Spelling suggestions: "subject:"asystèmes affine para morceaux"" "subject:"asystèmes affine para morceau""
1 |
Contribution à l'identification de systèmes dynamiques hybrides / Contribution to the identification of hybrid systemsBako, Laurent 21 November 2008 (has links)
Dans de nombreuses applications modernes, l’interaction de plus en plus importante entre les systèmes numériques (ordinateurs, logiciels, composants logiques, etc.) et les processus physiques (relations entre signaux continus) a conduit, en Automatique, à l’émergence et à la formalisation des systèmes dits hybrides. Formellement, les systèmes hybrides peuvent être définis comme des systèmes mixtes où interagissent des phénomènes de nature à la fois continue et événementielle. L’analyse et la conduite de tels systèmes comme de tout autre type de système dynamique nécessitent bien souvent que l’on dispose d’un modèle mathématique de ces systèmes. Ainsi, nous nous intéressons dans ce travail, à l’identification de systèmes hybrides linéaires à partir de mesures entrée-sortie. Après avoir fait le point sur les méthodes disponibles dans la littérature récente en relation avec ce sujet, nous mettons en évidence la nécessité de développer des méthodes d’identification de systèmes hybrides multivariables dans le contexte très délicat où ni le nombre de sous-modèles constitutifs du système hybride, ni les ordres de ces sous-modèles, ni leurs paramètres ne sont connus a priori. Nous considérons d’abord des modèles d’état à commutations. Pour estimer ces modèles par les méthodes des sous-espaces, il est indispensable de contrôler dans l’espace d’état, les bases de représentation des matrices de paramètres associées aux différents sous-modèles à estimer. Cela nous a conduit au développement de nouvelles techniques d’identification structurée de modèles linéaires d’état qui possèdent cette propriété. Nous généralisons ensuite les techniques ainsi développées à l’identification de systèmes multivariables commutants, représentés par des modèles d’état. Cependant, dans le cas général, l’identification de modèles d’état hybrides est limitée par de sévères problèmes de complexité numérique. De ce fait, nous étudions le cas particulier où les instants de commutation sont séparés par un certain temps de séjour minimum dans les différents modes du système. Afin de nous affranchir de cette contrainte, nous investiguons l’identification de modèles MIMO commutants de type Auto-Regressif à entrée eXogène (ARX). Nous généralisons alors la méthode algébro-géométrique (GPCA) à l’identification de systèmes multivariables, discutons quelques problèmes de complexité numérique et suggérons des alternatives. La dernière partie du travail est consacrée à la validation de nos méthodes sur des exemples de simulation. / In many modern applications, the increasing interaction between digital systems (computers, software, logical components, etc.) and continuous physical processes (relations between continuous signals) have given rise to the formalisation of the so-called hybrid systems. Formally, hybrid systems can be regarded as models that exhibit both continuous and discrete-event phenomena. The analysis and the control of such systems requires generally that one has a mathematical model of them. To this purpose, we consider in this work the identification of linear hybrid systems from input-output data. First, we briefly review the recent literature on the subject and then pointed out the need of developing new methods for hybrid multivariable systems identification in the very challenging context where neither the number of submodels of the hybrid system, nor the respective orders of these submodels, nor their parameters are known a priori. We first focus on the case of switched linear state space models. In order to estimate these models using subspace methods, it is necessary to control the state space basis in which the model matrices will be estimated. This aspect of the problem leads us to the development of new structured subspace identification methods for linear state space models. We then extend these methods to the estimation of switched linear state space models. However, in a general framework, the identification of such models is severely restricted by the issues of numerical complexity. Consequently, we turn to the particular case where the switching times are separated by a certain minimum dwell time. We then propose an algorithm that estimates online the orders and the parameters of the differents submodels. Finally, to escape the constraint of dwell time we consider the identification of MIMO switched ARX models. We hence generalized the GPCA algorithm to the identification to multivariable systems, discussed some issues of numerical complexity and suggested some alternatives.
