Spelling suggestions: "subject:"suppressor genes"" "subject:"supppressor genes""
41 |
Caracterização molecular e funcional de células de tumores adrenocorticais humanos. / Molecular and functional characterization of human adrenocortical cell cultures.Amanda Teixeira Rodrigues 14 August 2014 (has links)
O Adenoma adrenocortical é frequente em adultos, já o carcinoma é raro e agressivo. Mesmo com critérios padronizados, ainda há dificuldade para diferenciar esses tumores, sendo necessário o estudo de marcadores eficientes na detecção e diferenciação. Por serem raros e com diversas manifestações clínicas, culturas in vitro pode ser uma ferramenta para o estudo de processos que envolvem a doença. Foi realizada a caracterização molecular e funcional de culturas de células de tumores de pacientes. Resultados de PCR Array não mostraram um padrão que diferenciasse as culturas em função dos diagnósticos. Desta análise, 7 oncogenes apresentaram maior expressão e 9 supressores de tumor apresentaram baixa expressão nas culturas. WWOX, FHIT e TP73 foram validados por qPCR e a sugestiva interação entre esses fatores nos tumores adrenocorticais merecem futuras investigações. O potencial funcional das culturas T83-ACC, T36-REC e T7-ACA(P) foram evidenciados, e mostraram que podem ser bons modelos para estudo da ação de hormônios e seus mecanismos. / The adrenocortical adenoma is common in adults, since carcinoma is rare and aggressive. Even with standardized scores, it is still difficult to differentiate these tumors, the study of efficient markers in the detection and differentiation is necessary. Because they are rare and diverse clinical manifestations in vitro cultures can be a tool for the study of disease processes that involve. Molecular and functional characterization of cultured tumor cells of patients was conducted. PCR Array results did not show a pattern that differentiates cultures on the basis of diagnoses. This analysis showed higher expression 7 oncogenes and tumor suppressors 9 showed low expression in cultures. WWOX, FHIT and TP73 were validated by qPCR and suggestive interaction between these factors in adrenocortical tumors deserve further investigation. The functional potential of T83-ACC, T36-REC and T7-ACA(P) cell cultures were found, and shown confirm that they can be good models for studying the action of hormones and their mechanisms.
|
42 |
Investigating Tumor Suppressors in the DNA Damage Response: Caretakers of the Genome and Biomarkers to Predict Therapeutic Response: A DissertationGuillemette, Shawna S. 11 April 2014 (has links)
Our genome is constantly challenged by sources that cause DNA damage. To repair DNA damage and maintain genomic stability eukaryotes have evolved a complex network of pathways termed the DNA damage response (DDR). The DDR consists of signal transduction pathways that sense DNA damage and mediate tightly coordinated reactions to halt the cell cycle and repair DNA with a collection of different enzymes. In this manner, the DDR protects the genome by preventing the accumulation of mutations and DNA aberrations that promote cellular transformation and cancer development. Loss of function mutations in DDR genes and genomic instability occur frequently in many tumor types and underlie numerous cancer-prone hereditary syndromes such as Fanconi Anemia (FA).
My thesis research applies candidate-based and unbiased experimental approaches to investigate the role of several tumor suppressor genes (TSGs) in the DDR. My dissertation will first describe a novel function for the breast and ovarian cancer tumor suppressor and FA-associated gene FANCJ in the DDR to ultraviolet (UV) irradiation. In response to UV irradiation FANCJ supports checkpoint induction, the arrest of DNA synthesis, and suppresses UV induced point mutations. Suggesting that FANCJ could suppress UV induced cancers, in sequenced melanomas from multiple databases I found somatic mutations in FANCJ previously associated with breast/ovarian cancer and FA syndrome.
The second part of my dissertation will describe an RNA interference screen to identify genes modulating cellular sensitivity to the chemotherapeutic drug cisplatin. The hereditary breast/ovarian cancer tumor suppressor BRCA2 is essential for DNA repair, thus BRCA2 mutant ovarian cancer cells are initially sensitive to cisplatin chemotherapy that induces DNA damage. However, drug resistance develops and remains a major problem in the clinic. My screen identified the chromatin remodeling factor CHD4 as a potent modulator of cisplatin sensitivity and predictor of response to chemotherapy in BRCA2 mutant cancers. Taken together, my investigations highlight the important contribution of the DDR and the role they play in tumorigenesis and predicting therapeutic response.
