• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Controle neurovascular em repouso e durante o exercí­cio em indiví­duos com diferentes ní­veis de pressão arterial: papel dos quimiorreceptores periféricos / Neurovascular control at rest and during exercise in subjects with different blood pressure levels: role of peripheral chemoreceptors

Saraiva, Graziela Amaro Vicente Ferreira 12 April 2018 (has links)
INTRODUÇÃO: A hipertensão arterial tem sido associada à hipersensibilidade quimiorreflexa arterial. A consequência dessa disfunção autonômica nessa população é a ativação simpática e vasoconstrição. De fato, a atividade nervosa simpática está aumentada e o fluxo sanguíneo muscular diminuído, em repouso e durante manobras fisiológicas como o exercício, em pacientes hipertensos. Contudo, o papel dos quimiorreceptores periféricos na resposta neurovascular durante o exercício não tem sido investigado nesses pacientes. OBJETIVO: Avaliar a influência dos quimiorreceptores periféricos no controle neurovascular da atividade nervosa simpática muscular (ANSM), condutância vascular no antebraço e pressão arterial em repouso, durante o exercício e a oclusão circulatória em pacientes com hipertensão arterial. MÉTODOS: Vinte e cinco sujeitos, na faixa etária entre 25 e 60 anos, sedentários, com índice de massa corporal menor que 30kg/m2 e não engajados em tratamento farmacológico participaram do estudo. Os participantes foram divididos em dois grupos, de acordo com o nível de pressão arterial clínica e classificados como hipertensos ou normotensos. Foram avaliados a ANSM (microneurografia), o fluxo sanguíneo muscular (pletismografia de oclusão venosa), a pressão arterial (oscilométrica), a frequência cardíaca (eletrocardiograma) e respiratória (cinta piezoelétrica) e a saturação de pulso de oxigênio (oxímetro). Todas as avaliações foram realizadas em repouso, durante o exercício de preensão de mão (30% da contração voluntária máxima) e durante a oclusão circulatória pós-exercício, em condições de normóxia (inalação de níveis ambientes com 21% de oxigênio) e hiperóxia (manobra que desativa os quimiorreceptores arteriais através da inalação da concentração de 100% de oxigênio). Em repouso, também foram avaliadas a variabilidade da frequência cardíaca e da pressão arterial e o ganho do controle barorreflexo da frequência cardíaca. Foi considerada diferença significativa quando P<0,05. RESULTADOS: No repouso, a desativação dos quimiorreceptores periféricos diminuiu a ANSM (38±3 vs. 34±3 disparos/minuto, P=0,02), aumentou o fluxo sanguíneo muscular (2,2±0,3 vs. 2,4±0,3 ml/min/100ml, P=0,02) e tendeu a aumentar a condutância vascular do antebraço (P=0,06) nos pacientes hipertensos. Além disso, a desativação dos quimiorreceptores periféricos aumentou o ganho do controle barorreflexo da frequência cardíaca (8±2 vs. 10±2 ms/mmHg, P=0,03) nesses pacientes tornando-os semelhantes ao grupo normotenso, quando comparados em condição de hiperóxia. Durante o exercício físico, a desativação dos quimiorreceptores periféricos diminuiu a resposta da ANSM nos pacientes hipertensos (A.S.C.= 131±8 vs. 116±9 disparos, P=0,005). No entanto, nenhuma modificação significativa foi observada na condutância vascular do antebraço e na pressão arterial. Interessantemente, durante a oclusão circulatória, manobra que isola os metaborreceptores musculares, a desativação dos quimiorreceptores periféricos aumentou a ANSM no primeiro e segundo minuto de oclusão (?= -2±2 vs. 3±1 disparos/min; ?