• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 8
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 67
  • 12
  • 9
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The Role of TNFR Family Members GITR and CD30 on CD8 T Cell Responses

Snell, Laura Margaret Lucette 16 August 2013 (has links)
GITR and CD30 are T cell costimulatory members of the TNFR superfamily known to regulate T cell responses. Elucidating the mechanisms whereby these receptors modulate T cell responses is crucial for maximizing their potential for immunotherapy. In this thesis, I examine the role of GITR and CD30 on CD8 T cell responses to influenza virus. I show that CD8 T cell intrinsic GITR is required for both maximal primary and secondary CD8 T cell expansion to influenza, while in contrast, CD30 is dispensable for anti-influenza CD8 T cell responses. GITR does not impact on CD8 T cell proliferation or homing, however, it mediates CD8 T cell survival signaling. GITR induces TRAF2/TRAF5 dependent, but TRAF1 independent, NF-κB activation, resulting in the upregulation of the pro-survival molecule Bcl-xL. Furthermore, I show that GITR on CD8 T cells can augment viral clearance and confer protection from death upon severe influenza infection of mice. Similarly, CD30 also elicits protection from death upon severe influenza infection, although the cells responsible for this effect remain to be elucidated. In this thesis, I also show that in unimmunized mice GITR expression is upregulated to higher than basal levels on a population of CD8 memory phenotype cells in the bone marrow. In contrast, CD8 memory phenotype T cells in the spleen and LN have GITR levels similar to that on naïve T cells. The upregulation of GITR in the bone marrow is IL-15 dependent and therefore, GITR serves as a marker for cells that have recently received an IL-15 signal. Furthermore, GITR is required for the persistence, but not for the homeostatic proliferation of CD8 memory phenotype T cells in the bone marrow. Therefore, GITR plays a key role for CD8 T cell intrinsic responses to influenza, as well as for the persistence of CD8 memory phenotype T cells.
32

Δ<sup>3</sup>-Δ<sup>2</sup>-Enoyl-CoA isomerase from the yeast <em>Saccharomyces cerevisiae</em>:molecular and structural characterization

Mursula, A. (Anu) 19 April 2002 (has links)
Abstract The hydratase/isomerase superfamily consists of enzymes having a common evolutionary origin but acting in a wide variety of metabolic pathways. Many of the superfamily members take part in β-oxidation, one of the processes of fatty acid degradation. One of these β-oxidation enzymes is the Δ3-Δ 2-enoyl-CoA isomerase, which is required for the metabolism of unsaturated fatty acids. It catalyzes the shift of a double bond from the position C3 of the substrate to the C2 position. In this study, the Δ 3-Δ 2-enoyl-CoA isomerase from the yeast Saccharomyces cerevisiae was identified, overexpressed as a recombinant protein and characterized. Subsequently, its structure and function were studied by X-ray crystallography. The yeast Δ 3-Δ 2-enoyl-CoA isomerase polypeptide contains 280 amino acid residues, which corresponds to a subunit size of 32 kDa. Six enoyl-CoA isomerase subunits assemble to form a homohexamer. According to structural studies, the hexameric assembly can be described as a dimer of trimers. The yeast Δ 3-Δ 2-enoyl-CoA isomerase is located in peroxisomes, the site of fungal β-oxidation, and is a necessary prerequisite for the β-oxidation of unsaturated fatty acids; the enoyl-CoA isomerase knock-out was unable to grow on such carbon sources. In the crystal structure of the yeast Δ 3-Δ 2-enoyl-CoA isomerase, two domains can be recognized, the N-terminal spiral core domain for catalysis and the C-terminal α-helical trimerization domain. This overall fold resembles the other known structures in the hydratase/isomerase superfamily. Site-directed mutagenesis suggested that Glu158 could be involved in the enzymatic reaction. Structural studies confirmed this, as Glu158 is optimally positioned at the active site for interaction with the substrate molecule. The oxyanion hole stabilizing the transition state of the enzymatic reaction is formed by the main chain NH groups of Ala70 and Leu126. The yeast Δ 3-Δ 2-enoyl-CoA isomerase hexamer forms by dimerization of two trimers, as in the other superfamily members. An extensive comparison of the five known structures of this family showed that the mode of assembly into hexamers is not a conserved feature of this superfamily, since the distance between the trimers and the orientation of the trimers with respect to each other varied. Marked differences were also detected between the two yeast enoyl-CoA isomerase crystal forms used in this study, one being crystallized at low pH and the other at neutral pH. The results suggest that the yeast Δ 3-Δ 2-enoyl-CoA isomerase could occur as a trimer at low pH.
33