|
43 |
Molekulargenetische Analysen zur Etablierung eines Progressionsmodells des PankreaskarzinomsGalehdari, Hamid 26 September 2000 (has links)
Recently the suspected precursor lesions of ductal adenocarcinoma of the pancreas have been called Pancreatic intraepithelial neoplasia (PanIN) and graded according to the degree of dysplasia. To correlate each grade of PanIN with molecular genetic alterations, we determined the frequency of allelic losses at chromosomal arms 9p (the location of the p16 gene), 17p (p53 gene) and 18q (DPC4/SMAD4 gene) in 81 microdissected PanINs, using a combination of whole genome amplification and microsatellite analysis. In addition, p53 and Dpc4 protein expression was determined by immunohistochemistry. Essentially no allelic losses were identified in the non-dysplastic PanIN-1 lesion. In PanIN-2 with low grade dysplasia the frequency of allelic losses at chromosomal region 9p, 17p and 18q was 20%, 33% and 17%, respectively, which increased to 46%, 77% and 58%, respectively, in PanIN-2 with moderate dysplasia, to 87%, 60% and 88% in PanIN-3 with high grade dysplasia, and to 100%, 91%, and 82% in the invasive carcinomas. The progressive occurrence of allelic losses at all three loci strongly supports the PanIN progression model for pancreatic carcinoma. Nuclear p53 and loss of Dpc4 protein expression was associated only with PanIN-3 and invasive carcinomas, consistent with the model that inactivation of p53 and DPC4 are late events in pancreatic carcinogenesis. Since the aberrant protein expression patterns, were preceded, however by a sharp increase in allelic losses from PanIN-2 with low grade dysplasia to PanIN-2 with moderate dysplasia it is suggested that the increasing grade of dysplasia in the PanIN lesions identify biologically relevant steps towards invasive carcinoma. The discrepancy between alleic loss frequencies and p53 and DPC4 expression also raises the possibility that additional tumor suppressor genes on chromosomes 17p and 18q promote early pancreatic carcinogenesis.
|
44 |
Identificação de moduladores genéticos em uma grande família com neoplasia endócrina múltipla (NEM1) / Identification of modifying genetic fatctors in a large family with multiple endocrine neoplasia type 1Longuini, Viviane Cristina 18 March 2011 (has links)
A Neoplasia endócrina múltipla tipo 1 (NEM1; OMIM 131100) é uma síndrome endócrina hereditária, que envolve tumores nas glândulas paratireóides, pâncreas endócrino/duodeno e hipófise. Mutações germinativas no gene supressor de tumor MEN1 são identificadas em aproximadamente 80% dos casos familiais. Os casos restantes podem apresentar grandes deleções no gene MEN1 (raras), não identificáveis ao seqüenciamento direto, ou mutações em outros genes, ainda pouco conhecidos. Recentemente, mutações germinativas em genes que codificam quinases dependentes de ciclinas, como o gene supressor de tumor p27Kip1, foram identificadas em cerca de 1-2% dos pacientes NEM1 sem mutação no gene MEN1. Esses pacientes apresentam uma clínica similar à NEM1, sendo chamada de NEM-like ou NEM4. Estudos in vitro mostraram que a proteína codificada pelo gene MEN1, MENIN, controla a expressão gênica de p27Kip1, indicando que ambos os genes fazem parte da mesma via celular supressora de tumor. Devido à correlação genótipo-fenótipo ser muito fraca nessa síndrome e à grande variabilidade fenotípica encontrada em pacientes com NEM1 (mesmo entre indivíduos/familiares que possuem mesma mutação no gene MEN1), no presente estudo investigamos a hipótese do envolvimento do gene p27Kip1, e de outro gene supressor de tumor recentemente associado com um fenótipo tumores hipofisários famílias, o gene AIP, como possíveis moduladores de fenótipo entre os pacientes com NEM1 de uma extensa família brasileira com a mutação germinativa MEN1 c.308delC e ampla variabilidade fenotípica. Dentre uma série de variáveis clínicas investigadas, observamos um possível papel modulador de fenótipo do gene p27Kip1 nesta família com NEM1. Foi encontrada associação significante entre o genótipo do polimorfismo p.V109G do gene p27Kip1, localizado em um domínio de ligação com a proteína p38 (que é um regulador negativo de p27 por levar à degradação dessa proteína), com os seguintes aspectos clínicos: maior agressividade do tumor hipofisário (macro vs. microadenomas), precocidade no desenvolvimento do tumor pancreático, e presença de carcinóides e metástases nos pacientes analisados (p< 0,05). Não foi observada nenhuma associação do gene AIP e o fenótipo dos pacientes com NEM1. O presente estudo investigou, pela primeira vez, o status germinativo do gene p27Kip1 em pacientes com mutação MEN1 e identificou uma associação significante em relação à susceptibilidade e agressividade dos tumores na coorte estudada / Multiple endocrine neoplasia type 1 (MEN1) is an inherited tumoral syndrome that involves tumors in the parathyroids, anterior pituitary and in the pancreatic islet(s) cells. Germline