|
2 |
Trajectory control in curves, towards the perceptive-ESC : through a piecewise affine approach / Contrôle de trajectoire en virage, vers l'ESC perceptif : à travers une approche affine par morceauxBenine-Neto, André 15 November 2011 (has links)
Les avancées dans les technologies ont permis le développement de systèmes d’aide à la conduite (ADAS) pour prévenir les accidents routiers causés par les erreurs de conduite au manque d’attention de conducteurs. Plusieurs types sont déjà disponibles sur le marché, comme l’ABS et l’ESC (ou ESP), utilisant uniquement des capteurs proprioceptifs. Les capteurs extéroceptifs sont présents dans les ADAS plus récents, comme LKAS (maintien dans la voie) et LDWS. Cependant, l‘ESC agit dans la dynamique du véhicule en situations d¹urgence alors que les systèmes d’alerte de sortie de voie sont conçus pour les situations de faible sollicitation latérale. Cette thèse traite le développement d’un ADAS, nommé ESC-perceptif, qui intègre les informations des capteurs extéroceptifs (camera vidéo) avec le contrôle de la vitesse de lacet afin d’éviter les sorties de voie, y compris pour des conditions de fortes sollicitations latérales. La prise en compte de la saturation de forces de contact pneumatiques-chaussée est essentielle pour la conception de ce système. La non-linéairité des efforts pneumatiques est traité par l'approche des systèmes affines par morceaux (PWA). Cela permet de mener l'analyse et la synthèse de contrôleurs en combinant les fonctions de Lyapunov avec la résolution de problèmes d’optimisations sous contraintes d¹inégalités matricielles linéaires et bilinéaires. Au long de la thèse, plusieurs contrôleurs PWA pour le développement de ADAS sont présentés. L’ESC-perceptif, basé uniquement sur les capteurs disponibles sur les véhicules commercialisés est validé expérimentalement sur véhicule prototype. / Advances in the technology of sensors and actuators have enabled the development of driver assistance systems (ADAS) to prevent road accidents due to drivers mistakes or inattention. Several types are already deployed in the commercialised vehicles, such as, ABS and ESC by means of proprioceptive sensors. Exteroceptive sensors can be seen in systems such as, LKAS (Lane Keeping Assistance Systems) and LDWS (Lane Departure Warning Systems). While the ESC deals with the vehicle dynamics in emergency situations, the systems to avoid lane departure are currently designed to work in conditions of weak lateral solicitation. This thesis deals with the development of a ADAS, named perceptive-ESC, which integrates the information from the exteroceptive sensors (provided by a video camera) with the yaw rate control in order to avoid unintended lane departure even in situation of strong lateral solicitation or degraded road adhesion. Considering the saturation of the lateral tyre forces is essential for the conception of the perceptive-ESC, therefore the nonlinear behaviour of the lateral tyre forces is taken into account by the use of Piecewise Affine (PWA) Systems which analysis and control synthesis are based on quadratic Lyapunov functions casted as optimisation problems with linear and bilinear matrix inequalities constraints. Throughout the thesis, several PWA controllers for driver assistance systems are presented in which the complexity is gradually increased from simply enhancing the vehicle handling to the perceptive-ESC based only on sensors available in the currently commercialised passenger cars, which has been validated by practical experiments on a prototype vehicle.
|
3 |
Méthodes géométriques pour la construction des ensembles invariants. Application à la faisabilité des lois de commande prédictiveBenlaoukli, Hichem 10 December 2009 (has links) (PDF)
La thèse retrace les principes généraux des formulations explicites pour la commande prédictive et souligne la structure linéaire par morceaux de la dynamique. Les contributions principales de ce travail de thèse résident dans la construction des ensembles invariants pour les systèmes affines par morceaux (PWA). Les résultats se concentrent sur le traitement des systèmes PWA définis sur une partition polyédrale de l'espace d'état même si les principes sont applicables dans un cadre plus général. Trois constructions remarquables peuvent être mises en évidence : – la construction expansive, – la construction contractive, – la construction basée sur les graphes des transitions. Au niveau méthodologique toutes ces constructions étant basées sur la dynamique directe ou en temps inverse des ensembles de l'espace d'état, elles impliquent un traitement géométrique au moins dans la partie de comparaison avec le domaine faisable qui peut s'avérer gourmand en temps de calcul. Une solution innovante a été proposée en exploitant l'analyse par intervalles. Il est intéressant d'observer que la construction des ensembles invariants ouvre la voie au post-traitement des lois de commandes prédictives en vue de la maximisation de leur domaine de fonctionnement avec garantie de sureté. Des comparaisons sont faites entre les différentes structures MPC avec d'une part les formulations qui bénéficient du renforcement de l'invariance dès la phase de synthèse et d'autre part les formulations explicites qui bénéficient de la post analyse pour la caractérisation des domaines viables. En outre, le présent travail fait état des extensions MPC à base de ces méthodes géométriques pour le suivi de trajectoire, pour la prise en compte des incertitudes paramétriques ou d'un retard variable à l'entrée du système. Une grande partie de ces développements théoriques sont illustrés par des exemples au fur et à mesure de leur introduction. Le mémoire contient aussi l'étude d'un problème de suivi de trajectoire et de faisabilité/viabilité d'un certain profil, avec application pour la production d'électricité en conjonction avec la caractérisation d'une vallée hydraulique.
