Spelling suggestions: "subject:"swirl."" "subject:"twirl.""
101 |
INVESTIGATION ON THE INTERNAL FLOW CHARACTERISTICS OF PRESSURE-SWIRL ATOMIZERSMA, ZHANHUA 21 June 2002 (has links)
No description available.
|
102 |
Computational Modeling of Laminar Swirl Flows and Heat Transfer in Circular Tubes with Twisted-Tape InsertsYou, Lishan 16 September 2002 (has links)
No description available.
|
103 |
COMPUTATIONAL SIMULATION OF FLOW INSIDE PRESSURE-SWIRL ATOMIZERSXUE, JIANQING January 2004 (has links)
No description available.
|
104 |
COMPREHENSIVE STUDY OF INTERNAL FLOW FIELD AND LINEAR AND NONLINEAR INSTABILITY OF AN ANNULAR LIQUID SHEET EMANATING FROM AN ATOMIZERIBRAHIM, ASHRAF 02 October 2006 (has links)
No description available.
|
105 |
Causes of Combustion Instabilities with Passive and Active Methods of Control for practical application to Gas Turbine EnginesCornwell, Michael 19 September 2011 (has links)
No description available.
|
106 |
Experimental Investigation of Turbulent Flow in a Pipe Bend using Particle Image VelocimetryJain, Akshay January 2017 (has links)
The turbulent flow through a 90o pipe bend is complex with secondary flow that can affect pressure drop and heat/mass transfer. The mean and unsteady flow is studied using refractive index matched two-dimensional two-component (2D2C) Particle Image Velocimetry in a single 90o bend with Rc/D = 1.5 and at Re = 34800. The measurements were performed in a closed loop using a 1-inch diameter test section that was machined out of acrylic. The flow is imaged in the symmetric plane parallel to the axial flow and at different cross sectional planes including 0.25D and 1D upstream, 10o, 20o, 70o, 80o from the bend inlet and 0.25D and 1D downstream of the bend.
The axial flow accelerates on the inner wall at the inlet and then moves towards the outer wall at 40o-50o. A shear layer is formed between high velocity fluid near the outer wall and the slower moving fluid at the inner wall side in the second half of the bend. The axial turbulent kinetic energy ((u^2 ) ̅+(v^2 ) ̅) is found to be high in regions corresponding to high velocity gradient regions: (i) at the outer wall near the inlet that extends up to the outlet, (ii) near the inner wall at 40o-50o, and (iii) at the shear layer formed near the inner wall. In the cross sectional planes, two vortices are formed and have a maximum strength at 80o from the bend inlet. The cross sectional turbulent kinetic energy ((v^2 ) ̅+(w^2 ) ̅) is found to be highest on the inner wall at the 80o plane.
The snapshot Proper Orthogonal Decomposition (POD) technique is used to study the unsteady flow structures within the flow. There are long and short flow structures in the upstream pipe which can be related to Very Large Scale and Large Scale Motions. The secondary flow at 20o and further downstream cross sectional planes show evidence of unsteadiness as two vortices oscillate about the symmetry axis with low frequencies of St ~ 0.07, 0.13 and higher frequency at St ~ 0.3-0.6. The low frequency oscillations can be related to Very Large Scale Motions while high frequency oscillations are related to separation of the flow on the inner wall side. Evidence of swirl switching in the high frequency range (St ~ 0.3-0.5) is found at cross sectional plane 1D downstream. / Thesis / Master of Applied Science (MASc)
|
107 |
3D Numerical Simulation to Determine Liner Wall Heat Transfer and Flow through a Radial Swirler of an Annular Turbine CombustorKumar, Vivek Mohan 26 August 2013 (has links)
RANS models in CFD are used to predict the liner wall heat transfer characteristics of a gas turbine annular combustor with radial swirlers, over a Reynolds number range from 50,000 to 840,000. A three dimensional hybrid mesh of around twenty five million cells is created for a periodic section of an annular combustor with a single radial swirler. Different turbulence models are tested and it is found that the RNG k-e model with swirl correction gives the best comparisons with experiments. The Swirl number is shown to be an important factor in the behavior of the resulting flow field. The swirl flow entering the combustor expands and impinges on the combustor walls, resulting in a peak in heat transfer coefficient. The peak Nusselt number is found to be quite insensitive to the Reynolds number only increasing from 1850 at Re=50,000 to 2200 at Re=840,000, indicating a strong dependence on the Swirl number which remains constant at 0.8 on entry to the combustor. Thus the peak augmentation ratio calculated with respect to a turbulent