mutations in the tumor suppressor gene MEN1 are detectable through direct sequencing in the majority (80%) of the patients with familial MEN1. The remaining patients may present large MEN1 gene deletions, not detectable through direct sequencing, or mutations in other genes, so far largely unknown. Recently, rare mutations in genes that encode cyclin-dependent kinases, as p27Kip1, have been reported in approximately 1-2% of the patients without a MEN1 mutation. These patients were reported as presenting a MEN1-like (or the MEN4) syndrome phenotype. In vitro studies have demonstrated that the protein encoded by the MEN1 gene, MENIN, controls the expression of the p27Kip1 gene and, therefore, these two genes seem to act in the same intracellular tumor suppressor pathway. Due to the lack of genotype-phenotype correlation in MEN1 and the large clinical variability usually observed within unrelated patients carrying the same MEN1 mutation, we hypothesized that p27Kip1 (as well as AIP gene, recently associated with familial predisposition to pituitary tumors) may act as phenotypic modifying gene(s) in the MEN1 syndrome. Herein, we analyzed possible correlations between p27Kip1 genotype and a number of clinical features. We identified significant statistic associations between the p.V109G p27Kip1 polymorphism and phenotype manifestations, indicating a potential role of p27Kip1 in modifying MEN1 phenotype, as follows: pituitary tumor size; early development of pancreatic tumors, and presence of carcinoids and metastasis (p< 0,05). In addition, a possible association with the AIP gene was excluded. The present study analyzed, for the first time, the germline status of p27Kip1 gene in MEN1-mutated patients and identified a potential interaction between the genotype of this tumor suppressor gene in regulating susceptibility and the tumor aggressiveness in MEN1 patients
|
45 |
Análise do gene AIP na acromegalia familial isolada / Analysis of the AIP gene in familial isolated acromegalyToledo, Rodrigo de Almeida 14 April 2010 (has links)
A acromegalia é doença insidiosa e desfigurante caracterizada por um crescimento desproporcional dos ossos das mãos, pés e do crânio devido à exposição crônica a altos níveis de hormônio de crescimento (GH) e de seu efetor insuline growth factor 1 (IGF-1). Trata-se de uma doença rara, com incidência estimada de 3-4 casos por milhão, com prevalência de aproximadamente 50 casos por milhão de pessoas. A principal causa da acromegalia é a presença de um tumor hipofisário secretor de GH (somatotropinoma). Caso o somatotropinoma ocorra durante a infância ou adolescência, antes do fechamento das epífises dos ossos longos, a criança crescerá longitudinalmente de forma descontrolada, caracterizando a forma clínica gigantismo. Na grande maioria dos casos a acromegalia se apresenta na forma esporádica, entretanto casos familiais da doença podem ocorrer associados à Neoplasia Endócrina Múltipla tipo 1 (NEM-1), ao complexo de Carney (CNC) e à acromegalia familial isolada (IFS). Os genes responsáveis pela NEM-1 (MEN1) e CNC (PRKAR1A) foram clonados há mais 10 anos, entretanto etiologia molecular da IFS permaneceu desconhecida até recentemente. Vierimaa et al. (2006) combinaram estudos de ligação por análise de polimorfismos e estudos de expressão gênica e identificaram mutações no gene AIP em famílias com acromegalia não-NEM-1 e não-CNC; além de perda de heterozigose (LOH) nos somatotropinomas dos pacientes com mutação AIP. No presente estudo, investigamos o gene AIP em três famílias brasileiras com IFS e em seus tumores (hipofisários e não-hipofisários). Descrevemos uma nova mutação AIP (Y268X) em uma família brasileira com IFS, confirmando o papel desse novo gene na predisposição a tumores hipofisários. A partir de dados gerados em uma extensa revisão da literatura, sugerimos que os tumores hipofisários familiais isolados são doenças multigênicas que possuiriam um gene principal, mas que sofreriam influência de outros genes/loci ainda pouco caracterizados. Assim, investigamos também o envolvimento de diversos genes/loci candidatos (SSTR2, SSTR5, CDKN1B, AHR, PRKAR1A, PTTG, PROP1, MEG3, RB1 e 2p16) como possíveis moduladores do fenótipo na IFS. Nossos dados sugerem que além da mutação AIP, há necessidade da co-segregação de marcadores localizados em regiões com potencial oncogênico para o desenvolvimento da doença hipofisária. Também apresentamos nesta Tese as primeiras análises de tumores nãohipofisários em pacientes com mutação AIP e encontramos evidências do possível envolvimento de AIP na tumorigênese de um carcinoma funcionante do córtex adrenal de paciente com IFS. / Acromegaly is a rare disfigurating and insidious disease characterized by enlargement of hands, feet and skull bones due to excess of growth hormone (GH) secreted by a pituitary tumor (somatotropinoma). The majority of the cases with acromegaly is sporadic, however it may occur in association with inherited