|
4 |
Contribution à l'identification de systèmes dynamiques hybridesBako, Laurent 21 November 2008 (has links) (PDF)
Dans de nombreuses applications modernes, l'interaction de plus en plus importante entre les systèmes numériques (ordinateurs, logiciels, composants logiques, etc.) et les processus physiques (relations entre signaux continus) a conduit, en Automatique, à l'émergence et à la formalisation des systèmes dits hybrides. Formellement, les systèmes hybrides peuvent être définis comme des systèmes mixtes où interagissent des phénomènes de nature à la fois continue et événementielle. L'analyse et la conduite de tels systèmes comme de tout autre type de système dynamique nécessitent bien souvent que l'on dispose d'un modèle mathématique de ces systèmes. Ainsi, nous nous intéressons dans ce travail, à l'identification de systèmes hybrides linéaires à partir de mesures entrée-sortie. Après avoir fait le point sur les méthodes disponibles dans la littérature récente en relation avec ce sujet, nous mettons en évidence la nécessité de développer des méthodes d'identification de systèmes hybrides multivariables dans le contexte très délicat où ni le nombre de sous-modèles constitutifs du système hybride, ni les ordres de ces sous-modèles, ni leurs paramètres ne sont connus a priori. Nous considérons d'abord des modèles d'état à commutations. Pour estimer ces modèles par les méthodes des sous-espaces, il est indispensable de contrôler dans l'espace d'état, les bases de représentation des matrices de paramètres associées aux différents sous-modèles à estimer. Cela nous a conduit au développement de nouvelles techniques d'identification structurée de modèles linéaires d'état qui possèdent cette propriété. Nous généralisons ensuite les techniques ainsi développées à l'identification de systèmes multivariables commutants, représentés par des modèles d'état. Cependant, dans le cas général, l'identification de modèles d'état hybrides est limitée par de sévères problèmes de complexité numérique. De ce fait, nous étudions le cas particulier où les instants de commutation sont séparés par un certain temps de séjour minimum dans les différents modes du système. Afin de nous affranchir de cette contrainte, nous investiguons l'identification de modèles MIMO commutants de type Auto-Regressif à entrée eXogène (ARX). Nous généralisons alors la méthode algébro-géométrique (GPCA) à l'identification de systèmes multivariables, discutons quelques problèmes de complexité numérique et suggérons des alternatives. La dernière partie du travail est consacrée à la validation de nos méthodes sur des exemples de simulation ainsi que sur un procédé de montage automatique de composants électroniques sur circuit imprimé.
|
5 |
Modélisation Macroscopique du Trafic et Contrôle des Lois de Conservation Non Linéaires Associées.Jacquet, Denis 14 November 2006 (has links) (PDF)
Cette thèse traite de la modélisation des infrastructures autoroutières et de leur gestion par des méthodes de régulation telles que le contrôle d'accès. L'approche retenue est macroscopique et conduit à des modèles distribués sous forme d'équations aux dérivées partielles non linéaires. Nous apportons plusieurs éclairages sur l'analyse et la résolution de ces modèles (condition d'entropie pour les rampes d'accès, discrétisation simpliée) et proposons une interprétation hybride des inhomogénéités (conditions aux limites, rampes d'accès et de sorties, variations brutales des paramètres) adaptée aux problèmes de contrôle. Deux nouvelles méthodologies calculatoires sont ensuite introduites pour concevoir des contrôleurs dynamiques s'appliquant à la gestion du trafic. La première est formulée comme un problème de commande optimale en boucle ouverte et nécessite l'adaptation de la méthode adjointe traditionnelle en raison de l'irrégularité des solutions. La seconde repose sur une discrétisation sous la forme d'un système affine commuté et une synthèse boucle fermée utilisant la dissipativité et les inégalités matricielles linéaires.
