• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 9
  • 5
  • 2
  • 2
  • 1
  • Tagged with
  • 44
  • 18
  • 17
  • 12
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effects of sediment on water quality in the Occoquan Reservoir

To, Yan Pui Samuel January 1974 (has links)
The purpose of this investigation was to determine the effect of sediments in the Occoquan Reservoir on the water quality. Phosphate determination by the ascorbic acid method was first evaluated for its precision and accuracy. An assay was developed to measure the rate of nutrient phosphate release to the overlying water in a quiescent dark condition. The assay was evaluated to test for its reliability in giving valid conclusions. The assay was an attempt to provide a system similar to the actual system which could be used in the laboratory. Also, the effect of different parameters could be studied by varying conditions one at a time. In this assay, it was found that the rate of release was not affected by normal pH changes, depth of sediment, or depth of overlying water. The rate of release was found to increase with increase in temperature, phosphate content in sediments, and reduced anaerobic condition. The rate was adversely affected by high concentration of salt, drying on sediment surface, thickness of physical barrier, and reduction of bacterial activities. Flushing seemed to decrease the rate of release by a constant ratio. Under normal conditions, sediments release other nutrients besides phosphates. However, it was found that whether the sediment served as a sink or source of phosphate was governed by the critical availability concentration which was different for different sediment. A study of the properties of the reservoir sediment showed that there were variations with respect to time, station, and depth, as well as vicinity within the same station, in this reservoir. / Ph. D.
2

Asymptotic solutions of a circular plate problem

Tolefson, Donald Craig January 1967 (has links)
The rotationally symmetric small and large finite deformations of an annular plate, clamped at its outside edge and containing a central rigid inclusion to which a normal load is applied, are considered. Perturbation techniques are applied to analyze the first approximations to the Reissner equations for the separate cases of small and large finite deformations. In the case of small finite deformations, where the first approximations to Reissner's equations correspond to the von Karman equations, we examine the limiting cases of infinitesimal and increasingly large deformations. Perturbation expansions in terms of powers of a small parameter are obtained for the dependent variables. In the limiting case of infinitesimal deformations two terms of the expansion of the dependent variable representing the bending of the plate are obtained in closed form; the second of which arises due to the coupling of the stretching and bending of the plate's middle surface. This second term of the expansion becomes important when the maximum transverse displacement of the plate begins to exceed slightly less than one-half of the thickness of the plate. For this part of the analysis of the von Karman equations the expansions are uniformly valid over the extent of the plate. In the case of increasingly large deformations the analysis of the von Karman equations leads to a singular perturbation problem. Here the edge zones, where boundary-layers have developed, and the interior region of the plate are investigated individually. Separate perturbation expansions are obtained in these regions of the plate. The theory of ''Matched Asymptotic Expansions" is utilized here in order to evaluate certain constants of integration which remain undetermined after exhausting the boundary conditions on the problem. Two and, in one case, three terms of the expansions are found in closed form. It is found that for the special case where Poisson's ratio is equal to 1/3 the results are extremely simple and here we obtain three terms in the expansions. Numerical results for the stresses and transverse displacement are compared with data obtained from the numerical integration of the Reissner equations by other authors and the agreement is very good. Lastly we examine the case of large finite deformations where the deformations have exceeded the range of validity of the von Kannan equations. A perturbation analysis of the first approximations to Reissner's equations for this case leads to a singular perturbation problem as expected. The basic differential equations for the boundary-layer zones and interior region of the plate are derived as well as the required conditions, in addition to those provided at the edges of the plate, for determining the constants of integration which arise in the analysis. Closed form solutions for one of the dependent variables can not be obtained here and numerical integration is required. For this reason numerical results are not given. In this latter part of the investigation we observe that the first approximations to the original form of Reissner's equations contain certain terms which he neglects in his more recent theory. We, therefore, conclude that these terms which are missing from his more recent theory are important if the deformations are extremely large and should be retained in this case. / Ph. D.
3

Etude de la ténacité d'une soudure en undermatch : Application à la tenue mécanique de la jonction soudée FE en Al 6061-T6 / Toughness Study of an Undermatched Welded Joint : Application to the Mechanical Integrity of the Electron Beam Welded Joint of 6016-T6 Aluminium Alloy