disorders as Multiple Endocrine Neoplasia type 1 (MEN1), Carney complex (CNC) and Isolated Familial Somatotropinoma (IFS). The genes associated with MEN1 syndrome (MEN1) and CNC (PRKAR1A) have been described more than a decade ago, however until very recently the molecular etiology of IFS remained unknown. Using a combined strategy of single nucleotide polymorphism (SNP) analysis and gene expression analysis, Vierimaa et al. (2006) described mutations in the AIP gene occurring in families with acromegaly not associated with MEN1 and CNC. In the current study, we investigated three Brazilian families with IFS and were able to describe two germline mutations in the AIP gene, confirming the role of this new gene in the predisposition to familial somatotropinoma. We revised the literature of genetic studies of isolated pituitary adenoma syndromes, which indicated a genetic heterogeneity as well as possible multigenic inheritance for these diseases. Thus, we investigated the role of several genes/loci (SSTR2, SSTR5, CDKN1B, AHR, PRKAR1A, PTTG, PROP1, MEG3, RB1 and 2p16) selected as potentially acting as phenotypic modulators in IFS. Our data indicate that AIP-mutated patients are prone to pituitary disease, however it is necessary the co-segregation of markers located at oncogenic regions to the development of the pituitary tumors and manifestation of the disease. Herein, we also present the first somatic analysis of non-pituitary tumors of AIP-mutated patients. A potential role of AIP, which is implicated in the cAMP pathway, could not be excluded in the development of an adrenocortical carcinoma.
|
46 |
Application of Genomic and Expression Arrays for Identification of new Cancer GenesNord, Helena January 2010 (has links)
Copy number variation (CNV) comprises a recently discovered kind of variation involving deletion and duplication of DNA segments of variable size, ranging from a few hundred basepairs to several million. By altering gene dosage levels or disrupting proximal or distant regulatory elements CNVs create human diversity. They represent also an important factor in human evolution and play a role in many disorders including cancer. Array-based comparative genomic hybridization as well as expression arrays are powerful and suitable methods for determination of copy number variations or gene expression changes in the human genome. In paper I we established a 32K clone-based genomic array, covering 99% of the current assembly of the human genome with high resolution and applied it in the profiling of 71 healthy individuals from three ethnic groups. Novel and previously reported CNVs, involving ~3.5% of the genome, were identified. Interestingly, 87% of the detected CNV regions overlapped with known genes indicating that they probably have phenotypic consequences. In papers II through IV we applied this platform to different tumor types, namely two collections of brain tumors, glioblastoma (paper II) and medulloblastoma (paper III), and a set of bladder carcinoma (paper IV) to identify chromosomal alterations at the level of DNA copy number that could be related to tumor initiation/progression. Tumors of the central nervous system represent a heterogeneous group of both benign and malignant neoplasms that affect both children and adults. Glioblastoma and medulloblastoma are two malignant forms. Glioblastoma often affects adults while the embryonal tumor medulloblastoma is the most common malignant brain tumor among children. The detailed profiling of 78 glioblastomas, allowed us to identify a complex pattern of aberrations including frequent and high copy number amplicons (detected in 79% of samples) as well as a number of homozygously deleted loci. These regions encompassed not only previously reported oncogenes and tumor suppressor genes but also numerous novel genes. In paper III, a subset of 26 medulloblastomas was analyzed using the same genomic array. We observed that alterations involving chromosome 17, especially isochromosome 17q, were the most common genomic aberrations in this tumor type, but copy number alterations involving other chromosomes: 1, 7 and 8 were also frequent. Focal amplifications, on chromosome 1 and 3, not previously described, were also detected. These loci may encompass novel genes involved in medulloblastoma development. In paper IV we examined for the presence of DNA copy number alterations and their effect on gene expression in a subset of 21 well-characterized Ta bladder carcinomas, selected for the presence or absence of recurrences. We identified a number of novel genes as well as a significant association between amplifications and high-grade and recurrent tumors which might be clinically useful. The results derived from these studies increase our understanding of the genetic alterations leading to the development of these tumor forms and point out candidate genes that may be used in future as targets for new diagnostic and therapeutic strategies.