|
6 |
De l'identification des systèmes (hybrides et à sortie binaire) à l'extraction de motifs / From system Identification (hybride system and system with binary output) to pattern extractionGoudjil, Abdelhak 07 December 2017 (has links)
Les travaux de cette thèse portent sur l'identification des systèmes et l'extraction de motifs à partir de données. Dans le cadre de l'identification des systèmes, nous nous intéressons plus précisément à l'identification des systèmes dynamiques hybrides et l'identification des systèmes dynamiques linéaires ayant une sortie binaire. Deux classes très populaires des systèmes hybrides sont les systèmes linéaires à commutations et les systèmes affines par morceaux. Nous faisons tout d'abord un état de l'art sur les méthodes d'identification de ces deux classes. Nous proposons ensuite un algorithme basé sur une méthode d'identification de type OBE "Outer Bounding Ellipsoid" pour l'identification en temps réel des systèmes à commutations soumis à un bruit borné. Nous présentons ensuite plusieurs extensions de l'algorithme soit pour l'identification des systèmes affines par morceaux, l'identification des systèmes à commutations décrits par un modèle du type erreur de sortie et l'identification des systèmes MIMO à commutations. Nous abordons ensuite le problème d'identification des systèmes linéaires ayant une sortie binaire en introduisant un point de vue original consiste à formuler le problème d'identification comme un problème de classification. Ceci permet de proposer deux algorithmes d'identification basés sur l'utilisation des SVMs. Le premier algorithme est dédié à l'identification des systèmes à temps discret et le deuxième algorithme est dédié à l'identification des systèmes à temps continu. Dans le cadre de l'extraction de motifs, nous présentons dans un premier temps un état de l'art sur les algorithmes d'extraction de motifs et sur les techniques de la classification non supervisée. Ensuite, nous proposons un algorithme d'extraction de motifs à partir des données basé sur des techniques de classification non supervisée. / In this thesis, we deal with the identification of systems and the extraction of patterns from data. In the context of system identification, we focus precisely on the identification of hybrid systems and the identification of linear systems using binary sensors. Two very popular classes of hybrid systems are switched linear systems and piecewise affine systems. First, we give an overview of the different approaches available in the literature for the identification of these two classes. Then, we propose a new real-time identification algorithm for switched linear systems, it's based on an Outer Bounding Ellipsoid (OBE) type algorithm suitable for system identification with bounded noise. We then present several extensions of the algorithm either for the identification of piecewise affine systems, the identification of switched linear systems described by an output error model and the identification of MIMO switched linear systems. After this, we address the problem of the identification of linear systems using binary sensors by introducing an original point of view. We formulate the identification problem as a classification problem. This formulation allows the use of supervised learning algorithms such as Support Vector Machines (SVMs) for the identification of discrete time systems and the identification of continuous-time systems using binary sensors. In the context of pattern extraction, we first present an overview of the different pattern extraction algorithms and clustering techniques available in the literature. Next, we propose an algorithm for extracting patterns from data based on clustering techniques.