Characterization of an Amphipathic Alpha-Helix in the Membrane Targeting and Viral Genome Replication of Brome Mosaic Virus

Sathanantham, Preethi 01 March 2022 (has links)
Positive-strand RNA viruses associate with specific organelle membranes of host cells to establish viral replication complexes. The replication protein 1a of brome mosaic virus associates strongly with the nuclear endoplasmic reticulum (ER) membranes, invaginates membranes into the lumen, and recruits various host proteins to establish replication complexes termed spherules. 1a has a strong affinity towards the perinuclear ER membrane, however, the structural features in 1a that dictate its membrane associations and thereby membrane remodeling activities are unclear. This study examined the possible role of an amphipathic α-helix, helix B, in BMV 1a's membrane association. Deletion or single substitution of multiple amino acids of helix B abolished BMV 1a's localization to nuclear ER membranes. Additional reporter-based, gain-of-function assays showed that helix B is sufficient in targeting several soluble proteins to the nuclear ER membranes. Furthermore, we found that the helix B-mediated organelle targeting is a functionally conserved feature among positive-strand RNA viruses of the alphavirus-like superfamily that includes notable human viruses such as Hepatitis E virus and Rubella virus as well as plant viruses such as cucumber mosaic virus and cowpea chlorotic mottle virus. Our results demonstrate a critical role for helix B across members of the alphavirus-like superfamily in anchoring viral replication complexes to the organelle membranes. We anticipate our findings to be a starting point for the development of sophisticated models to use helix B as a novel target for the development of antivirals for positive-strand RNA viruses that belong to the alphavirus-like superfamily. / Doctor of Philosophy / Among the seven classes of viruses, the positive-strand RNA viruses dominate the domain of viral diseases of the world. Brome mosaic virus (BMV) is a positive-strand RNA virus that infects cereal crops such as wheat, barley, and rice. BMV has a simple genome organization and serves as a suitable model virus to study and characterize positive-strand RNA viruses. The replication of all positive-strand RNA viruses occurs at the organelle membranes of the host. Membrane association of the replication is one of the early steps and a crucial event in the life cycle of positive-strand RNA viruses. One of the proteins produced early on during BMV infection is the replication protein 1a, which is also the master regulator of viral replication; 1a recruits viral factors in addition to hijacking the necessary host factors at the membranous sites to initiate replication. Upon reaching the organelle membranes, 1a induces membrane rearrangements to form viral replication complexes that safeguard the recruited factors from the deleterious effects of the host cell. The structural determinants within 1a that are responsible for such membrane association are unknown. This study explored the potential roles of a short helical motif within the 1a protein for its ability to dictate such site-specific membrane associations. We show here that this helical region is necessary and sufficient for 1a's membrane-binding activity. We also discovered it to be a functionally conserved feature that is responsible for membrane associations in various viruses of the alphavirus-like superfamily that includes some of the notable human viruses such as Hepatitis E virus and Rubella virus in addition to plant viruses such as cucumber mosaic virus and cowpea chlorotic mottle virus.
34

A Novel Role for the TRAFs as Co-Activators and Co-Repressors of Transcriptional Activity