|
47 |
Identificação de moduladores genéticos em uma grande família com neoplasia endócrina múltipla (NEM1) / Identification of modifying genetic fatctors in a large family with multiple endocrine neoplasia type 1Viviane Cristina Longuini 18 March 2011 (has links)
A Neoplasia endócrina múltipla tipo 1 (NEM1; OMIM 131100) é uma síndrome endócrina hereditária, que envolve tumores nas glândulas paratireóides, pâncreas endócrino/duodeno e hipófise. Mutações germinativas no gene supressor de tumor MEN1 são identificadas em aproximadamente 80% dos casos familiais. Os casos restantes podem apresentar grandes deleções no gene MEN1 (raras), não identificáveis ao seqüenciamento direto, ou mutações em outros genes, ainda pouco conhecidos. Recentemente, mutações germinativas em genes que codificam quinases dependentes de ciclinas, como o gene supressor de tumor p27Kip1, foram identificadas em cerca de 1-2% dos pacientes NEM1 sem mutação no gene MEN1. Esses pacientes apresentam uma clínica similar à NEM1, sendo chamada de NEM-like ou NEM4. Estudos in vitro mostraram que a proteína codificada pelo gene MEN1, MENIN, controla a expressão gênica de p27Kip1, indicando que ambos os genes fazem parte da mesma via celular supressora de tumor. Devido à correlação genótipo-fenótipo ser muito fraca nessa síndrome e à grande variabilidade fenotípica encontrada em pacientes com NEM1 (mesmo entre indivíduos/familiares que possuem mesma mutação no gene MEN1), no presente estudo investigamos a hipótese do envolvimento do gene p27Kip1, e de outro gene supressor de tumor recentemente associado com um fenótipo tumores hipofisários famílias, o gene AIP, como possíveis moduladores de fenótipo entre os pacientes com NEM1 de uma extensa família brasileira com a mutação germinativa MEN1 c.308delC e ampla variabilidade fenotípica. Dentre uma série de variáveis clínicas investigadas, observamos um possível papel modulador de fenótipo do gene p27Kip1 nesta família com NEM1. Foi encontrada associação significante entre o genótipo do polimorfismo p.V109G do gene p27Kip1, localizado em um domínio de ligação com a proteína p38 (que é um regulador negativo de p27 por levar à degradação dessa proteína), com os seguintes aspectos clínicos: maior agressividade do tumor hipofisário (macro vs. microadenomas), precocidade no desenvolvimento do tumor pancreático, e presença de carcinóides e metástases nos pacientes analisados (p< 0,05). Não foi observada nenhuma associação do gene AIP e o fenótipo dos pacientes com NEM1. O presente estudo investigou, pela primeira vez, o status germinativo do gene p27Kip1 em pacientes com mutação MEN1 e identificou uma associação significante em relação à susceptibilidade e agressividade dos tumores na coorte estudada / Multiple endocrine neoplasia type 1 (MEN1) is an inherited tumoral syndrome that involves tumors in the parathyroids, anterior pituitary and in the pancreatic islet(s) cells. Germline mutations in the tumor suppressor gene MEN1 are detectable through direct sequencing in the majority (80%) of the patients with familial MEN1. The remaining patients may present large MEN1 gene deletions, not detectable through direct sequencing, or mutations in other genes, so far largely unknown. Recently, rare mutations in genes that encode cyclin-dependent kinases, as p27Kip1, have been reported in approximately 1-2% of the patients without a MEN1 mutation. These patients were reported as presenting a MEN1-like (or the MEN4) syndrome phenotype. In vitro studies have demonstrated that the protein encoded by the MEN1 gene, MENIN, controls the expression of the p27Kip1 gene and, therefore, these two genes seem to act in the same intracellular tumor suppressor pathway. Due to the lack of genotype-phenotype correlation in MEN1 and the large clinical variability usually observed within unrelated patients carrying the same MEN1 mutation, we hypothesized that p27Kip1 (as well as AIP gene, recently associated with familial predisposition to pituitary tumors) may act as phenotypic modifying gene(s) in the MEN1 syndrome. Herein, we analyzed possible correlations