Spelling suggestions: "subject:"lemsystems off equations"" "subject:"lemsystems oof equations""
21 |
The Problem with Word Problems: An Exploratory Study of Factors Related to Word Problem SuccessAuxter, Abbey Auxter January 2016 (has links)
College Algebra is a gatekeeper course that serves as an obstacle for many students pursuing STEM careers. Lack of success in this course could be a key reason why the United States lags behind other industrialized countries in the number of students graduating with STEM majors and joining the STEM workforce. Of the many topics presented in College Algebra that pose problems, students often have particular difficulty with the application of systems of equations in the form of word problems. The present study aims to identify the factors associated with success and failure on systems of equations word problems. The goal was to identify the factors that remained significant predictors of success in order to build a theory to explain why some students are successful and other have difficulty. Using the Opportunity-Propensity Model of Byrnes and colleagues as the theoretical guide (e.g., Byrnes & Miller-Cotto, 2016), the following questions set the groundwork for the current study: (1) To what extent do antecedent (gender, race/ethnicity, socioeconomic status, and university) and propensity factors (mathematical calculation ability, mathematics anxiety, self-regulation, motivation, and ESL) individually and collectively predict success with systems of equations word problems in College Algebra students, and (2) How do these factors relate to each other? Bivariate correlations and hierarchical multiple regression were used to examine the relationships between the factors and word problem set-up as well as correct completion of the word problems presented. Results indicated after all variables were entered, calculation ability, self-regulation as determined by homework score, and anxiety were the only factors to remain significant predictors of student performance on both levels. All other factors either failed to enter as significant predictors or dropped out when the complete set had been entered. Reasons for this pattern of results are discussed, as are suggestions for future research to confirm and extend these findings. / Math & Science Education
|
22 |
Random Walks with Elastic and Reflective Lower BoundariesDevore, Lucas Clay 01 December 2009 (has links)
No description available.
|
23 |
AVALIAÇÃO DA APLICAÇÃO DE JOGOS NA 6ª SÉRIE: EQUAÇÕES, INEQUAÇÕES E SISTEMAS DE EQUAÇÕES DO 1º GRAUUberti, Angelita 15 April 2011 (has links)
Made available in DSpace on 2018-06-27T19:13:43Z (GMT). No. of bitstreams: 3
Angelita Uberti.pdf: 4207045 bytes, checksum: a933ebcf05dcef1f1594171104a8a987 (MD5)
Angelita Uberti.pdf.txt: 175519 bytes, checksum: 2a62f8be4bf73630607deee70604ea3c (MD5)
Angelita Uberti.pdf.jpg: 3686 bytes, checksum: 30937d2357d8627518b644cbd234f832 (MD5)
Previous issue date: 2011-04-15 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This research investigated the use of games as a resource for the teaching and learning of
equations, systems of equations and inequalities of first degree. The work was developed with
a group of 6th grade of elementary school, in a public school upstate Rio Grande do Sul. From
the literature review based on research about games and algebra, as well as the analysis of
textbooks used in elementary school for the teaching of equations, systems of equations and
inequalities, games were built up, applied to 24 students at grade 6º of elementary school. The
research is qualitative in nature and were employed, as instruments, a pre-test and notes of
observations in a diary. Application of each of the games were analyzed and it was noticeable
that there was better understanding about the content involved in the games. It is considered
that the experience can be reapplied in other classes and then we elaborated a set of activities,
in which games are presented, as well as suggestions for teachers. This set of activities is the
product resulting from the dissertation. / Nesta pesquisa, investigou-se o uso de jogos como recurso para o ensino e a aprendizagem de
equações, sistemas de equações e inequações de 1º grau. O trabalho desenvolveu-se com uma
turma de 6º série do Ensino Fundamental, de uma escola municipal do interior do Rio Grande
do Sul. A partir de revisão de literatura baseada em autores que trabalharam com jogos e com
álgebra, bem como da análise de livros didáticos usados no Ensino Fundamental para o ensino
de equações, sistemas de equações e inequações, construíram-se jogos, que foram aplicados a
24 alunos de uma 6ª série. A pesquisa é de caráter qualitativo e nela empregaram-se, como
instrumentos, um pré-teste e anotações de observações em um diário de campo. Analisou-se a
aplicação de cada um dos jogos e foi possível notar que houve melhor compreensão, por parte
dos estudantes, sobre os conteúdos envolvidos. Considera-se que a experiência pode ser
reaplicada em outras turmas e, para isso, elaborou-se um conjunto de atividades, em que são
apresentados os jogos e sugestões para os professores. Este conjunto de atividades é o produto
resultante da dissertação.