|
7 |
A piecewise-affine approach to nonlinear performance / Une approche affine par morceaux de la performance non-linéaireWaitman, Sergio 25 July 2018 (has links)
Lorsqu’on fait face à des systèmes non linéaires, les notions classiques de stabilité ne suffisent pas à garantir un comportement approprié vis-à-vis de problématiques telles que le suivi de trajectoires, la synchronisation et la conception d’observateurs. La stabilité incrémentale a été proposée en tant qu’outil permettant de traiter de tels problèmes et de garantir que le système présente des comportements qualitatifs pertinents. Cependant, comme c’est souvent le cas avec les systèmes non linéaires, la complexité de l’analyse conduit les ingénieurs à rechercher des relaxations, ce qui introduit du conservatisme. Dans cette thèse, nous nous intéressons à la stabilité incrémentale d’une classe spécifique de systèmes, à savoir les systèmes affines par morceaux, qui pourraient fournir un outil avantageux pour aborder la stabilité incrémentale de systèmes dynamiques plus génériques.Les systèmes affines par morceaux ont un espace d’états partitionné, et sa dynamique dans chaque région est régie par une équation différentielle affine. Ils peuvent représenter des systèmes contenant des non linéarités affines par morceaux, ainsi que servir comme des approximations de systèmes non linéaires plus génériques. Ce qui est plus important, leur description est relativement proche de celle des systèmes linéaires, ce qui permet d’obtenir des conditions d’analyse exprimées comme des inégalités matricielles linéaires qui peuvent être traités numériquement de façon efficace par des solveurs existants.Dans la première partie de ce document de thèse, nous passons en revue la littérature sur l’analyse des systèmes affines par morceaux en utilisant des techniques de Lyapunov et la dissipativité. Nous proposons ensuite de nouvelles conditions pour l’analyse du gain L2 incrémental et la stabilité asymptotique incrémentale des systèmes affines par morceaux exprimés en tant qu’inégalités matricielles linéaires. Ces conditions sont montrées être moins conservatives que les résultats précédents et sont illustrées par des exemples numériques.Dans la deuxième partie, nous considérons le cas des systèmes affines par morceaux incertains représentés comme l’interconnexion entre un système nominal et un bloc d’incertitude structuré. En utilisant la théorie de la séparation des graphes, nous proposons des conditions qui étendent le cadre des contraintes quadratiques intégrales afin de considérer le cas où le système nominal est affine par morceaux, à la fois dans les cas non incrémental et incrémental. Via la théorie de la dissipativité, ces conditions sont ensuite exprimées en tant qu’inégalités matricielles linéaires.Finalement, la troisième partie de ce document de thèse est consacrée à l’analyse de systèmes non linéaires de Lur’e incertains. Nous développons une nouvelle technique d’approximation permettant de réécrire ces systèmes de façon équivalente comme des systèmes affines par morceaux incertains connectés avec l’erreur d’approximation. L’approche proposée garantit que l’erreur d’approximation est Lipschitz continue avec la garantie d’une borne supérieure prédéterminée sur la constante de Lipschitz. Cela nous permet d’utiliser les techniques susmentionnées pour analyser des classes plus génériques de systèmes non linéaires. / When dealing with nonlinear systems, regular notions of stability are not enough to ensure an appropriate behavior when dealing with problems such as tracking, synchronization and observer design. Incremental stability has been proposed as a tool to deal with such problems and ensure that the system presents relevant qualitative behavior. However, as it is often the case with nonlinear systems, the complexity of the analysis leads engineers to search for relaxations, which introduce conservatism. In this thesis, we focus on the incremental stability of a specific class of systems, namely piecewise-affine systems, which could provide a valuable tool for approaching the incremental stability of more general dynamical systems.Piecewise-affine systems have a partitioned state space, in each region of which the dynamics are governed by an affine differential equation. They can represent systems containing piecewise-affine nonlinearities, as well as serve as approximations of more general nonlinear systems. More importantly, their description is relatively close to that of linear systems, allowing us to obtain analysis conditions expressed as linear matrix inequalities that can be efficiently handled numerically by existing solvers.In the first part of this memoir, we review the literature on the analysis of piecewise-affine systems using Lyapunov and dissipativity techniques. We then propose new conditions for the analysis of incremental L2-gain and incremental asymptotic stability of piecewise-affine systems expressed as linear matrix inequalities. These conditions are shown to be less conservative than previous results and illustrated through numerical examples.In the second part, we consider the case of uncertain piecewise-affine systems represented as the interconnection between a nominal system and a structured uncertainty block. Using graph separation theory, we propose conditions that extend the framework of integral quadratic constraints to consider the case when the nominal system is piecewise affine, both in the non-incremental and incremental cases. Through dissipativity theory, these conditions are then expressed as linear matrix inequalities.Finally, the third part of this memoir is devoted to the analysis of uncertain Lur’e-type nonlinear systems. We develop a new approximation technique allowing to equivalently rewrite such systems as uncertain piecewise-affine systems connected with the approximation error. The proposed approach ensures that the approximation error is Lipschitz continuous with a guaranteed pre-specified upper bound on the Lipschitz constant. This enables us to use the aforementioned techniques to analyze more general classes of nonlinear systems.