between p27Kip1 genotype and a number of clinical features. We identified significant statistic associations between the p.V109G p27Kip1 polymorphism and phenotype manifestations, indicating a potential role of p27Kip1 in modifying MEN1 phenotype, as follows: pituitary tumor size; early development of pancreatic tumors, and presence of carcinoids and metastasis (p< 0,05). In addition, a possible association with the AIP gene was excluded. The present study analyzed, for the first time, the germline status of p27Kip1 gene in MEN1-mutated patients and identified a potential interaction between the genotype of this tumor suppressor gene in regulating susceptibility and the tumor aggressiveness in MEN1 patients
|
48 |
Análise do gene AIP na acromegalia familial isolada / Analysis of the AIP gene in familial isolated acromegalyRodrigo de Almeida Toledo 14 April 2010 (has links)
A acromegalia é doença insidiosa e desfigurante caracterizada por um crescimento desproporcional dos ossos das mãos, pés e do crânio devido à exposição crônica a altos níveis de hormônio de crescimento (GH) e de seu efetor insuline growth factor 1 (IGF-1). Trata-se de uma doença rara, com incidência estimada de 3-4 casos por milhão, com prevalência de aproximadamente 50 casos por milhão de pessoas. A principal causa da acromegalia é a presença de um tumor hipofisário secretor de GH (somatotropinoma). Caso o somatotropinoma ocorra durante a infância ou adolescência, antes do fechamento das epífises dos ossos longos, a criança crescerá longitudinalmente de forma descontrolada, caracterizando a forma clínica gigantismo. Na grande maioria dos casos a acromegalia se apresenta na forma esporádica, entretanto casos familiais da doença podem ocorrer associados à Neoplasia Endócrina Múltipla tipo 1 (NEM-1), ao complexo de Carney (CNC) e à acromegalia familial isolada (IFS). Os genes responsáveis pela NEM-1 (MEN1) e CNC (PRKAR1A) foram clonados há mais 10 anos, entretanto etiologia molecular da IFS permaneceu desconhecida até recentemente. Vierimaa et al. (2006) combinaram estudos de ligação por análise de polimorfismos e estudos de expressão gênica e identificaram mutações no gene AIP em famílias com acromegalia não-NEM-1 e não-CNC; além de perda de heterozigose (LOH) nos somatotropinomas dos pacientes com mutação AIP. No presente estudo, investigamos o gene AIP em três famílias brasileiras com IFS e em seus tumores (hipofisários e não-hipofisários). Descrevemos uma nova mutação AIP (Y268X) em uma família brasileira com IFS, confirmando o papel desse novo gene na predisposição a tumores hipofisários. A partir de dados gerados em uma extensa revisão da literatura, sugerimos que os tumores hipofisários familiais isolados são doenças multigênicas que possuiriam um gene principal, mas que sofreriam influência de outros genes/loci ainda pouco caracterizados. Assim, investigamos também o envolvimento de diversos genes/loci candidatos (SSTR2, SSTR5, CDKN1B, AHR, PRKAR1A, PTTG, PROP1, MEG3, RB1 e 2p16) como possíveis moduladores do fenótipo na IFS. Nossos dados sugerem que além da mutação AIP, há necessidade da co-segregação de marcadores localizados em regiões com potencial oncogênico para o desenvolvimento da doença hipofisária. Também apresentamos nesta Tese as primeiras análises de tumores nãohipofisários em pacientes com mutação AIP e encontramos evidências do possível envolvimento de AIP na tumorigênese de um carcinoma funcionante do córtex adrenal de paciente com IFS. / Acromegaly is a rare disfigurating and insidious disease characterized by enlargement of hands, feet and skull bones due to excess of growth hormone (GH) secreted by a pituitary tumor (somatotropinoma). The majority of the cases with acromegaly is sporadic, however it may occur in association with inherited disorders as Multiple Endocrine Neoplasia type 1 (MEN1), Carney complex (CNC) and Isolated Familial Somatotropinoma (IFS). The genes associated with MEN1 syndrome (MEN1) and CNC (PRKAR1A) have been described more than a decade ago, however until very recently the molecular etiology of IFS remained unknown. Using