|
24 |
A aprendizagem significativa de sistemas de equações do 1º grau por meio da resolução de problemasGoulart, Andreza Martins Antunes 10 June 2014 (has links)
Made available in DSpace on 2016-04-27T16:57:31Z (GMT). No. of bitstreams: 1
Andreza Martins Antunes Goulart.pdf: 2398545 bytes, checksum: 47ce4c98a255655ad07a08f56d9c829f (MD5)
Previous issue date: 2014-06-10 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This study aims to investigate whether the teaching and learning of equations of the 1st grade students from the 8th grade of elementary school systems, by means of solving problems allied to the principles of meaningful learning can contribute to an effective knowledge construction. This is a qualitative study, conducted by a teaching intervention has been proposed in which a sequence of activities, and data were collected through observation and classroom notes and analysis of students' protocols. The survey was conducted with students from the 8th grade of Elementary School from a private institution in the city of São Paulo, in which the researcher is a teacher. The content that was being developed at that time was the 1st degree equations systems with two unknowns, and the teaching methodology adopted by the teacher was focused on teaching mathematics through problem solving. The didactic proposal for this work was to introduce the contents of the system of equations by means of a sequence of activities, all developed in mathematics classrooms. From what was already known by the students, they solve the issues proposed in different situations, representing them by means of equations with two unknowns and adopting two different methods for the solution: the addition and replacement. The analysis of the protocols of students and notes taken during development activities indicates that students have noted that the proposals situations, the use of equations with two unknowns would require, unlike what happens in an equation of the 1st degree, and that when using the initial letters of words that correspond to the unknown, would facilitate this process. To be developed both methods of resolution, addition and substitution, students, despite some resistance presented by the second method, the end realized that, for different situations, one of the methods could facilitate the resolution of the proposed issue. After the completion and analysis of the instructional sequence , it can be concluded that teaching through problem solving contributes to greater understanding of what is being done and that this approach allows students to understand why the need to use the system equations of the 1st grade to solve certain situations . The use of each of the unknowns, thereby, as well as the importance of knowing two methods of resolution makes its meaningful learning / Esse estudo tem por objetivo investigar se o ensino e a aprendizagem de sistemas de equações do 1º grau por alunos do 8º ano do Ensino Fundamental, por meio de resolução de problemas aliada aos princípios da aprendizagem significativa, podem contribuir para uma eficaz construção de conhecimento. Trata-se de uma pesquisa do tipo qualitativa, realizada por meio de uma intervenção de ensino em que foi proposta uma sequência de atividades, e os dados foram coletados por meio de observação e anotações em sala de aula e análise de protocolos de alunos. A pesquisa foi realizada com alunos do 8º ano do Ensino Fundamental de uma instituição privada da cidade de São Paulo, na qual a pesquisadora é professora. O conteúdo que na época estava sendo desenvolvido era Sistemas de Equações do 1º grau com duas incógnitas, e a metodologia de ensino adotada pelo professor era focada no ensino de Matemática por meio da resolução de problemas. A proposta didática para este trabalho era introduzir o conteúdo de sistema de equações por meio de uma sequência de atividades, todas desenvolvidas nas aulas de Matemática. A partir do que já era de conhecimento dos alunos, estes resolveram as questões propostas em diferentes situações, representando-as por meio de equações com duas incógnitas e adotando dois métodos distintos para obter a solução: da adição e da substituição. A análise dos protocolos dos alunos e das anotações realizadas durante o