= -4±2 vs. 3±1 disparos/min, P(grupo)= 0,02). CONCLUSÃO: Em pacientes hipertensos, a desativação dos quimiorreceptores periféricos: 1- Diminui a ANSM e aumenta o fluxo sanguíneo muscular e o ganho do controle barorreflexo da frequência cardíaca em repouso; 2-Diminui a resposta da ANSM durante o exercício e; 3- Normaliza o controle metaborreflexo da ANSM. Analisados em conjunto, esses resultados demonstram a participação do mecanismo quimiorreflexo periférico no controle neurovascular não só em repouso, mas também, durante a manobra fisiológica de exercício nos pacientes hipertensos / INTRODUCTION: Hypertension has been associated with augmented arterial chemoreflex sensitivity. The consequence of this autonomic dysfunction is an increased sympathetic outflow and vasoconstriction. Indeed, sympathetic nerve activity is increased and forearm blood flow is decreased at rest and during physiological maneuvers such as exercise, in hypertensive patients. However, the role of peripheral chemoreceptors in neurovascular response during exercise has not been investigated in these patients. OBJECTIVES: To evaluate the influence of peripheral chemoreceptors on neurovascular control of muscle sympathetic nerve activity (MSNA), forearm vascular conductance and blood pressure at rest, during exercise and postexercise circulatory arrest in patients with hypertension. METHODS: Twenty-five subjects, age between 25 and 60 years old, sedentary, with body mass index less than 30 kg/m2 and not engaged in pharmacological treatment participated in the study. The participants were divided into two groups according to their clinical blood pressure levels and were classified as hypertensive or normotensive. Were evaluated MSNA (microneurography), forearm blood flow (venous occlusion plethysmography), blood pressure (oscillometric), heart rate (electrocardiogram), respiratory rate (piezoelastic strap) and oxygen saturation (oxymeter). The evaluations were performed at rest, during a handgrip exercise (30% of the maximal voluntary contraction) and during postexercise circulatory arrest, in normóxia (breathing ambient air, containing 21% of oxygen) and hyperoxia (breathing air containing 100% oxygen, maneuver that deactivates the peripheral chemoreceptors). At rest, the variability of heart rate and blood pressure and the baroreflex control of heart rate were also evaluated. Significant differences were assumed to be when P<0.05. RESULTS: At rest, the deactivation of the peripheral chemoreceptors decreased the MSNA (38±3 vs. 34±3 bursts/min, P=0.02), increased forearm blood flow (2.2±0.3 vs. 2.4±0.3 ml/min/100ml, P=0.02) and tended to increase forearm vascular conductance (P=0.06) in hypertensive patients. Besides, the deactivation of the peripheral chemoreceptors increased the baroreflex control of heart rate (8±2 vs. 10±2 ms/mmHg, P=0.03) in these patients, toward to the normotensive group levels, when compared during hyperoxia condition. During exercise, the deactivation of peripheral chemoreceptors decreased the MSNA response in hypertensive patients (A.U.C.= 131±8 vs. 116±9 bursts, P=0.005). However, no significant changes were observed in forearm vascular conductance and blood pressure responses. Interestingly, during postexercise circulatory arrest, when the metaboreflex control is isolated, the deactivation of peripheral chemoreceptors increased the MSNA during the first and second minute of circulatory arrest (?= -2±2 vs. 3±1 bursts/min; ?= -4±2 vs. 3±1 bursts/min, P(group)=0.02). CONCLUSION: In hypertensive patients, the deactivation of the peripheral chemoreceptors: 1- Decreases the MSNA and increases the forearm blood flow and baroreflex control of heart rate at rest; 2- Decreases the MSNA response during exercise; 3- Normalizes the metaboreflex control of MSNA. Taken together, these results demonstrate the participation of the peripheral chemorreflex mechanism in the neurovascular control not only at rest, but also during the physiological maneuver of exercise in hypertensive patients
2

Controle neurovascular em repouso e durante o exercí­cio em indiví­duos com diferentes ní­veis de pressão arterial: papel dos quimiorreceptores periféricos / Neurovascular control at rest and during exercise in subjects with different blood pressure levels: role of peripheral chemoreceptors

Graziela Amaro Vicente Ferreira Saraiva 12 April 2018 (has links)