pipe flow decreases with Reynolds number. As the Reynolds number increases from 50,000 to 840,000, not only does the peak augmentation ratio decrease but it also diffuses out, such that at Re=840,000, the augmentation profiles at the combustor walls are quite uniform once the swirl flow impinges on the walls. It is surmised with some evidence that as the Reynolds number increases, a high tangential velocity persists in the vicinity of the combustor walls downstream of impingement, maintaining a near constant value of the heat transfer coefficient. The computed and experimental heat transfer augmentation ratios at low Reynolds numbers are within 30-40% of each other. / Master of Science
|
108 |
Fluid Dynamics of Inlet Swirl Distortions for Turbofan Engine ResearchGuimaraes Bucalo, Tamara 25 April 2018 (has links)
Significant effort in the current technological development of aircraft is aimed at improving engine efficiency, while reducing fuel burn, emissions, and noise levels. One way to achieve these is to better integrate airframe and propulsion system. Tighter integration, however, may also cause adverse effects to the flow entering the engines, such as total pressure, total temperature, and swirl distortions. Swirl distortions are angular non-uniformities in the flow that may alter the functioning of specific components of the turbomachinery systems. To investigate the physics involved in the ingestion of swirl, pre-determined swirl distortion profiles were generated through the StreamVane method in a low-speed wind tunnel and in a full-scale turbofan research engine. Stereoscopic particle image velocimetry (PIV) was used to collect three-component velocity fields at discrete planes downstream of the generation of the distortions with two main objectives in mind: identifying the physics behind the axial development of the distorted flow; and describing the generation of the distortion by the StreamVane and its impact to the flow as a distortion generating device.
Analyses of the mean velocity, velocity gradients, and Reynolds stress tensor components in these flows provided significant insight into the driving physics. Comparisons between small-scale and full-scale results showed that swirl distortions are Mach number independent in the subsonic regime. Reynolds number independence was also verified for the studied cases. The mean secondary flow and flow angle profiles demonstrated that the axial development of swirl distortions is highly driven by two-dimensional vortex dynamics, when the flow is isolated from fan effects. As the engine fan is approached, the vortices are axially stretched and stabilized by the acceleration of the flow. The flow is highly turbulent immediately downstream of the StreamVane due to the presence of the device, but that vane-induced turbulence mixes with axial distance, so that the device effects are attenuated for distances greater than a diameter downstream, which is further confirmed by the turbulent length scales of the flow. These results provide valuable insight into the generation and development of swirl distortion for ground-testing environments, and establishes PIV as a robust tool for engine inlet investigations. / Ph. D. / In order to improve performance of the next generation of aircraft, engineers are developing research that aims at reducing fuel consumption, improving the efficiency of engines, and also decreasing the levels of produced noise. There are several ways to achieve these goals, but significant effort has been focused on modifying the position of the engines on the aircraft to improve the properties of the airflow entering them. Computational simulations and small-scale tests have shown that this approach can be beneficial, while also showing that adverse effects to the properties of the air can be caused, affecting the behavior of the propulsion system. This current work makes use of a technique called StreamVane™ to reproduce those modified airflows in laboratory testing environments in order to understand how that flow might behave in the inlet of an engine, and what effects it could cause. This helps scientists and engineers decide if those modifications to the engine would be worth the time and money investments to the aircraft even before a full-scale model of the aircraft is built. More specifically, this work is an experimental investigation of two different types of distortions to the inlet airflow that could be caused by the aforementioned novel aircraft configurations, or by existing ones that have not been fully described yet.