desenvolvimento das atividades indica que os alunos notaram que, nas situações propostas, seria necessário o uso de equações com duas incógnitas, diferente do que ocorre em uma equação do 1º grau, e que, ao utilizar as letras iniciais das palavras que correspondiam à incógnita, facilitaria esse processo. Ao serem desenvolvidos os dois métodos de resolução, da adição e da substituição, os alunos, apesar de apresentaram certa resistência pelo segundo método, ao final perceberam que, para diferentes situações, um dos métodos poderia facilitar a resolução da questão proposta. Após a realização e análise da sequência didática, pode-se concluir que o ensino por meio da resolução de problemas contribui para maior compreensão do que está sendo feito e que esse tipo de abordagem permite que os alunos compreendam o porquê da necessidade de utilizar o sistema de equações do 1º grau para resolver determinadas situações. O uso de cada uma das incógnitas, desse modo, bem como a importância de conhecer dois métodos de resolução, torna sua aprendizagem significativa
|
25 |
Análise semi-local do método de Gauss-Newton sob uma condição majorante / Semi-local analysis of the Gauss-Newton under a majorant conditionAguiar, Ademir Alves 18 December 2014 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2015-03-05T14:28:50Z
No. of bitstreams: 2
Dissertação - Ademir Alves Aguiar - 2014.pdf: 1975016 bytes, checksum: 31320b5840b8b149afedc97d0e02b49b (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-03-06T10:38:03Z (GMT) No. of bitstreams: 2
Dissertação - Ademir Alves Aguiar - 2014.pdf: 1975016 bytes, checksum: 31320b5840b8b149afedc97d0e02b49b (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2015-03-06T10:38:03Z (GMT). No. of bitstreams: 2
Dissertação - Ademir Alves Aguiar - 2014.pdf: 1975016 bytes, checksum: 31320b5840b8b149afedc97d0e02b49b (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2014-12-18 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this dissertation we present a semi-local convergence analysis for the Gauss-Newton
method to solve a special class of systems of non-linear equations, under the hypothesis
that the derivative of the non-linear operator satisfies a majorant condition. The proofs
and conditions of convergence presented in this work are simplified by using a simple
majorant condition. Another tool of demonstration that simplifies our study is to identify
regions where the iteration of Gauss-Newton is “well-defined”. Moreover, special cases
of the general theory are presented as applications. / Nesta dissertação apresentamos uma análise de convergência semi-local do método de
Gauss-Newton para resolver uma classe especial de sistemas de equações não-lineares,
sob a hipótese que a derivada do operador não-linear satisfaz uma condição majorante. As
demonstrações e condições de convergência apresentadas neste trabalho são simplificadas
pelo uso de uma simples condição majorante. Outra ferramenta de demonstração que
simplifica o nosso estudo é a identificação de regiões onde a iteração de Gauss-Newton
está “bem-definida”. Além disso, casos especiais da teoria geral são apresentados como
aplicações.
|
26 |
Didaktické prostředí aditivních mnohouhelníků a mnohostěnů / Educational environment additive polygons and polyhedronsSukniak, Anna January 2014 (has links)
Title: Educational environment additive polygons and polyhedrons Summary: The main intention of the work is to introduce a new mathematical educational environment that would be especially attractive for pupils in the grades 6. -9., but also in the secondary schools, universities or primary schools The work consists of six parts. In the introduction are mentioned the reasons that led me to choose this topic. The second chapter describes the theoretical basis of the work. The third section describes in detail the environment of additive polygons, both its aspects - mathematical and educational one. Analogously, as it is in the third chapter, is processed the fourth chapter that is dedicated to the environment of additive polyhedrons. The fifth chapter is devoted to the linking of the environment of additive polygons and polyhedrons into the linear algebra. In conclusion are provided further opportunities of work with this environment.
