• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 15
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Théorèmes d'existence pour des systèmes d'équations différentielles et d'équations aux échelles de temps

Gilbert, Hugues 10 1900 (has links)
No description available.
12

Odhady řešení diferenciálních systémů se zpožděným argumentem neutrálního typu / Estimation of Solutions of Differential Systems with Delayed Argument of Neutral Type

Baštincová, Alena January 2012 (has links)
Tato disertační práce pojednává o řešení diferenciálních rovnic a systémů diferenciálních rovnic. Hlavní pozornost je věnována asymptotickým vlastnostem rovnic se zpožděním a systémů rovnic se zpožděním. V první kapitole jsou uvedeny fyzikální a technické příklady popsané pomocí diferenciálních rovnic se zpožděním a jejich systémů. Je uvedena klasifikace rovnic se zpožděním a jsou zformulovány základní pojmy stability s důrazem na druhou metodu Ljapunova. Ve druhé kapitole jsou studovány odhady řešení rovnic neutrálního typu. Třetí kapitola se zabývá systémy diferenciálních rovnic neutrálního typu. Jsou odvozeny asymptotické odhady pro řešení i pro derivace řešení. V závěru kapitoly jsou uvedeny příklady a srovnání výsledků s pracemi jiných autorů. Výpočty byly prováděny pomocí programu MATLAB. Poslední, čtvrtá kapitola, se zabývá asymptotickými vlastnostmi systémů se speciálním typem nelinearity, tzv. sektorové nelinearity. Jsou odvozeny vlastnosti řešení a derivace řešení. Základní metodou pro důkazy je v celé práci druhá Ljapunovova metoda a použití funkcionálů Ljapunova-Krasovského.
13

Lineární maticové diferenciální rovnice se zpožděním / Linear Matrix Differential Equation with Delay

Piddubna, Ganna Konstantinivna January 2014 (has links)
V předložené práci se zabýváme hledáním řešení lineární diferenciální maticové rovnice se zpožděním x'(t)=A0x(t)+A1x(t-tau), kde A0, A1 jsou konstantní matice, tau>0 je konstantní zpoždění. Dále se zabýváme odvozením podmínek stability řešení systému a řiditelnosti daného systému. Pro řešení tohoto systému byla použita metoda "krok za krokem". Řešení bylo nalezeno jak v rekurentní formě tak i v obecném tvaru. Je provedena analýza stability a asymptotické stability řešení systému. Jsou zformulovány podmínky stability. Hlavní roli v analýze stability měla metoda Lyapunovových funkcionálů. Jsou zformulovány nutné a postačující podmínky řiditelnosti pro případ systémů se stejnými maticemi a je zkonstruována řídící funkce. Jsou odvozeny postačující podmínky pro řiditelnost v případě komutujících matic a v případě obecných matic a je sestrojena řídící funkce. Všechny výsledky jsou ilustrovány na netriviálních příkladech.
14

Networks of delay-coupled delay oscillators

Höfener, Johannes Michael 06 July 2012 (has links)
The analysis of time-delayed dynamics on networks may help to understand many systems from physics, biology, and engineering, such as coupled laser arrays, gene-regulatory networks and complex ecosystems. Beside the complexity due to the network structure, the analysis is further complicated by the presence of the delays. Delay systems are in general infinite dimensional and thus can display complex dynamics as oscillations and chaos. The mathematical difficulties related to the delays hinders the analysis of delay networks. Thus, little is known yet about basic relations between network structure and delay dynamics. It has been shown that networks without delays can be studied efficiently with the generalized modeling approach, which analyzes the stability of an assumed steady state by a direct parametrization of the Jacobian matrix. In this thesis, I demonstrate the extension of the generalized modeling approach to delay networks and analyze networks of delay-coupled delay oscillators, with delayed auto-catalytic growth on the nodes and delayed transport between nodes. For degree-homogeneous networks (DHONs), in which each node has the same number of links, the bifurcation lines that border the stable areas can be calculated analytically, where the topology of the network is described only by the eigenvalues of the adjacency matrix. For undirected networks, the stability pattern in the parameter space of growth and transport delay is governed by two periodic sets of tongues of instability, which depend on the largest positive and the smallest negative eigenvalue. The direct relation between the eigenvalue and the bifurcation lines allows us to predict stability patterns for networks with certain topological properties. Thus, bipartite networks display a characteristic periodicity of tongues. In order to analyze the stability of degree-heterogeneous networks (DHENs), I apply a numerical sampling method based on Cauchy\'s Argument Principle. The stability patterns of these networks resembles the pattern of DHONs, which is governed by the two periodic sets. For networks with sufficiently many links, one set disappears, and the stability of DHENs can be approximates by the stability of a fully-connected network with the same average degree. However, random DHENs tend to be more stable than DHONs, and DHENs with a broad degree-distribution tend to be more stable than DHENs with a narrow distribution. Thus, such networks are more likely to give rise to amplitude death, i.e. the stabilization of an unstable steady state through diffusive coupling. The stability pattern of DHENs can be qualitatively different than the pattern in DHONs. However, for small growth delays, close to the critical delay of the single node system, the bifurcation lines of all DHENs with the same average degree coincide. This, is particularly interesting, because there the stability depends on a global property of the network, which suggests a diverging interaction length. In summary, the extension of generalized modeling to time-delay networks reveals basic relations between the delay dynamics and the topology. The generality of our model should allow to apply these results to a large class of real-world systems.
15

Mathematical modelling of virus RSV: qualitative properties, numerical solutions and validation for the case of the region of Valencia

Arenas Tawil, Abraham José 24 May 2010 (has links)
El objetivo de esta memoria se centra en primer lugar en la modelización del comportamiento de enfermedades estacionales mediante sistemas de ecuaciones diferenciales y en el estudio de las propiedades dinámicas tales como positividad, periocidad, estabilidad de las soluciones analíticas y la construcción de esquemas numéricos para las aproximaciones de las soluciones numéricas de sistemas de ecuaciones diferenciales de primer orden no lineales, los cuales modelan el comportamiento de enfermedades infecciosas estacionales tales como la transmisión del virus Respiratory Syncytial Virus (RSV). Se generalizan dos modelos matemáticos de enfermedades estacionales y se demuestran que tiene soluciones periódicas usando un Teorema de Coincidencia de Jean Mawhin. Para corroborar los resultados analíticos, se desarrollan esquemas numéricos usando las técnicas de diferencias finitas no estándar desarrolladas por Ronald Michens y el método de la transformada diferencial, los cuales permiten reproducir el comportamiento dinámico de las soluciones analíticas, tales como positividad y periocidad. Finalmente, las simulaciones numéricas se realizan usando los esquemas implementados y parámetros deducidos de datos clínicos De La Región de Valencia de personas infectadas con el virus RSV. Se confrontan con las que arrojan los métodos de Euler, Runge Kutta y la rutina de ODE45 de Matlab, verificándose mejores aproximaciones para tamaños de paso mayor a los que usan normalmente estos esquemas tradicionales. / Arenas Tawil, AJ. (2009). Mathematical modelling of virus RSV: qualitative properties, numerical solutions and validation for the case of the region of Valencia [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8316

Page generated in 0.1163 seconds