Brittain, George C. IV 16 June 2009 (has links)
The tumor necrosis factor (TNF) receptor-associated factors (TRAFs) were initially discovered as proteins that inducibly interact with the intracellular region of TNF receptors (TNFRs). Because the TNFRs lack intrinsic catalytic activity, the TRAFs are hypothesized to orchestrate signaling activation downstream of the TNFR superfamily, however their mechanism of activation remains unclear (Inoue et al., 2000; Bishop, 2004). Originally, the TRAFs were compared to the signal transducers and activators of transcription (STAT) protein family, due to their sequence homology, and the presence of multiple RING- and zinc-finger domains, suggesting that their function may be to regulate transcriptional activity (Rothe et al., 1994; Hu et al., 1994; Sato et al. 1995; Cheng et al., 1995). However, subsequent research focused predominantly on their cytoplasmic functions, and more recently on their function as E3 ubiquitin ligases (Pineda et al., 2007). In my research, I analyzed the subcellular localizations of the TRAFs following CD40 ligand (CD40L)-stimulation, and found that TRAF2 and 3 rapidly translocate into the nucleus of primary neurons and Neuro2a cells. Interestingly, similar analysis conducted in pre-B lymphocytes (Daudi cells) revealed a different response to CD40L-stimulation, with TRAF2 and 3 being rapidly degraded within 5-minutes of stimulation. These findings are significant because they demonstrate for the first time that the TRAFs translocate into the nucleus and suggest that they may function within the nucleus in a cell-specific manner. I next analyzed the ability of TRAF2 and 3 to bind to DNA, and found that they both bind to chromatin and the NF-kappaB consensus element in Neuro2a cells, following CD40L-stimulation. Similar analyses of the chromatin binding of TRAF2 and 3 in Daudi cells revealed that they were rapidly degraded, similar to the results from my analysis of their subcellular localization. These findings show for the first time that the TRAFs interact with DNA, and therefore support the hypothesis that the TRAFs may function within the nucleus as transcriptional regulators. Finally, I analyzed the ability of the TRAFs to regulate transcriptional activity by luciferase assay. Previous studies showed that overexpression of TRAF2 and 6 could induce NF-kappaB transcriptional activity; however researchers have not been able to determine the mechanism by which they do so. In my studies, I found that every TRAF can directly regulate transcriptional activity either as co-activators or co-repressors of transcription, in a cell- and target protein-specific manner. Additionally, I found that TRAF2 can act as a transcriptional activator, and that its ability to regulate transcription is largely dependent upon the presence of its RING-finger domain. In conclusion, these studies have revealed an entirely novel function for the TRAFs as immediate-early transcriptional regulators. Future research into the genes that are regulated by the specific TRAF complexes will further elucidate how the TRAFs regulate TNFR signaling, as well as whether dysfunctions in TRAF signaling may be associated with known disorders. If specific TRAF complexes are found to regulate specific genes, then pharmacological targeting of the individual TRAF complexes may allow for the highly specific inhibition of signaling events downstream of the TNFRs, without compromising overall receptor signaling, transcription factor pathways, or cellular systems.
35

Rôle de CD271 dans l'immunomodulation des cellules T

Bonkoungou, Carole A. 04 1900 (has links)
No description available.
36

Structural and Mechanistic Studies on α-Amino β-Carboxymuconate ε-Semialdehyde Decarboxylase and α-Aminomuconate ε-Semialdehyde Dehydrogenase