|
27 |
Computation of Parameters in some Mathematical ModelsWikström, Gunilla January 2002 (has links)
<p>In computational science it is common to describe dynamic systems by mathematical models in forms of differential or integral equations. These models may contain parameters that have to be computed for the model to be complete. For the special type of ordinary differential equations studied in this thesis, the resulting parameter estimation problem is a separable nonlinear least squares problem with equality constraints. This problem can be solved by iteration, but due to complicated computations of derivatives and the existence of several local minima, so called short-cut methods may be an alternative. These methods are based on simplified versions of the original problem. An algorithm, called the modified Kaufman algorithm, is proposed and it takes the separability into account. Moreover, different kinds of discretizations and formulations of the optimization problem are discussed as well as the effect of ill-conditioning.</p><p>Computation of parameters often includes as a part solution of linear system of equations <i>Ax = b</i>. The corresponding pseudoinverse solution depends on the properties of the matrix <i>A</i> and vector <i>b</i>. The singular value decomposition of <i>A</i> can then be used to construct error propagation matrices and by use of these it is possible to investigate how changes in the input data affect the solution <i>x</i>. Theoretical error bounds based on condition numbers indicate the worst case but the use of experimental error analysis makes it possible to also have information about the effect of a more limited amount of perturbations and in that sense be more realistic. It is shown how the effect of perturbations can be analyzed by a semi-experimental analysis. The analysis combines the theory of the error propagation matrices with an experimental error analysis based on randomly generated perturbations that takes the structure of <i>A</i> into account</p>
|
28 |
Computation of Parameters in some Mathematical ModelsWikström, Gunilla January 2002 (has links)
In computational science it is common to describe dynamic systems by mathematical models in forms of differential or integral equations. These models may contain parameters that have to be computed for the model to be complete. For the special type of ordinary differential equations studied in this thesis, the resulting parameter estimation problem is a separable nonlinear least squares problem with equality constraints. This problem can be solved by iteration, but due to complicated computations of derivatives and the existence of several local minima, so called short-cut methods may be an alternative. These methods are based on simplified versions of the original problem. An algorithm, called the modified Kaufman algorithm, is proposed and it takes the separability into account. Moreover, different kinds of discretizations and formulations of the optimization problem are discussed as well as the effect of ill-conditioning. Computation of parameters often includes as a part solution of linear system of equations Ax = b. The corresponding pseudoinverse solution depends on the properties of the matrix A and vector b. The singular value decomposition of A can then be used to construct error propagation matrices and by use of these it is possible to investigate how changes in the input data affect the solution x. Theoretical error bounds based on condition numbers indicate the worst case but the use of experimental error analysis makes it possible to also have information about the effect of a more limited amount of perturbations and in that sense be more realistic. It is shown how the effect of perturbations can be analyzed by a semi-experimental analysis. The analysis combines the theory of the error propagation matrices with an experimental error analysis based on randomly generated perturbations that takes the structure of A into account
|
29 |
High Performance Multidimensional Iterative Processes for Solving Nonlinear EquationsTriguero Navarro, Paula 16 June 2023 (has links)
[ES] En gran cantidad de problemas de la matemática aplicada, existe la necesidad de resolver ecuaciones y sistemas no lineales, dado que numerosos problemas, finalmente, se reducen a estos. Conforme aumenta la dificultad de los sistemas, la obtención de la solución analítica se vuelve más compleja. Además, con el aumento de las herramientas computacionales, las dimensiones de los problemas a resolver han crecido de manera exponencial, por lo que se vuelve más necesario obtener una aproximación a la solución de manera sencilla y que no requiera mucho tiempo y coste computacional. Esta es una de las razones por las que los métodos iterativos han aumentado su importancia en los últimos años, ya que se han diseñado multitud de procesos con el fin de que converjan rápidamente a la solución y, de esta forma, poder resolver problemas que con las herramientas clásicas resultaría más costoso.
La presente Tesis Doctoral, se centra en estudiar y diseñar numerosos métodos iterativos que mejoren a los esquemas clásicos en cuanto a su orden de convergencia, accesibilidad, cantidad de soluciones que obtienen o aplicabilidad a problemas con características especiales, como la no diferenciabilidad o la multiplicidad de las raíces. Entre los procesos que se estudian en esta memoria, se pueden encontrar desde una familia de métodos multipaso óptimos para la resolución de ecuaciones, hasta una familia paramétrica libre de derivadas de esquemas con función peso a la que se introduce memoria para la resolución de sistemas no lineales. Se destacan otros métodos en esta memoria como esquemas iterativos que obtienen raíces con diversas multiplicidades para ecuaciones y procesos que aproximan raíces de forma simultánea, tanto para ecuaciones como para sistemas, y, tanto para raíces simples como para múltiples. Además, parte de esta memoria se centra en cómo realizar el análisis dinámico para métodos iterativos con memoria que resuelven sistemas de ecuaciones no lineales, a la par que se realiza dicho estudio para diversos esquemas iterativos conocidos. Este análisis dinámico permite visualizar y analizar los posibles comportamientos de los procesos iterativos en función de las aproximaciones iniciales.