|
109 |
Numerical Analysis of Flow and Heat Transfer through a Lean Premixed Swirl Stabilized Combustor NozzleKedukodi, Sandeep 11 April 2017 (has links)
While the gas turbine research community is continuously pursuing development of higher cyclic efficiency designs by increasing the combustor firing temperatures and thermally resistant turbine vane / blade materials, a simultaneous effort to reduce the emission levels of high temperature driven thermal NOX also needs to be addressed. Lean premixed combustion has been found as one of the solutions to these objectives. However, since less amount of air is available for backside cooling of liner walls, it becomes very important to characterize the convective heat transfer that occurs on the inside wall of the combustor liners. These studies were explored using laboratory scale experiments as well as numerical approaches for several inlet flow conditions under both non-reacting and reacting flows. These studies may be expected to provide valuable insights for the industrial design communities towards identifying thermal hot spot locations as well as in quantifying the heat transfer magnitude, thus aiding in effective designs of the liner walls.
Lean premixed gas turbine combustor flows involve strongly coupled interactions between several aspects of physics such as the degree of swirl imparted by the inlet fuel nozzle, premixing of the fuel and incoming air, lean premixed combustion within the combustor domain, the interaction of swirling flow with combustion driven heat release resulting in flow dilation, the resulting pressure fluctuations leading to thermo-acoustic instabilities there by creating a feedback loop with incoming reactants resulting in flow instabilities leading to flame lift off, flame extinction etc. Hence understanding combustion driven swirling flow in combustors continues to be a topic of intense research.
In the present study, numerical predictions of swirl driven combustor flows were analyzed for a specific swirl number of an industrial fuel nozzle (swirler) using a commercial computational fluid dynamics tool and compared against in-house experimental data. The latter data was obtained from a newly developed test rig at Applied Propulsion and Power Laboratory (APPL) at Virginia Tech. The simulations were performed and investigated for several flow Reynolds numbers under non-reacting condition using various two equation turbulence models as well as a scale resolving model. The work was also extended to reacting flow modeling (using a partially premixed model) for a specific Reynolds number. These efforts were carried out in order investigate the flow behavior and also characterize convective heat transfer along the combustor wall (liner). Additionally, several parametric studies were performed towards investigating the effect of combustor geometry on swirling flow and liner hear transfer; and also to investigate the effect of inlet swirl on the jet impingement location along the liner wall under both non-reacting as well as reacting conditions.
The numerical results show detailed comparison against experiments for swirling flow profiles within the combustor under reacting conditions indicating a good reliability of steady state modeling approaches for reacting conditions; however, the limitations of steady state RANS turbulence models were observed for non-reacting swirling flow conditions, where the flow profiles deviate from experimental observations in the central recirculation region. Also, the numerical comparison of liner wall heat transfer characteristics against experiments showed a sensitivity to Reynolds numbers. These studies offer to provide preliminary insights of RANS predictions based on commercial CFD tools in predicting swirling, non-reacting and reacting flow and heat transfer. They can be extended to reacting flow heat transfer studies in future and also may be upgraded to unsteady LES predictions to complement future experimental observations conducted at the in-house test facility. / Ph. D. / While the gas turbine research community is continuously pursuing development of higher cyclic efficiency designs by increasing the combustor firing temperatures and thermally resistant turbine vane / blade materials, a simultaneous effort to reduce the emission levels of high temperature driven thermal NOX also needs to be addressed. Lean premixed combustion has been found as one of the solutions to these objectives. However, since less amount of air is available for backside cooling of liner walls, it becomes very important to characterize the convective heat transfer that occurs on the inside wall of the combustor liners. These studies were explored using laboratory scale experiments as well as numerical approaches for several inlet flow conditions under both non-reacting and reacting flows. These studies may be expected to provide valuable insights for the industrial design communities towards identifying thermal hot spot locations as well as in quantifying the heat transfer magnitude, thus aiding in effective designs of the liner walls.