Huo, Lu 12 August 2014 (has links)
α-Amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD) and α-aminomuconate-ε-semialdehyde dehydrogenase (AMSDH) are two neighboring enzymes in the L-tryptophan and 2-nitrobenzoic acid degradation pathways. The substrates of the two enzymes, α-amino-β-carboxymuconate-ε-semialdehyde (ACMS) and α-aminomuconate-ε-semialdehyde (2-AMS), are unstable and spontaneously decay to quinolinic acid and picolinic acid, respectively. ACMSD utilizes a divalent zinc metal as cofactor and is a member of the amidohydrolase superfamily. In this dissertation work, we have identified an important histidine residue in the active site that plays dual roles in tuning metal selectivity and activating a metal bound water ligand using mutagenesis, resonance Raman, EPR, crystallography, and ICP metal analysis techniques. The crystal structures of ACMSD from Pseudomonas fluorescens (PfACMSD) have been solved as homodimers in our laboratory while human ACMSD (hACMSD) was annotated as a monomer by another group. To resolve this structural difference, we used two conserved active site arginine residues as probes to study the oligomeriztion state of ACMSD and demonstrated that these two arginine residues are involved in substrate binding and that both Pf- and h- ACMSD are catalytically active only in the dimeric state. Subsequently, we solved the crystal structure of hACMSD and found it to be a homodimer in both catalytically active and inhibitor-bound forms. AMSDH is an NAD+ dependent enzyme and belongs to the aldehyde dehydrogenase superfamily. Due to the high instability of its substrate, AMSDH has not been studied at the molecular level prior to our work. We have cloned and expressed PfAMSDH in E. coli. The purified protein has high activity towards both 2-AMS and 2-hydroxymuconate semialdehyde (2-HMS), a stable substrate analog. We have successfully crystallized AMSDH with/without NAD+ and solved the crystal structure at up to 1.95 Å resolution. Substrate bound ternary complex structures were obtained by soaking the NAD+ containing crystals with 2-AMS or 2-HMS. Notably, two covalently bound catalytic intermediates were captured and characterized using a combination of crystallography, stopped-flow, single crystal spectroscopy, and mass spectrometry. The first catalytic working model of AMSDH has been proposed based on our success in structural and spectroscopic characterization of the enzyme in five catalytically relevant states in this dissertation work.
37

Structure-fonction des protéines Hsp70-like chez les mycobactéries / Structure and function of Hsp70-like proteins in mycobacteria

Al-Fawares, O'la 12 April 2019 (has links)
Les protéines Hsp70 appartiennent à une famille de chaperons moléculaires très conservés qui jouent un rôle essentiel dans le contrôle qualité des protéines et qui protègent les cellules contre diverses agressions de l'environnement. Pour fonctionner comme un chaperon moléculaire, les protéines Hsp70 agissent de concert avec plusieurs co-chaperons et co-facteurs nécessaires au fonctionnement de son cycle ATPasique. Nos travaux montrent que les bactéries du genre Mycobacterium codent pour une nouvelle famille de protéines atypiques apparentées à Hsp70 dont l'architecture s'articule autour d'un domaine ATPase putatif à l'extrémité N-terminale, similaire au domaine de la superfamille Hsp70-actine, d’un segment transmembranaire (TMD) putatif et d'une longue région riche en proline/thréonine (P/T) en sa partie C-terminale. Le but de ce travail de thèse était d’étudier la fonction et la localisation cellulaire des protéines de type Hsp70 chez les mycobactéries. Nous avons d’abord constaté que la protéine Hsp70-Like de M. smegmatis (Msmg_Hsp70-Like) se localisait en foci distincts à la membrane des cellules et que son expression induisait un phénotype d’agrégation cellulaire. Afin d’éclaircir le rôle des domaines putatifs TMD et P/T, nous avons construit un ensemble de mutants dans lesquels ces éléments structurels ont été supprimés. Nous avons constaté que le domaine TMD putatif était important pour la localisation de Hsp70-Like, pour la formation des foci à la membrane et pour le phénotype d'agrégation des cellules. En revanche, le domaine riche en P/T n’a aucun effet sur ces phénotypes. In vitro, le domaine ATPase putatif de Msmg_Hsp70-Like a été purifié et des essais de cristallisation sont en cours. Des expériences supplémentaires restent cependant nécessaires pour évaluer la fonction de cette nouvelle famille de protéines. / Hsp70 belongs to a highly conserved family of molecular chaperone proteins that unambiguously plays essential roles in protein quality control, protecting cells against various environmental insults. To function as a bona fide molecular chaperone, Hsp70 acts in concert with several co-chaperones and nucleotide exchange factors to complete its ATP-dependent chaperone cycle. Our work shows that bacteria from the genus Mycobacterium encode new atypical Hsp70-Like proteins that share a common architecture: a putative ATPase domain at the N-terminus similar to members of the Hsp70-actin superfamily, a single putative transmembrane domain (TMD) in the middle of the protein and a long proline/threonine (P/T) - rich region at the C-terminal. The aim of this thesis work was to shed light on the function and the cellular localization of Hsp70-like proteins in mycobacteria. We first found that Msmg Hsp70-Like protein localizes to discrete foci within cells and that its expression induces a cell aggregation phenotype. To shed light on the role of the putative TMD and P/T- rich domains in Hsp70-Like, we engineered a set of mutants in which these structural elements were deleted. We found that the central putative TMD was important for the cell envelop localization of Hsp70-Like, for the formation of foci and for cell aggregation. In contrast, the P/T-rich had no effect on these phenomena. In vitro the putative ATPase domain of Msmg Hsp70-Like was purified and crystallization trials were performed. Further research is needed to assess the function of this novel family of proteins.
38