Los resultados anteriormente descritos forman parte de esta Tesis Doctoral para la obtención del título de Doctora en Matemáticas. / [CA] En gran quantitat de problemes de la matemàtica aplicada, existeix la necessitat de resoldre equacions i sistemes no lineals, atés que nombrosos problemes, finalment, es redueixen a aquests. Conforme augmenta la dificultat dels sistemes, l'obtenció de la solució analítica es torna més complexa. A més, amb l'augment de les eines computacionals, les dimensions dels problemes a resoldre han crescut de manera exponencial, per la qual cosa es torna més necessari obtindre una aproximació a la solució de manera senzilla i que no requerisca molt temps i cost computacional. Aquesta és una de les raons per les quals els mètodes iteratius han augmentat la seua importància en els últims anys, ja que s'han dissenyat multitud de processos amb la finalitat que convergisquen ràpidament a la solució i, d'aquesta manera, poder resoldre problemes que amb les eines clàssiques resultaria més costós.
La present Tesi Doctoral, es centra en estudiar i dissenyar nombrosos mètodes iteratius que milloren als esquemes clàssics en quant al seu ordre de convergència, accessibilitat, quantitat de solucions que obtenen o aplicabilitat a problemes amb característiques especials, com la no diferenciabilitat o la multiplicitat de les arrels. Entre els processos que s'estudien en aquesta memòria, es poden trobar des d'una família de mètodes multipas òptims per a la resolució d'equacions, fins a una família paramètrica lliure de derivades de esquemes amb funció pes a la que s'introdueix memòria per a la resolució de sistemes no lineals. Es destanquen altres mètodes en aquesta memòria com esquemes iteratius que obtenen arrels amb diverses multiplicitats per a equacions i processos que aproximen arrels de manera simultània, tant per a equacions com per a sistemes, i, tant per a arrels simples com per a múltiples. A més, part d'aquesta memòria es centra en com realitzar l'anàlisi dinàmic per a mètodes iteratius amb memòria que resolen sistemes d'equacions no lineals, al mateix temps que es realitza aquest estudi per a diversos esquemes iteratius coneguts. Aquest anàlisi dinàmic permet visualitzar i analitzar els possibles comportaments dels mètodes iteratius en funció de les aproximacions inicials.
Els resultats anteriorment descrits formen part d'aquesta Tesi Doctoral per a l'obtenció del títol de Doctora en Matemàtiques. / [EN] In a large number of problems in applied mathematics, there is a need to solve nonlinear equations and systems, since many problems eventually are reduced to these. As the difficulty of the systems increases, obtaining the analytical solution becomes more complex. Furthermore, with the growth of computational tools, the dimensions of the problems to be solved have increased exponentially, making it more essential to obtain an approximation to the solution in a simple way that does not require significant time and computational cost. That is one of the reasons why iterative methods have increased their importance in recent years, as a multitude of schemes have been designed to converge rapidly to the solution and, in this way, to be able to solve problems that would be more arduous to solve using classical tools.
This Doctoral Thesis focuses on the study and design of numerous iterative methods that improve classical schemes in terms of their order of convergence, accessibility, number of solutions obtained or applicability to problems with special characteristics, such as non-differentiability or multiplicity of roots. The procedures studied in this report range from a family of optimal multi-step methods for solving equations, to a parametric derivative-free family of weight function schemes, to which memory is introduced for solving nonlinear systems. Additional procedures are described in this report such as iterative schemes that obtain roots with different multiplicities for equations and methods that approximate roots simultaneously for equations as well as for systems, and for simple as well as for multiples roots. In addition, part of this report focuses on how to perform the dynamical analysis for iterative schemes with memory that solve systems of nonlinear equations, as well as this study is carried out for different known iterative procedures. This dynamical analysis allows us to visualise and analyse the possible behaviours of the iterative methods depending on the initial approximations.
The results described above form part of this Doctoral Thesis to obtain the title of Doctor in Mathematics. / Triguero Navarro, P. (2023). High Performance Multidimensional Iterative Processes for Solving Nonlinear Equations [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/194267
|
Page generated in 0.1243 seconds