INTRODUÇÃO: A hipertensão arterial tem sido associada à hipersensibilidade quimiorreflexa arterial. A consequência dessa disfunção autonômica nessa população é a ativação simpática e vasoconstrição. De fato, a atividade nervosa simpática está aumentada e o fluxo sanguíneo muscular diminuído, em repouso e durante manobras fisiológicas como o exercício, em pacientes hipertensos. Contudo, o papel dos quimiorreceptores periféricos na resposta neurovascular durante o exercício não tem sido investigado nesses pacientes. OBJETIVO: Avaliar a influência dos quimiorreceptores periféricos no controle neurovascular da atividade nervosa simpática muscular (ANSM), condutância vascular no antebraço e pressão arterial em repouso, durante o exercício e a oclusão circulatória em pacientes com hipertensão arterial. MÉTODOS: Vinte e cinco sujeitos, na faixa etária entre 25 e 60 anos, sedentários, com índice de massa corporal menor que 30kg/m2 e não engajados em tratamento farmacológico participaram do estudo. Os participantes foram divididos em dois grupos, de acordo com o nível de pressão arterial clínica e classificados como hipertensos ou normotensos. Foram avaliados a ANSM (microneurografia), o fluxo sanguíneo muscular (pletismografia de oclusão venosa), a pressão arterial (oscilométrica), a frequência cardíaca (eletrocardiograma) e respiratória (cinta piezoelétrica) e a saturação de pulso de oxigênio (oxímetro). Todas as avaliações foram realizadas em repouso, durante o exercício de preensão de mão (30% da contração voluntária máxima) e durante a oclusão circulatória pós-exercício, em condições de normóxia (inalação de níveis ambientes com 21% de oxigênio) e hiperóxia (manobra que desativa os quimiorreceptores arteriais através da inalação da concentração de 100% de oxigênio). Em repouso, também foram avaliadas a variabilidade da frequência cardíaca e da pressão arterial e o ganho do controle barorreflexo da frequência cardíaca. Foi considerada diferença significativa quando P<0,05. RESULTADOS: No repouso, a desativação dos quimiorreceptores periféricos diminuiu a ANSM (38±3 vs. 34±3 disparos/minuto, P=0,02), aumentou o fluxo sanguíneo muscular (2,2±0,3 vs. 2,4±0,3 ml/min/100ml, P=0,02) e tendeu a aumentar a condutância vascular do antebraço (P=0,06) nos pacientes hipertensos. Além disso, a desativação dos quimiorreceptores periféricos aumentou o ganho do controle barorreflexo da frequência cardíaca (8±2 vs. 10±2 ms/mmHg, P=0,03) nesses pacientes tornando-os semelhantes ao grupo normotenso, quando comparados em condição de hiperóxia. Durante o exercício físico, a desativação dos quimiorreceptores periféricos diminuiu a resposta da ANSM nos pacientes hipertensos (A.S.C.= 131±8 vs. 116±9 disparos, P=0,005). No entanto, nenhuma modificação significativa foi observada na condutância vascular do antebraço e na pressão arterial. Interessantemente, durante a oclusão circulatória, manobra que isola os metaborreceptores musculares, a desativação dos quimiorreceptores periféricos aumentou a ANSM no primeiro e segundo minuto de oclusão (?= -2±2 vs. 3±1 disparos/min; ?= -4±2 vs. 3±1 disparos/min, P(grupo)= 0,02). CONCLUSÃO: Em pacientes hipertensos, a desativação dos quimiorreceptores periféricos: 1- Diminui a ANSM e aumenta o fluxo sanguíneo muscular e o ganho do controle barorreflexo da frequência cardíaca em repouso; 2-Diminui a resposta da ANSM durante o exercício e; 3- Normaliza o controle metaborreflexo da ANSM. Analisados em conjunto, esses resultados demonstram a participação do mecanismo quimiorreflexo periférico no controle neurovascular não só em repouso, mas também, durante a manobra fisiológica de exercício nos pacientes hipertensos / INTRODUCTION: Hypertension has been associated with augmented arterial chemoreflex sensitivity. The consequence of this autonomic dysfunction is an increased sympathetic outflow and vasoconstriction. Indeed, sympathetic nerve activity is increased and forearm blood flow is decreased at rest and during physiological maneuvers such as exercise, in hypertensive patients. However, the role of peripheral chemoreceptors in neurovascular response during exercise has not been investigated in these patients. OBJECTIVES: To evaluate the influence of peripheral chemoreceptors on neurovascular control of muscle sympathetic nerve activity (MSNA), forearm vascular conductance and blood pressure