Lean premixed gas turbine combustor flows involve strongly coupled interactions between several aspects of physics such as the degree of swirl imparted by the inlet fuel nozzle, premixing of the fuel and incoming air, lean premixed combustion within the combustor domain, the interaction of swirling flow with combustion driven heat release resulting in flow dilation, the resulting pressure fluctuations leading to thermo-acoustic instabilities there by creating a feedback loop with incoming reactants resulting in flow instabilities leading to flame lift off, flame extinction etc. Hence understanding combustion driven swirling flow in combustors continues to be a topic of intense research.
In the present study, numerical predictions of swirl driven combustor flows were analyzed for a specific swirl number of an industrial fuel nozzle (swirler) using a commercial computational fluid dynamics tool and compared against in-house experimental data. The latter data was obtained from a newly developed test rig at Applied Propulsion and Power Laboratory (APPL) at Virginia Tech. The simulations were performed and investigated for several flow Reynolds numbers under non-reacting condition using various two equation turbulence models as well as a scale resolving model. The work was also extended to reacting flow modeling (using a partially premixed model) for a specific Reynolds number. These efforts were carried out in order investigate the flow behavior and also characterize convective heat transfer along the combustor wall (liner). Additionally, several parametric studies were performed towards investigating the effect of combustor geometry on swirling flow and liner hear transfer; and also to investigate the effect of inlet swirl on the jet impingement location along the liner wall under both non-reacting as well as reacting conditions.
The numerical results show detailed comparison against experiments for swirling flow profiles within the combustor under reacting conditions indicating a good reliability of steady state modeling approaches for reacting conditions; however, the limitations of steady state RANS turbulence models were observed for non-reacting swirling flow conditions, where the flow profiles deviate from experimental observations in the central recirculation region. Also, the numerical comparison of liner wall heat transfer characteristics against experiments showed a sensitivity to Reynolds numbers. These studies offer to provide preliminary insights of RANS predictions based on commercial CFD tools in predicting swirling, non-reacting and reacting flow and heat transfer. They can be extended to reacting flow heat transfer studies in future and also may be upgraded to unsteady LES predictions to complement future experimental observations conducted at the in-house test facility.
|
110 |
A Comprehensive Three-Dimensional Analysis of the Wake Dynamics in Complex Turning VanesHayden, Andrew Phillip 20 December 2023 (has links)
A comprehensive computational and experimental analysis has been conducted to characterize the flow dynamics and periodic structures formed in the wake of complex turning vanes. The vane packs were designed by the StreamVane swirl distortion generator technology, a design system that can efficiently reproduce swirl distortion for compressor rig and full turbofan engine testing. StreamVanes consist of an array of turning vanes that commonly contain variations in turning angle along their span, a nonaxisymmetric profile about the centerline, and vane-to-vane intersections or junctions to accurately generate the desired distortion. In this study, vane packs are considered complex if they contain two out of three of these features, a combination seen in other turbomachinery components outside of StreamVane design. Similar to all stator vanes or rotor blades, StreamVane vane packs are constructed using a series of cross-sectional airfoil profiles with blunt trailing edges and finite thicknesses. This, in turn, introduces periodic vortex structures in the wake, commonly known as trailing edge vortex shedding. To fully understand how the dynamics and coherent wake formations within vortex shedding impact both the flow distortion and structural durability of StreamVanes, it is first necessary to characterize the corresponding wakes in three dimensions.
