth conditions are highly optimized to grow flux free large single crystals especially in case of BaFe2As2 family. The high quality of the crystals were revealed by several physical properties, for e.g. single crystals of Ba(Fe1−xCox)2As2 are of the highest quality which was confirmed by the magnetic ac susceptibility which showed a very sharp superconducting transition.
|
569 |
Structural and Electrical Transport Properties of Doped Nd-123 SuperconductorsGhorbani, Shaban Reza January 2003 (has links)
<p>It is generally believed that one of the key parameterscontrolling the normal state and superconducting properties ofhigh temperature superconductors is the charge carrierconcentration<i>p</i>in the CuO<sub>2</sub>planes.By changing the non-isovalent dopingconcentration on the RE site as well as the oxygen content in(RE)Ba<sub>2</sub>Cu<sub>3</sub>O<sub>7−δ</sub>, an excellent tool is obtained tovary the hole concentration over a wide range from theunderdoped up to the overdoped regime.In the present thesis thefocus is on the doping effects on the structural and normalstate electrical properties in Nd-123 doped with Ca, La, Pr,Ca-Pr, and Ca-Th.T he effects of doping have been investigatedby X-ray and neutron powder diffraction, and by measurements ofthe resistivity, thermoelectric power<i>S</i>, and Hall coefficient R<sub>H</sub>.T he thermoelectric power is a powerful tool forstudies of high temperature superconductivity and is highlysensitive to details of the electronic band structure.<i>S</i>as a function of temperature has been analyzed in twodifferent two band models.The parameters of these models arerelated to charactristic features of the electron bands and asemiempirical physical description of the doping dependence of<i>S</i>is obtained.So me important results are following:</p><p>(i)<i>The valence of Pr in the RE-123 family.</i>Results from thestructural investigations, the critical temperature Tc, and thethermoelectric power indicated a valence +4 at low dopingconcentration, which is in agreement with results of chargeneutral doping in the RE-123 family.(ii)<i>Hole localization</i>. The results of bond valence sum (BVS)calculations from neutron diffraction data showed that holelocalization on the Pr<sup>+4</sup>site was the main reason for the decrease of thehole concentration p.Differ ent types of localization wereinferred by S measurements for Ca-Th and Ca-Pr dopings.(iii)<i>Competition between added charge and disorder</i>. Theresults of RH measurements indicated that Ca doping introduceddisorder in the CuO<sub>2</sub>planes in addition to added charge.This could bethe main reason for the observed small decrease of thebandwidth of the density of states in the description of aphenomenological narrow band model.(iv) Empirical parabolic relation between γ and p.S data were analyzed and well described by a two-band modelwith an additional linear T term, γT.An empiricalparabolic relation for γ as a function of holeconcentration has been found.</p><p><b>Key words:</b>high temperature superconductors, criticaltemperature, resistivity, thermoelectric power, Hallcoefficient, X-ray diffraction, Neutron diffraction, NdBa<sub>2</sub>Cu<sub>3</sub>O<sub>7−δ</sub>, hole concentration,substitution.</p>
|
570 |
A study of the effects of oxygen environment on the stoichiometry, phase assemblage and stability of BiSCCO 2212 and 2201 using EPMARowan, Fraser S. January 2001 (has links)
A method of performing accurate oxygen analysis on cuprate based superconducting materials was established using electron probe micro analysis (EPMA). A range of YBa<sub>2</sub>Cu<sub>3</sub>O<sub>δ</sub> ceramics with varying oxygen concentration were used to test the method. Using YBCO as a reference material, a suitable standard for oxygen analysis of Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>δ</sub> (BiSCCO-2212) materials was obtained. This standard was used to perform full elemental analysis of a range of BiSCCO-2212 crystals, post annealed in pO<sub>2</sub>'s between 10<sup>-5</sup>-2atm. When the average Cu valence of each crystal was calculated and plotted as a function of the critical temperature (T<sub>c</sub>) for each crystal, it was shown that BiSCCO-2212 materials conformed to the 'universal' trend illustrated by most other HTS and did not exhibit anomalous behaviour as had been previously believed. The phase assemblage and superconducting properties of BiSCCO-2212 Ag-clad multifilamental wires, prepared using the powder-in-tube (PIT) method by BICC, were studied as a function of a time/temperature profile. pO<sub>2</sub> of the processing atmosphere was found to be the predominant factor in determining the stoichiometry of the 2212 phase within wires. The phase assemblage is not simply a function of pO<sub>2</sub> as previously believed and can be controlled, in part, by the post annealing temperature. Homogenisation of the phase assemblage in BiSCCO-2212 Ag-clad wires can be achieved by prolonged heating (96hrs) at an appropriate temperature. An investigation into the 10K superconducting BiSCCO phase has shown the Sr-rich solid solution to extend towards the ideal stoichiometry of 2:2:1 (Bi:Sr:Cu) with increasing pO<sub>2</sub>. Using a combination of high pO<sub>2</sub> (60atm) to achieve the appropriate Bi:Sr stoichiometry followed by post annealing in N<sub>2</sub> to adjust the oxygen content, it was possible to prepare single-phase ceramics of stoichiometry Bi<sub>2.11(2)</sub>Sr<sub>1.90(2)</sub>Cu<sub>0.99(2)</sub>O<sub>δ</sub> with a T<sub>c</sub>=10.5K(5).
|
Page generated in 0.0805 seconds