at rest, during exercise and postexercise circulatory arrest in patients with hypertension. METHODS: Twenty-five subjects, age between 25 and 60 years old, sedentary, with body mass index less than 30 kg/m2 and not engaged in pharmacological treatment participated in the study. The participants were divided into two groups according to their clinical blood pressure levels and were classified as hypertensive or normotensive. Were evaluated MSNA (microneurography), forearm blood flow (venous occlusion plethysmography), blood pressure (oscillometric), heart rate (electrocardiogram), respiratory rate (piezoelastic strap) and oxygen saturation (oxymeter). The evaluations were performed at rest, during a handgrip exercise (30% of the maximal voluntary contraction) and during postexercise circulatory arrest, in normóxia (breathing ambient air, containing 21% of oxygen) and hyperoxia (breathing air containing 100% oxygen, maneuver that deactivates the peripheral chemoreceptors). At rest, the variability of heart rate and blood pressure and the baroreflex control of heart rate were also evaluated. Significant differences were assumed to be when P<0.05. RESULTS: At rest, the deactivation of the peripheral chemoreceptors decreased the MSNA (38±3 vs. 34±3 bursts/min, P=0.02), increased forearm blood flow (2.2±0.3 vs. 2.4±0.3 ml/min/100ml, P=0.02) and tended to increase forearm vascular conductance (P=0.06) in hypertensive patients. Besides, the deactivation of the peripheral chemoreceptors increased the baroreflex control of heart rate (8±2 vs. 10±2 ms/mmHg, P=0.03) in these patients, toward to the normotensive group levels, when compared during hyperoxia condition. During exercise, the deactivation of peripheral chemoreceptors decreased the MSNA response in hypertensive patients (A.U.C.= 131±8 vs. 116±9 bursts, P=0.005). However, no significant changes were observed in forearm vascular conductance and blood pressure responses. Interestingly, during postexercise circulatory arrest, when the metaboreflex control is isolated, the deactivation of peripheral chemoreceptors increased the MSNA during the first and second minute of circulatory arrest (?= -2±2 vs. 3±1 bursts/min; ?= -4±2 vs. 3±1 bursts/min, P(group)=0.02). CONCLUSION: In hypertensive patients, the deactivation of the peripheral chemoreceptors: 1- Decreases the MSNA and increases the forearm blood flow and baroreflex control of heart rate at rest; 2- Decreases the MSNA response during exercise; 3- Normalizes the metaboreflex control of MSNA. Taken together, these results demonstrate the participation of the peripheral chemorreflex mechanism in the neurovascular control not only at rest, but also during the physiological maneuver of exercise in hypertensive patients
3

Contribuição dos grupamentos neuronais noradrenérgicos A1, A2 e do núcleo Pré-óptico mediano (MnPO) nas respostas cardiovasculares e autonômicas induzidas pela sobrecarga de sódio em ratos submetidos à hemorragia hipovolêmica / Contribution of A1, A2 noradrenergic neuronal clusters and median Preoptic nucleus (MnPO) in cardiovascular and autonomic responses induced by sodium overload in rats submitted to hypovolemic hemorrhage

Naves, Lara Marques 02 March 2018 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2018-08-09T11:39:12Z No. of bitstreams: 2 Dissertaçao - Lara Marques Naves - 2018.pdf: 4245553 bytes, checksum: 32754e93d07b1f96bc7f0b9a2bc618ff (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-08-09T12:20:22Z (GMT) No. of bitstreams: 2 Dissertaçao - Lara Marques Naves - 2018.pdf: 4245553 bytes, checksum: 32754e93d07b1f96bc7f0b9a2bc618ff (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-08-09T12:20:22Z (GMT). No. of bitstreams: 2 Dissertaçao - Lara Marques Naves - 2018.pdf: 4245553 bytes, checksum: 32754e93d07b1f96bc7f0b9a2bc618ff (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-03-02 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / Hemodynamic and cardiovascular benefits from the hypertonic saline solution (HS) use in the hypotensive hemorrhage (HH) treatment have been reported for