• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 23
  • 23
  • 23
  • 16
  • 11
  • 11
  • 9
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Design of a Dissolved Oxygen Optical Sensing Device for Cell Growth and Metabolism Monitoring in Bioreactors

Rosa, Raelyn K. 04 1900 (has links)
<p>An electro-optical sensor module was designed to monitor the level of dissolved oxygen (DO) using the method of frequency domain fluoroscopy. Frequency domain fluoroscopy is an optical method that detects the concentration of an analyte by indirectly monitoring the fluorescent lifetime decay. A planar film containing oxygen sensitive fluorophores interacts with a liquid solution, where the percent DO dictates the fluorescent lifetime decay. Amplitude modulated LED emission is created using an electrically implemented oscillator, exciting the oxygen sensitive fluorophores. The emission light from the fluorophores is detected by a photodiode and conditioned. The timing characteristics of the excitation and emission light waveforms are interpreted by a microcontroller. Time delay values have been correlated to actual percent DO values experimentally, and appropriate data modeling has been implemented for calibration purposes. This design is appropriate for application in bioreactors, presenting a functional and cost effective design. Future research can be performed to extrapolate the microcontroller platform to host a pH module, cell number module and glucose module, providing sufficient feedback to an automated bioreactor systems.</p> / Master of Applied Science (MASc)
22

Power Mobility Sensor Data Collection Verified through Standardized Pediatric Assessments

Rodriguez-Velez, Ayshka Elise 01 January 2018 (has links)
The collaboration between the School of Engineering and the Department of Physical Therapy at the University of North Florida has introduced the possibility of creating a new environment for pediatric physical therapy assessments. There are currently no methods for remotely monitoring children with impairments. However, with embedded sensor technology in the form of power mobility and accepted therapy assessment tools, remote monitoring can become a possibility. As a part of this work, a ride-on toy car was developed as a remote monitoring device and a case study with a child with a mobility impairment was used as a proof of concept. In this thesis, the background information on the project, the case study diagnosis and history, and the model used to develop this project are detailed.
23

Vision Beyond Optics: Standardization, Evaluation and Innovation for Fluorescence Microscopy in Life Sciences

Huisman, Maximiliaan 01 April 2019 (has links)
Fluorescence microscopy is an essential tool in biomedical sciences that allows specific molecules to be visualized in the complex and crowded environment of cells. The continuous introduction of new imaging techniques makes microscopes more powerful and versatile, but there is more than meets the eye. In addition to develop- ing new methods, we can work towards getting the most out of existing data and technologies. By harnessing unused potential, this work aims to increase the richness, reliability, and power of fluorescence microscopy data in three key ways: through standardization, evaluation and innovation. A universal standard makes it easier to assess, compare and analyze imaging data – from the level of a single laboratory to the broader life sciences community. We propose a data-standard for fluorescence microscopy that can increase the confidence in experimental results, facilitate the exchange of data, and maximize compatibility with current and future data analysis techniques. Cutting-edge imaging technologies often rely on sophisticated hardware and multi-layered algorithms for reconstruction and analysis. Consequently, the trustworthiness of new methods can be difficult to assess. To evaluate the reliability and limitations of complex methods, quantitative analyses – such as the one present here for the 3D SPEED method – are paramount. The limited resolution of optical microscopes prevents direct observation of macro- molecules like DNA and RNA. We present a multi-color, achromatic, cryogenic fluorescence microscope that has the potential to produce multi-color images with sub-nanometer precision. This innovation would move fluorescence imaging beyond the limitations of optics and into the world of molecular resolution.

Page generated in 0.1342 seconds