• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 75
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 89
  • 89
  • 37
  • 28
  • 19
  • 18
  • 15
  • 14
  • 12
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Mixed-signal signature analysis for systems-on-a-chip

Roh, Jeongjin, 1966- 04 April 2011 (has links)
Not available / text
72

A time-based approach for multi-GHz embedded mixed-signal characterization and measurement /

Safi-Harab, Mouna. January 2006 (has links)
The increasingly more sophisticated systems that are nowadays implemented on a single chip are placing stringent requirements on the test industry. New test strategies, equipment, and methodologies need to be developed to sustain the constant increase in demand for consumer and communication electronics. Techniques for built-in-self-test (BIST) and design-for-test (DFT) strategies have been proven to offer more feasible and economical testing solutions. / Previous works have been conducted to perform on-chip testing, characterization, and measurement of signals and components. The current thesis advances those techniques on many levels. In terms of performance, an increase of more than an order of magnitude in speed is achieved. 70-GHz (effective sampling) on-chip oscilloscope is reported, compared to 4-GHz and 10-GHz ones in previous state-of-the-art implementations. Power dissipation is another area where the proposed work offer a superior solution compared to previous alternatives. All the proposed circuits do not exceed a few milliWatts of power dissipation, while performing multi-GHz high-speed signal capture at a medium resolution. Finally, and possibly most importantly, all the proposed circuits for test rely on a different form of signal processing; the time-based approach. It is believed that this approach paves the path to a lot of new techniques and circuit design skills that can be investigated more deeply. As an integral part of the time-based processing approach for GHz signal capture, this thesis verifies the advantages of using time amplification. The use of such amplification in the time domain is materialized with experimental results from three specific integrated circuits achieving different tasks in GHz high-speed in-situ signal measurement and characterization. Advantages of using such time-based approach techniques, when combined with the use of a front-end time amplifier, include noise immunity, the use of synthesizable digital cells, and circuit building blocks that track the technology scaling in terms of area and speed.
73

Reducing measurement uncertainty in a DSP-based mixed-signal test environment

Taillefer, Chris January 2003 (has links)
FFT-based tests (e.g. gain, distortion, SNR, etc.) from a device-under-test (DUT) exhibit normal distributions when the measurement is repeated many times. Hence, a statistical approach to evaluate the accuracy of these measurements is traditionally applied. The noise in a DSP-based mixed-signal test system severely limits its measurement accuracy. Moreover, in high-speed sampled-channel applications the jitter-induced noise from the DUT and test equipment can severely impede accurate measurements. / A new digitizer architecture and post-processing methodology is proposed to increase the measurement accuracy of the DUT and the test equipment. An optimal digitizer design is presented which removes any measurement bias due to noise and greatly improves measurement repeatability. Most importantly, the presented system improves accuracy in the same test time as any conventional test. / An integrated mixed-signal test core was implemented in TSMC's 0.18 mum mixed-signal process. Experimental results obtained from the mixed-signal integrated test core validate the proposed digitizer architecture and post processing technique. Bias errors were successfully removed and measurement variance was improved by a factor of 5.
74

Built-in self-test configurations for field programmable gate array cores in systems-on-chip

Harris, Jonathan McKinley, Stroud, Charles E. January 2004 (has links) (PDF)
Thesis(M.S.)--Auburn University, 2004. / Abstract. Vita. Includes bibliographic references (p.123-125).
75

A high-performance CMOS programmable logic core for system-on-chip applications /

Han, Yi, January 2005 (has links)
Thesis (Ph. D.)--University of Washington, 2005. / Vita. Includes bibliographical references (p. 121-130).
76

Analog/RF VLSI layout generation : layout retargeting via symbolic template /

Jangkrajarng, Nuttorn. January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (leaves 97-102).
77

Library Characterization and Static Timing Analysis of Single-Track Circuits in GasP