a combined strategy of single nucleotide polymorphism (SNP) analysis and gene expression analysis, Vierimaa et al. (2006) described mutations in the AIP gene occurring in families with acromegaly not associated with MEN1 and CNC. In the current study, we investigated three Brazilian families with IFS and were able to describe two germline mutations in the AIP gene, confirming the role of this new gene in the predisposition to familial somatotropinoma. We revised the literature of genetic studies of isolated pituitary adenoma syndromes, which indicated a genetic heterogeneity as well as possible multigenic inheritance for these diseases. Thus, we investigated the role of several genes/loci (SSTR2, SSTR5, CDKN1B, AHR, PRKAR1A, PTTG, PROP1, MEG3, RB1 and 2p16) selected as potentially acting as phenotypic modulators in IFS. Our data indicate that AIP-mutated patients are prone to pituitary disease, however it is necessary the co-segregation of markers located at oncogenic regions to the development of the pituitary tumors and manifestation of the disease. Herein, we also present the first somatic analysis of non-pituitary tumors of AIP-mutated patients. A potential role of AIP, which is implicated in the cAMP pathway, could not be excluded in the development of an adrenocortical carcinoma.
|
49 |
Lack of Point Mutations in Exons 11–23 of the Retinoblastoma Susceptibility Gene RB-1 in Liver Metastases of Colorectal CarcinomaHildebrandt, Bert, Heide, I., Thiede, Christian, Nagel, S., Dieing, Annette, Jonas, S., Neuhaus, Peter, Rochlitz, Christoph, Riess, Hanno, Neubauer, Andreas January 2000 (has links)
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
50 |
Transcriptional and Posttranscriptional Regulation of the Tumor Suppressor CDC73 in Oral Squamous Cell Carcinoma : Implications for Cancer TherapeuticsRather, Mohammad Iqbal January 2013 (has links) (PDF)
CDC73, also known as HRPT2, is a tumour suppressor gene whose expression is lost or downregulated in parathyroid, renal, breast, uterine and gastric cancers. However, the reports regarding the role of CDC73 in oral squamous cell carcinoma (OSCC) are lacking. As part of the Paf1 complex, it remains associated with ribonucleic acid (RNA) polymerase II and is involved in transcript site selection, transcriptional elongation, histone H2B ubiquitination, histone H3 methylation, poly(A) length control and, coupling of transcriptional and posttranscriptional events. It has been reported to negatively regulate cellularproliferation by targeting oncogenes CCND1 (cyclin D1) and MYC (c-Myc). Moreover, it has also been indicated to inhibitβ-catenin-mediated transcription. Taken together, these findings strongly suggest that it contributes to the expression of genes whose products have an important role in the suppression of tumor development and cell death. In this study, we have attempted to study the transcriptional and posttranscriptional regulation of CDC73 and its role in OSCC.
The main findings of the present study are listed below.
1. To begin with, the expression analysis of CDC73 was performed both at the RNA and the protein levels by qRT-PCR and IHC, respectively. As expected, a majority of the OSCC samples showed downregulation of CDC73 both at the RNA and the protein levels compared to their normal oral tissues.
2. Loss-of-heterozygosity (LOH), mutation and promoter methylation are the hallmarks of a tumor suppressor gene (TSG). Therefore, to characterize CDC73 as a TSG in OSCC and to look into the mechanisms that could be the cause of CDC73 downregulation in OSCC, LOH, mutation and promoter methylation of CDC73 were studied. The results showed that LOH, mutation and promoter methylation are not the major causes of CDC73 downregulation in OSCC.
3. To identify the alternate mechanisms as the cause of CDC73 downregulation in OSCC, a combination of bioinformatics and molecular approaches were used. The results showed that the upregulation of an inhibitory transcription factor WT1 (Wilms tumor protein 1) and an oncogenic microRNA-155 are the major causes of its downregulation in OSCC.