Rekik, Wissal 17 November 2016 (has links)
Dans le cadre de la démonstration de l’intégrité des composants nucléaires les plus sensibles, une analyse de la présence d’un défaut potentiel de type fissure peut être requise par la sureté nucléaire. Ceci est particulièrement le cas en présence de jonctions soudées. Pour assurer un conservatisme de cette analyse, la position du défaut postulé doit être la plus pénalisante possible. Les analyses réalisées pour des démonstrations similaires sur des structures en acier reposent sur une approche de type mono matériau utilisant le comportement du métal de base. Cette approche est la plus pénalisante dans le cas d’une soudure en overmatch mais doit être remise en cause dans le cas d’une soudure en undermatch. Dans ce cadre, cette thèse propose une méthodologie expérimentale et numérique permettant l’identification de la configuration la plus pénalisante vis-à-vis de la mécanique de la rupture d’une soudure en undermatch. L’application de cette méthode a été réalisée sur une soudure en faisceau d’électrons en Al6061-T6. Un gradient de propriétés mécaniques le long de la jonction soudée a été dans un premier temps identifié permettant la conduite d’une analyse fine basée sur une approche multimatériau. Dans un second temps, le comportement en ténacité de la jonction soudée a été étudié sur éprouvettes CT. La transférabilité du paramètre J à l’amorçage à une autre géométrie d’éprouvette a été démontrée ce qui constitue une base importante pour l’hypothèse de transférabilité vers des structures. Pour finir, une étude numérique sur un tube de grandes dimensions avec un défaut semi-elliptique a été développée en prenant en compte les contraintes résiduelles de soudage. Les résultats montrent que la zone affectée thermiquement à 13 mm du centre de la soudure considérée est la plus sensible en mécanique de la rupture, ceci remet par conséquent en question les méthodes traditionnelles menées dans des analyses à la rupture brutale qui consistent à considérer un défaut dans la zone fondue. / For the demonstration of the integrity of the most sensitive nuclear components, conventional defects, as cracks for example, must be considered within the design step as required by the nuclear safety authority. This phase is particularly crucial for dimensioning of welded structures. To ensure a conservative prediction, the position of the initial crack within the welded joint must be the most detrimental in fracture behavior. Commonly used analyzes consider homogeneous structure with the behavior of the base metal of the welded joint, considered as the weakest metallurgical zone in the case of an overmatched weld. In contrast, similar analysis is not conservative in case of undermatched weld. The thesis contributes by the development of an experimental and numerical methodology allowing the identification of the detrimental metallurgical zone in fracture behavior of an undermatched welded joint. The methodology proposed is applied to an electron beam welded joint on Al 6061-T6. To reach this goal, the gradient of the mechanical behavior along the welded joint was first identified. This is particularly interesting to conduct an advanced analysis based on a multimaterial approach. In a second step, the fracture behavior of the welded joint was studied on CT specimen. The transferability of the J integral at initiation was approved on another geometry: this represents an important foundation for the transferability assumption to structure. Finally, a numerical analysis on full scale tube was developed. Residual welding stresses and structural effects were considered. The results demonstrate that the heat affected zone located at 13 mm from the middle of the welded joint is the most detrimental zone for fracture analysis. This contradicts the conventional methods conducted on fracture analysis which consider a conventional defect within the fusion zone.
4

Etude expérimentale et modélisation de la durée de vie en fatigue d'un alliage d'aluminium de fonderie A356-T6 sous chargement multiaxial / Experimental investigation and modeling the fatigue life of a cast aluminium alloy A356-T6 under multiaxial loading