several years. Recent investigations have shown the participation of central nervous system (CNS) regions, such as A1 neuronal clusters (located in the caudal ventrolateral medulla; CVLM), A2 neuronal clusters (located in the nucleus of the solitary tract; NTS) and the Median Preoptic Nucleus (MnPO) on hemodynamic responses induced by sodium chloride overload in normovolemic animals. However, the role of the above structures in cardiovascular recovery and autonomic changes induced by HS solution administration in animals submitted to HH has not yet been evaluated. Thus, the present study evaluated the A1, A2 neuronal clusters and MnPO nucleus involvement in the cardiovascular and autonomic responses promoted by HS solution infusion in hypovolemic animals. For this, wistar rats (280-320 g) were separated into four protocols: I. A2 neuronal cluster lesion (A2 Sham: n = 6; A2 Experimental: n = 6); II. A1 neuronal cluster lesion (A1 Sham: n = 6; A1 Experimental: n = 6); III. A1 and A2 neural clusters concomitant lesions (A1 + A2 Sham: n = 6; A1 + A2 Experimental: n = 6) and IV. Pharmacological inhibition of MnPO (MnPO Sham: n = 6; MnPO Experimental: n = 6). The animals of the first three protocols were anesthetized and subjected to saporin-anti-DβH nanoinjections for neuronal lesion (100 nL, 0.105 ng/nl) in experimental groups and Saporin nanoinjections (100 nL, 0.022 ng/nL) in sham groups for fictitious neuronal lesion, respectively, in the NTS, CVLM or simultaneously in the NTS and CVLM regions. After 20 days of recovery, the animals were anesthetized and instrumented to mean arterial pressure (MAP), heart rate (HR) and renal sympathetic nervous activity (RSNA) recordings. Then, HH was performed by blood withdrawal until MAP reached approximately 60 mmHg. After 20 min of HH, sodium overload (3M NaCl, 1.8 mL/g, 90 seconds of infusion, i.v) was conducted. In another series of experiments, MnPO Sham and MnPO Experimental groups were anesthetized and instrumented for MAP, HR and RSNA recordings. Then, the animals were submitted to HH and HS infusion at the end of the hemorrhage. GABAergic agonist Muscimol (4 mM, 100 nL, MnPO Experimental group) or saline nanoinjections (0.15 M, 100 nL, MnPO Sham group) were performed in the MnPO after 10 min from the start of HH. HH-induced hypotension, bradycardia and renal sympathoinhibition in the animals of the A2 Sham, A1 Sham, A1 + A2 Sham and MnPO Sham groups. In the sham groups, HS infusion after HH reestablished MAP, HR, and did not alter the renal sympathoinhibition generated during hypovolemia. In the A2 Experimental and A1 Experimental groups, the specific lesion of A1 or A2 neurons did not alter the hypotension, bradycardia and renal sympathoinhibition caused during HH. In addition, the A1 or A2 neurons specific lesion did not alter the reestablishment of MAP, HR and the RSNA reduction after HS solution infusion. However, in the animals of the A1 + A2 experimental group, the simultaneous A1 and A2 neurons lesion did not alter the decrease in MAP and HR observed during HH, but abolished renal sympathoinhibition. In addition, simultaneous A1 and A2 neurons lesion abolished MAP restoration and ANSR reduction after HS infusion, while HR restoration was not modified. In the MnPO experimental animals, MnPO nucleus inhibition did not alter the decrease in MAP and HR observed during HH, but abolished renal sympathoinhibition. However, MnPO inhibition abolished the MAP restoration and promoted strong sympathetic activation in the renal bed after HS infusion, while HR restoration was not modified. These results suggest that the A1, A2 neuronal clusters and MnPO nucleus are part of the integration and transmission information circuits about changes in plasma osmolarity, participating in cardiovascular and autonomic recovery induced by sodium chloride overload in animals submitted to HH. / Os benefícios hemodinâmicos e cardiovasculares provenientes do uso de solução salina hipertônica (SH) no tratamento da hemorragia hipotensiva (HH) são relatados há vários anos. Recentes investigações mostraram