4. The luciferase reporter assay of SCC131 cells co-transfected with a WT1 construct and a CDC73 promoter construct showed that WT1 over expression represses CDC73 expression in a dose-dependent manner.
5. Due to the presence of zinc fingers in its C-terminal half, WT1 has been found to be a potent transcriptional regulator of genes. Therefore, to determine if WT1 down regulates CDC73 via binding its promoter, the chromatin immunoprecipitation (ChIP) assay was performed. The results showed the binding of WT1 to the CDC73 promoter in vivo. Binding of WT1 to the CDC73 promoter was further confirmed in vitro by the electrophoretic mobility shift assay (EMSA).
6. The 5-aza-2’-deoxycytidine (AZA) treatment of SCC131 cells led to upregulation of WT1 with a concomitant downregulation of CDC73. The COBRA technique demonstrated that the upregulation of WT1 upon the 5-AZA treatment was due to its promoter methylation.
7. To determine if the WT1-mediated reduction of CDC73 expression has a functional relevance in cell growth and proliferation, we knocked down CDC73 expression by transient over expression of WT1 in SCC131 cells and quantitated cell proliferation by the MTT assay. As expected, the results demonstrated that the reduced CDC73 level was associated with an increased cell proliferation. Cotransfection of CDC73 with WT1 in SCC131 cells attenuated the pro-oncogenic effect of WT1 by apoptosis induction.
8. After validating CDC73 as the target of WT1 by bioinformatics and in vitro assays, we quantitated the expression levels of WT1 and CDC73 by qRT-PCR in OSCC samples and their matched normal oral tissue samples. The results showed an inverse correlation between the expression levels of WT1 and CDC73 in a majority of the samples. To exclude the possibility of alternate mechanisms as the cause of CDC73 downregulation in OSCC, we selected a subset of OSCC samples with downregulated level of CDC73 and analysed them for LOH at the CDC73 locus and promoter methylation. Further, some of these OSCC samples were also analyzed for mutations in CDC73. The results showed that these OSCC samples did not have LOH, promoter methylation or any mutation, again validating the fact that CDC73 is a biological target of oncogenic WT1, and the transcriptional repression of CDC73 by WT1 could be a major mechanism for CDC73 downregulation in OSCC.
9. Recent studies have shown that a growing class of noncoding RNAs called microRNAs (miRNAs) is involved in posttranscriptional regulation of genes. There is a growing body of literature supporting the potential role of miRNAs in tumorigenesis. The importance of CDC73 in orchestration of several cellular functions and its role in tumorigenesis make it an attractive candidate for miRNA-mediated regulation of cell growth and proliferation. Using bioinformatics approaches, we identified an oncogenic microRNA-155 (miR-155) that could posttranscriptionally regulate CDC73 expression.
10. Consistent with its oncogenic role, miR-155 was found dramatically upregulated in OSCC samples and was found to be another mechanism for downregulation of CDC73 in a panel of human cell lines and a subset of OSCC samples in the absence of LOH, mutations and promoter methylation.
11. miRNAs regulate posttranscriptional gene expression generally via binding to their cognate sites in the 3’UTR. Therefore, a luciferase reporter construct was made by cloning the 3’UTR of CDC73 downstream to the luciferase reporter gene and the reporter assay was performed. Our experiments clearly indicated that the mature miR-155 regulates CDC73 expression by interacting with its 3’UTR in a site specific manner.
12 Ectopic expression of miR-155 in HEK293 cells dramatically reduced CDC73 levels, enhanced cell viability and decreased apoptosis. Conversely, the delivery of a miR-155 antagonist (antagomir-155) to KB cells over expression miR-155 resulted in increased CDC73 level, decreased cell viability, increased apoptosis and marked regression of engrafts in nude mice. Cotransfection of miR-155 with CDC73 in HEK293 cells abrogated its pro-oncogenic effect. Reduced cell proliferation and increased apoptosis of KB cells were dependent on the presence or absence of the 3’UTR in CDC73.
In nutshell, the knockdown of CDC73 expression due to over expression of WT1 and miR-155 not only adds a novelty to the list of mechanisms responsible for its downregulation in different tumors, but the restoration of CDC73 levels by the use of inhibitors to WT1 and antagomir-155 may also have an important role in therapeutic intervention of cancers, including OSCC.
|
Page generated in 0.0852 seconds