Mettala Gilla, Swetha 01 January 2010 (has links)
Library characterization and 'Static Timing Analysis' (STA) are widely used in the design of modern CMOS integrated circuits to confirm that critical timing constraints are met. While many commercial tools are available to do timing validation using library characterization and static timing analysis, their operation depends on calculations relative to a global synchronous clock. This thesis applies timing validation to circuits from which the global synchronous clock is absent, making application of commercial tools difficult. Previous work at the University of Southern California (USC) showed how to overcome the incompatibility of commercial STA tools for asynchronous circuits. This thesis shows how to overcome the incompatibility of library characterization with respect to asynchronous circuits, and ties the results into the STA solution of USC. The particular family of circuits considered in this thesis is called GasP. GasP circuits are light in area and light in power. They have demonstrated operation at about twice the throughput one would expect from conventional clocked circuits. This makes GasP circuits excellent candidates for modern many-core, concurrent network-on-chip and system-on-chip architectures. In part, GasP circuits achieve their performance advantages by using a `single-track' signaling protocol. Two GasP modules communicate with each other over a single wire. One module drives the wire up and a second module at the other end of the wire drives the wire down. This conflicts with the common assumption that wires are driven only from one end. As a result, special circuitry is needed to characterize a GasP library module. This thesis shows how to break a GasP module and its timing constraints into manageable pieces and how to simulate and collect the data relevant for characterization and static timing analysis. When combined with software tools for identifying the critical timing constraints, the results of this work will provide confidence in the correct operation of GasP circuits.
78

A time-based approach for multi-GHz embedded mixed-signal characterization and measurement /

Safi-Harab, Mouna. January 2006 (has links)
No description available.
79

Reducing measurement uncertainty in a DSP-based mixed-signal test environment

Taillefer, Chris January 2003 (has links)
No description available.
80

Post-silicon Functional Validation with Virtual Prototypes

Cong, Kai 03 June 2015 (has links)
Post-silicon validation has become a critical stage in the system-on-chip (SoC) development cycle, driven by increasing design complexity, higher level of integration and decreasing time-to-market. According to recent reports, post-silicon validation effort comprises more than 50% of the overall development effort of an 65nm SoC. Though post-silicon validation covers many aspects ranging from electronic properties of hardware to performance and power consumption of whole systems, a central task remains validating functional correctness of both hardware and its integration with software. There are several key challenges to achieving accelerated and low-cost post-silicon functional validation. First, there is only limited silicon observability and controllability; second, there is no good test coverage estimation over a silicon device; third, it is difficult to generate good post-silicon tests before a silicon device is available; fourth, there is no effective software robustness testing approaches to ensure the quality of hardware/software integration. We propose a systematic approach to accelerating post-silicon functional validation with virtual prototypes. Post-silicon test coverage is estimated in the pre-silicon stage by evaluating the test cases on the virtual prototypes. Such analysis is first conducted on the initial test suite assembled by the user and subsequently on the expanded test suite which includes test cases that are automatically generated. Based on the coverage statistics of the initial test suite on the virtual prototypes, test cases are automatically generated to improve the test coverage. In the post-silicon stage, our approach supports coverage evaluation of test cases on silicon devices to ensure fidelity of early coverage evaluation. The generated test cases are issued to silicon devices to detect inconsistencies between virtual prototypes and silicon devices using conformance checking. We further extend the test case generation framework to generate and inject fault scenario with virtual prototypes for driver robustness testing. Besides virtual prototype-based fault injection, an automatic driver fault injection approach is developed to support runtime fault generation and injection for driver robustness testing. Since virtual prototype enables early driver development, our automatic driver fault injection approach can be applied to driver testing in both pre-silicon and post-silicon stages. For preliminary evaluation, we have applied our coverage evaluation and test generation to several network adapters and their virtual prototypes. We have conducted coverage analysis for a suite of common tests on both the virtual prototypes and silicon devices. The results show that our approach can estimate the test coverage with high fidelity. Based on the coverage estimation, we have employed our automatic test generation approach to generate additional tests. When the generated test cases were issued to both virtual prototypes and silicon devices, we observed significant coverage improvement. And we detected 20 inconsistencies between virtual prototypes and silicon devices, each of which reveals a virtual prototype or silicon device defect. After we applied virtual prototype-based fault injection approach to virtual prototypes for three widely-used network adapters, we generated and injected thousands of fault scenarios and found 2 driver bugs. For automatic driver fault injection, we have applied our approach to 12 widely used drivers with either virtual prototypes or silicon devices. After testing all these drivers, we found 28 distinct bugs.

Page generated in 0.2754 seconds