The current study provides an in-depth analysis to predict and measure the trailing edge vortex development using high-fidelity computational fluid dynamics and stereoscopic time-resolved particle image velocimetry experiments. Two testcase StreamVane geometries were specifically designed with complex features to evaluate their influence on the dynamics and coherence of the respective vane wakes. Fully three-dimensional, unsteady computational fluid dynamics simulations were performed using a Reynolds-Averaged Navier-Stokes solver coupled with a standard two-equation turbulence model and a hybrid, scale-resolving turbulence model. Both models predicted large-scale wake frequencies within 1—14% of experiment, with a mean difference of less than 3.2%. These comparisons indicated that lower fidelity simulations were capable of accurately capturing such flows for complex vane packs. Additionally, structural and modal analyses were conducted using finite element models to determine the correlations between dominant structural modes and dominant wake (flow) modes. The simulations predicted that vortex shedding modes generally contained frequencies 300% larger than dominant structural modes, and therefore, vortex induced vibrations were unlikely to occur. Lastly, mode decomposition methods were applied to the experimental results to extract energy ratios and reveal dynamic content across high-order wake modes. The vortex shedding modes generated more than 80% of the total wake energy for both complex vane packs, and dynamic decomposition methods revealed unique structures within the vane junction wake. In all analyses, comparisons were made between different vane parameters, such as trailing edge thickness and turning angle, where it was found that trailing edge thickness was the dominant vortex shedding parameter.
The motivation, methodology, and results of the following research is presented to better understand the wake interactions, computational predictive capabilities, and structural dynamics associated with vortex shedding from complex vane packs. Although the results directly relate to StreamVane distortion generator technology, the qualitative and quantitative comparisons between the selected methods, geometry parameters, and flow conditions can be extrapolated to modern turbomachinery components in general. Therefore, this dissertation aims to benefit distortion generator and turbomachinery designers by providing insight into the underlying physics and overall modeling techniques of the wake dynamics in highly three-dimensional, complex components. / Doctor of Philosophy / A comprehensive analysis has been completed to characterize the unsteady wake flow produced by complex turning vane systems in three dimensions. Turning vanes are a common component utilized in the field of fluid dynamics and aerospace propulsion to effectively turn and manipulate the working fluid to the desired condition. For propulsion applications, similar vanes can alleviate performance losses by improving the overall aerodynamics and mitigating flow distortions entering the compressor of a jet engine. Conversely, complex turning vanes can also be used to reproduce the distortion for engineers to evaluate jet engine components when subjected to nonuniform flow ingestion. The distinct geometry features that make these vanes complex are also present in other turbomachinery systems outside of distortion generation. In any case, the cross-sectional profiles of the turning vanes commonly contain blunt ends or trailing edges due to engineering limitations and/or restrictions. This geometric feature introduces periodic wake structures, known as vortex shedding, that can negatively effect the performance of the overall system. It is therefore a necessity to characterize both the dynamics and coherence of vortex shedding to fully understand the flow features in highly three-dimensional flows.
In the presented research, this is achieved by applying computational simulations and experimental measurements to extract the corresponding wake dynamics of complex vane packs. The selected testcases where designed using the StreamVane technology, a mature system that generates tailored turning vanes to reproduce flow distortion in jet engine or fan rig ground-testing facilities. The fluid simulations captured the expected wake flow and largescale structures convecting downstream of the vane packs. A comparison between two different flow models and the experimental results revealed minimal quantitative differences in the large-scale dynamics, which gave insight into the model selection to predict such flows. Additional structural simulations were performed to estimate the forcing and response of the vane packs when subjected to the aerodynamic loading. The results showed vortex shedding was highly unlikely to cause large amplitude vibrations and structural failures. In all analyses, the primary results were correlated with common vane parameters and operating conditions to evaluate their impact on the wake dynamics.
The motivation, methodology, and results of the following research is presented to better understand the wake interactions, computational predictive capabilities, and structural dynamics associated with vortex shedding from complex vane packs. Although the results directly relate to StreamVane distortion generator technology, the qualitative and quantitative comparisons between the selected methods, geometry parameters, and flow conditions can be extrapolated to modern turbomachinery components in general. Therefore, this dissertation aims to benefit distortion generator and turbomachinery designers by providing insight into the underlying physics and overall modeling techniques of the wake dynamics in highly three-dimensional, complex components.
|
Page generated in 0.0633 seconds