a participação de regiões do sistema nervoso central (SNC), como os grupamentos neuronais A1 (localizado na região caudoventrolateral do bulbo; CVLM), A2 (localizado no núcleo do tracto solitário; NTS) e do núcleo Pré-óptico mediano (MnPO) nas respostas hemodinâmicas induzidas pela sobrecarga de cloreto de sódio em animais normovolêmicos. Entretanto, o papel das estruturas acima relacionadas na recuperação cardiovascular e nas alterações autonômicas induzidas pela administração de solução SH em animais submetidos à HH ainda não foi avaliado. Assim, o presente estudo buscou avaliar o envolvimento dos grupamentos neuronais A1, A2 e do núcleo MnPO nas respostas cardiovasculares e autonômicas promovidas pela infusão de solução SH em animais hipovolêmicos. Para isto, ratos Wistar (280-320 g) foram separados em quatro protocolos: I. Lesão do grupamento neuronal A2 (Controle A2: n=6; Experimental A2: n=6); II. Lesão do grupamento neuronal A1 (Controle A1: n=6; Experimental A1: n=6); III. Lesões concomitantes dos grupamentos neuronais A1 e A2 (Controle A1 + A2: n=6; Experimental A1 + A2: n=6) e IV. Inibição farmacológica do núcleo MnPO (Controle MnPO: n=6; Experimental MnPO: n=6). Os animais dos três primeiros protocolos foram anestesiados e submetidos a nanoinjeções de saporina-anti-DβH para lesão neuronal (100 nL, 0,105 ng/nL) nos grupos experimentais e Saporina (100 nL, 0,022 ng/nL) nos grupos controles para lesão neuronal fictícia, respectivamente, no NTS, na região CVLM ou conjuntamente no NTS e CVLM. Após 20 dias de recuperação, os animais foram novamente anestesiados e instrumentalizados para registro da pressão arterial média (PAM), frequência cardíaca (FC) e atividade nervosa simpática renal (ANSR). Em seguida, a HH foi realizada através da retirada de sangue até que a PAM atingisse aproximadamente 60 mmHg. Após 20 min de HH foi conduzida a sobrecarga de sódio (NaCl 3M, 1,8 mL/kg, 90 segundos de infusão, i.v). Em outra série de experimentos, os animais dos grupos controle MnPO e Experimental MnPO foram anestesiados e instrumentalizados para registro da PAM, FC, ANSR. Em seguida, foram submetidos à HH e a infusão de solução SH ao final da hemorragia. Nanoinjeções do agonista GABAérgico, muscimol (4 mM, 100 nL, grupo experimental MnPO) ou salina (0,15 M; 100 nL; grupo controle MnPO) foram realizadas no MnPO após 10 min do início da HH. A HH promoveu hipotensão, bradicardia e simpatoinibição no território renal nos animais dos grupos controle A2, controle A1, controle A1 + A2 e controle MnPO. Nos grupos controle, a infusão de solução SH após a HH reestabeleceu a PAM, FC e não alterou a simpatoinibição renal gerada durante a hipovolemia. Nos animais dos grupos experimental A2 e experimental A1, a lesão especifica dos neurônios A1 ou A2 não alterou a hipotensão, bradicardia e simpatoinibição provocados durante a HH. Em adição, a lesão especifica dos neurônios A1 ou A2 não alterou o reestabelecimento da PAM, FC e a queda da ANSR gerada após a infusão de solução SH. Entretanto, nos animais do grupo experimental A1 + A2, a lesão simultânea dos neurônios A1 e A2 não alterou a queda da PAM, da FC observada durante a HH, mas aboliu a simpatoinibição renal. Ademais, a lesão simultânea dos neurônios A1 e A2 aboliu a restauração da PAM e a redução da ANSR após a infusão de solução SH, enquanto a restauração da FC não foi modificada. Nos animais do grupo experimental MnPO, a inibição do MnPO não alterou a queda da PAM e da FC observadas durante a HH, entretanto aboliu a simpatoinibição renal. Porém, a inibição do núcleo MnPO aboliu a restauração da PAM e promoveu forte simpatoexcitação no leito renal após a infusão de solução SH, enquanto a restauração da FC não foi modificada. Esses resultados sugerem que os neurônios dos grupamentos A1, A2 e o núcleo MnPO fazem parte dos circuitos de integração e transmissão de informações a respeito de mudanças na osmolaridade plasmática, participando da recuperação cardiovascular e autonômica induzida pela sobrecarga de cloreto de sódio em animais submetidos à HH.

Page generated in 0.1498 seconds