Cellular targets of Pseudomonas aeruginosa toxin Exoenzyme S

Henriksson, Maria January 2003 (has links)
<p><i>Pseudomonas aeruginosa</i> is an opportunistic pathogen that can cause life-threatening infections in immunocompromised patients. It uses a type III secretion dependent mechanism to translocate toxic effector proteins directly into the eukaryotic cell. The enzymatic activity of two of these toxins, Exoenzyme S (ExoS) and Exoenzyme T (ExoT), have been studied in this thesis. ExoS is a bi-functional toxin known to contain a C-terminal ADP-ribosyltransferase activity, which has been shown to modify members of the Ras family in vitro. The N-terminal of ExoS contains a GTPase Activating Protein (GAP) domain, which shows specificity towards Rho proteins in vitro. ExoT shows high homology (76%) towards ExoS and has also been reported to contain ADP-ribosyltransferase activity <i>in vitro</i>. To study the biological effect of the two toxins, we inserted ExoS or ExoT into eukaryotic cells using the heterologous type III secretion system of <i>Yersinia pseudotuberculosis</i>. We found that Ras was ADP-ribosylated <i>in vivo</i> and this modification altered the ratio of GTP/GDP bound directly to Ras. We also found that ExoS could ADP-ribosylate several members of the Ras superfamily <i>in vivo</i>, modulating the activity of those proteins. In contrast, ExoT showed no ADP-ribosylation activity towards any of the GTPases tested. This suggests that ExoS is the major ADP-ribosyltransferase modulating small GTPase function encoded by <i>P. aeruginosa</i>. Furthermore, we have demonstrated that the GAP activity of ExoS abolishes the activation of RhoA, Cdc42 and Rap1 <i>in vivo</i>, and that ExoT shows GAP activity towards RhoA <i>in vitro</i>. </p><p>The ADP-ribosyltransferase activity of ExoS is dependent on the eukaryotic protein 14-3-3. 14-3-3 proteins interact with ExoS in a phospho-independent manner. We identified the amino acids <sup>424</sup>DALDL<sup>428</sup> on ExoS to be necessary for the specific interaction between ExoS and 14-3-3. Deletion of these five amino acids abolishes the ADP-ribosylation of Ras and hence the cytotoxic effect of P. aeruginosa on cells. Thus the 14-3-3 binding motif on ExoS appears to be critical for both the ADP-ribosylation activity and the cytotoxic action of ExoS <i>in vivo</i>.</p>
39