|
8 |
Analyse d’atteignabilité de systèmes max-plus incertains / Reachability Analysis of Uncertain Max Plus Linear SystemsFerreira Cândido, Renato Markele 23 June 2017 (has links)
Les Systèmes à Evénements Discrets (SED) peuvent être définis comme des systèmes dans lesquels les variables d'état changent sous l'occurrence d'évènements au fil du temps. Les SED mettant en jeu des phénomènes de synchronisation peuvent être modélisés par des équations linéaires dans les algèbres de type (max,+). L'analyse d'atteignabilité est une problématique majeure pour les systèmes dynamiques. L'objectif est de calculer l'ensemble des états atteignables d'un système dynamique pour toutes les valeurs admissibles d'un ensemble d'états initiaux. Le problème de l'analyse d'atteignabilité pour les systèmes Max-Plus Linéaire (MPL) a été, proprement, résolu en décomposant le système MPL en une combinaison de systèmes affines par morceaux où les composantes affines du système sont représentées par des matrices de différences bornées (Difference Bound Matrix, DBM). La contribution principale de cette thèse est de présenter une procédure similaire pour résoudre le problème de l'atteignabilité pour des systèmes MPL incertains (uMPL), c'est-à-dire des systèmes MPL soumis à des bruits bornés, des perturbations et/ou des erreurs de modélisation. Tout d'abord, nous présentons une procédure permettant de partionner l'espace d'état d'un système uMPL en parties représentables par des DBM. Ensuite, nous étendons l'analyse d'atteignabilité des systèmes MPL aux systèmes uMPL. Enfin, les résultats sur l'analyse d'atteignabilité sont mis en oeuvre pour résoudre le problème d'atteignabilité conditionnelle, qui est étroitement lié au calcul du support de la densité de probabilité impliquée dans le problème de filtage stochastique / Discrete Event Dynamic Systems (DEDS) are discrete-state systems whose dynamics areentirely driven by the occurrence of asynchronous events over time. Linear equations in themax-plus algebra can be used to describe DEDS subjected to synchronization and time delayphenomena. The reachability analysis concerns the computation of all states that can bereached by a dynamical system from an initial set of states. The reachability analysis problemof Max Plus Linear (MPL) systems has been properly solved by characterizing the MPLsystems as a combination of Piece-Wise Affine (PWA) systems and then representing eachcomponent of the PWA system as Difference-Bound Matrices (DBM). The main contributionof this thesis is to present a similar procedure to solve the reachability analysis problemof MPL systems subjected to bounded noise, disturbances and/or modeling errors, calleduncertain MPL (uMPL) systems. First, we present a procedure to partition the state spaceof an uMPL system into components that can be completely represented by DBM. Then weextend the reachability analysis of MPL systems to uMPL systems. Moreover, the results onreachability analysis of uMPL systems are used to solve the conditional reachability problem,which is closely related to the support calculation of the probability density function involvedin the stochastic filtering problem. / Os Sistemas a Eventos Discretos (SEDs) constituem uma classe de sistemas caracterizada por apresentar espaço de estados discreto e dinâmica dirigida única e exclusivamente pela ocorrência de eventos. SEDs sujeitos aos problemas de sincronização e de temporização podem ser descritos em termos de equações lineares usando a álgebra max-plus. A análise de alcançabilidade visa o cálculo do conjunto de todos os estados que podem ser alcançados a partir de um conjunto de estados iniciais através do modelo do sistema. A análise de alcançabilidade de sistemas Max Plus Lineares (MPL) pode ser tratada por meio da decomposição do sistema MPL em sistemas PWA (Piece-Wise Affine) e de sua correspondente representação por DBM (Difference-Bound Matrices). A principal contribuição desta tese é a proposta de uma metodologia similar para resolver o problema de análise de alcançabilidade em sistemas MPL sujeitos a ruídos limitados, chamados de sistemas MPL incertos ou sistemas uMPL (uncertain Max Plus Linear Systems). Primeiramente, apresentamos uma metodologia para particionar o espaço de estados de um sistema uMPL em componentes que podem ser completamente representados por DBM. Em seguida, estendemos a análise de alcançabilidade de sistemas MPL para sistemas uMPL. Além disso, a metodologia desenvolvida é usada para resolver o problema de análise de alcançabilidade condicional, o qual esta estritamente relacionado ao cálculo do suporte da função de probabilidade de densidade envolvida o problema de filtragem estocástica.
|
Page generated in 0.0933 seconds