Cellular targets of Pseudomonas aeruginosa toxin Exoenzyme S

Henriksson, Maria January 2003 (has links)
Pseudomonas aeruginosa is an opportunistic pathogen that can cause life-threatening infections in immunocompromised patients. It uses a type III secretion dependent mechanism to translocate toxic effector proteins directly into the eukaryotic cell. The enzymatic activity of two of these toxins, Exoenzyme S (ExoS) and Exoenzyme T (ExoT), have been studied in this thesis. ExoS is a bi-functional toxin known to contain a C-terminal ADP-ribosyltransferase activity, which has been shown to modify members of the Ras family in vitro. The N-terminal of ExoS contains a GTPase Activating Protein (GAP) domain, which shows specificity towards Rho proteins in vitro. ExoT shows high homology (76%) towards ExoS and has also been reported to contain ADP-ribosyltransferase activity in vitro. To study the biological effect of the two toxins, we inserted ExoS or ExoT into eukaryotic cells using the heterologous type III secretion system of Yersinia pseudotuberculosis. We found that Ras was ADP-ribosylated in vivo and this modification altered the ratio of GTP/GDP bound directly to Ras. We also found that ExoS could ADP-ribosylate several members of the Ras superfamily in vivo, modulating the activity of those proteins. In contrast, ExoT showed no ADP-ribosylation activity towards any of the GTPases tested. This suggests that ExoS is the major ADP-ribosyltransferase modulating small GTPase function encoded by P. aeruginosa. Furthermore, we have demonstrated that the GAP activity of ExoS abolishes the activation of RhoA, Cdc42 and Rap1 in vivo, and that ExoT shows GAP activity towards RhoA in vitro. The ADP-ribosyltransferase activity of ExoS is dependent on the eukaryotic protein 14-3-3. 14-3-3 proteins interact with ExoS in a phospho-independent manner. We identified the amino acids 424DALDL428 on ExoS to be necessary for the specific interaction between ExoS and 14-3-3. Deletion of these five amino acids abolishes the ADP-ribosylation of Ras and hence the cytotoxic effect of P. aeruginosa on cells. Thus the 14-3-3 binding motif on ExoS appears to be critical for both the ADP-ribosylation activity and the cytotoxic action of ExoS in vivo.
40

Mechanistic Studies and Function Discovery of Mononuclear Amidohydrolase Enzymes

Hall, Richard Stuart 2009 December 1900 (has links)
The amidohydrolase superfamily is a functionally diverse group of evolutionarily related proteins which utilize metal cofactors in the activation of a hydrolytic water molecule and in the stabilization of the resulting tetrahedral intermediate. Members of this superfamily have been described which use one or two divalent transition metals. These metal cofactors are located in either or both of two active-site metal binding centers which are labeled as the Ma and MB sites. The goal of this research was to elucidate the nature of the reactions catalyzed by Ma and MB mononuclear members of the amidohydrolase superfamily. This was approached through comprehensive mechanistic evaluations of two enzymes which utilized the different metal sites. Nacetyl- D-glucosamine-6-phosphate deacetylase from E. coli (NagA) and cytosine deaminase from E. coli (CDA) served as models for mononuclear amidohydrolase superfamily enzymes which have evolved to utilize a single B-metal and a single a-metal for hydrolysis, respectively. This research elucidated the different properties imparted by the distinct a and B active sites and the specific interactions utilized by the enzymes for substrate binding and catalysis. These studies led to the eventual proposal of detailed chemical mechanisms and the identification of rate determining steps. Knowledge of sequence-function relationships was applied toward the discovery of function for enzymes related to cytosine deaminase and guanine deaminase. The first group of enzymes investigated was proposed to catalyze the fourth step in riboflavin and coenzyme F420 biosynthesis in Achaea. Three putative deaminases; Mm0823 from Methanosarcina mazei, MmarC7_0625 from Methanococcus maripaludis C7 and Sso0398 from Sulfolobus solfataricus were cloned and expressed. These proteins proved to be intractably insoluble. A second set of enzymes, Pa0142 from Pseudomonas aeruginosa PA01 and SGX-9236e (with crystal structure PDB: 3HPA) were found to catalyze the novel deamination of 8-oxoguanine, a mutagenic product of DNA oxidation. 9236e was cloned from an unidentified environmental sample of the Sargasso Sea. The closest homolog (98% identical) is Bcep18194_A5267 from Burkholderia sp. 383. Additionally, it was discovered that the proteins SGX-9339a (with crystal structure PDB: 2PAJ) and SGX-9236b catalyzed the deamination of isoxanthopterin and pterin-6- carboxylate in a poorly characterized folate degradation pathway. These enzymes were also from unknown environmental samples of the Sargasso Sea. The closest homolog of 9339a (88% identical) is Bxe_A2016 from Burkholderia xenovorans LB400. The closest homolog of 9236b (95% identical) is Bphyt_7136 from Burkholderia phytofirmans PsJN.

Page generated in 0.0296 seconds