Iben Houria, Mohamed 28 August 2015 (has links)
Ce travail a pour objectif d'étudier la tenue en fatigue de l'alliage de fonderie A356-T6 sous chargement multiaxial. Des essais en fatigue à 106 cycles ont été effectués pour deux rapports de chargements différents à Rσ = 0 et Rσ = -1. La première partie expérimentale est menée sur des éprouvettes issues d'une coulée en ‘V’ avec des défauts naturels de fonderie et des défauts artificiels avec une variation de la microstructure. Suite aux résultats expérimentaux, nous avons montré que la taille des défauts ainsi que la microstructure caractérisée par la SDAS, sont les principaux paramètres qui influencent la limite de fatigue de cet alliage. Par comparaison entre les résultats obtenus à Rσ = 0 et Rσ = -1, il s'avère que la contrainte moyenne joue un rôle primordial sur la sensibilité du matériau à la taille du défaut et à la SDAS. Dans la suite, des modifications ont été menées sur le critère de DSG qui consistent à introduire l’effet de la SDAS au niveau du critère. L’application de ce critère modifié dans un diagramme de Kitagawa pour les différents cas de chargement a montré que l’abattement de la limite de fatigue en fonction de la taille de défaut et de la SDAS est bien décrit. Dans la dernière partie un outil numérique a été développé permettant de simuler la limite de fatigue en partant du procédé de fonderie. Cette démarche est sous forme d’une chaîne de calcul numérique qui permet de simuler la taille de défaut et de la SDAS à partir du procédé de fonderie. Suite à cette simulation, le modèle est capable de prévoir la limite de fatigue en utilisant le critère de DSG modifié. La combinaison entre la loi de Weibull et le critère de DSG permet à la suite de la chaîne de simulation de prévoir ainsi la probabilité de rupture à chaque point de la structure. Nous avons proposé dans cette partie un moule qui permet d’élaborer des éprouvettes avec deux microstructures différentes. Dans cette étude, une deuxième campagne d’essais a été réalisée sur ces éprouvettes afin de valider la simulation numérique sur le moule proposé. Le modèle numérique prévoit raisonnablement bien les résultats expérimentaux obtenus. / This study aims to investigate the fatigue behaviour of A356-T6 aluminum alloy. Experimental fatigue tests at 106 cycles have been performed for two loading ratios: Rσ = 0 and Rσ = -1. The first experimental investigation was conducted on specimens from a ‘V’ wedge casting with natural and artificial defects which provides a variation of the microstructure. Following the experimental results, we have shown that defects characterized by their size and the microstructure characterized by SDAS, are the main parameters that control the fatigue limit. By comparing the results obtained for both loading ratios, it appears that the mean stress has an effect on the sensitivity to the defect size effect and microstructure.The DSG criterion was modified to introduce the effect of SDAS. This improved DSG criterion has been employed to predict the Kitagawa diagram for multiaxial loading for different loading cases. The simulation of the modified DSG criterion showed that the reduction of the fatigue limit with the defect size and SDAS is well described. In the last part a numerical model was developed to perform a simulation of the fatigue limit starting from the casting process. Using this numerical model, we simulated the defect size and SDAS depending on the solidification time, eventually the fatigue limit issimulated using the improved DSG criterion. With combining between Weibull law and modified DSG,we predict the probability of failure at each point of the structure. We proposed in this part a mold which let to obtain samples with two different microstructures. In this study, a second fatigue tests was carried out on these samples to validate the numerical simulation on the proposed mold. It turns out that the numerical model provides reasonably well the obtained experimental results.
5

Vibration Assisted Drilling of Aluminum 6061-T6

Chang, Simon, Shuet Fung 03 1900 (has links)
<p> Burr formation is a frequent problem in metal cutting. Burrs, which are defined as undesired projections of material resulting from plastic deformation, affect the precision of machined components and can negatively affect the assembly process. One common burr is the exit burr that forms when drilling ductile materials such as aluminum alloy. Deburring, the process of removing burrs, can account for up to 30% of the total production cost. If the burr size can be reduced, the deburring effort can also be reduced or even eliminated, resulting in an improvement in productivity and an increase in profit. </p> <p> There are different methods to reduce burr formation in drilling. One method is known as vibration assisted drilling. Vibration assisted drilling has been reported as an effective method to reduce burr height without reducing the material removal rate or permanently altering the mechanical behavior of the workpiece material. Other reported benefits of vibration assisted drilling include improvement of tool life and better machined surface quality. However, it has been reported that poor choice of vibration conditions (frequency and amplitude) can increase burr height. No accurate analytical model exists in the current literature that can predict the exit burr height for vibration assisted drilling. To predict exit burr height, a model capable of predicting thrust force accurately is important because higher thrust force produces larger exit burr. Clearly there is a need to develop these models. </p> <p> This thesis presents the development of analytical models for predicting thrust force and exit burr height for vibration assisted drilling of aluminum 6061-T6. The developed models incorporate all significant characteristics of vibration assisted drilling to achieve accurate predictions. Drilling experiments were performed over a range of cutting and vibration conditions. The experimental results demonstrate that the developed thrust force model improves the accuracy by up to 45% in comparison to the existing vibration assisted drilling models. The developed burr height model accurately predicts the exit burr height for vibration assisted drilling, with an averaged deviation of 10% from the experimental results. The developed models are also applicable to conventional drilling. Comparing with the existing drilling models, the new models improve the accuracy of thrust force and burr height predictions by 6 and 36% respectively. A fast analytical method has also been developed that predicts the favourable vibration conditions that minimize burr height. The predictions obtained using this method are consistent with the experimental results. Drilling experiments for combined frequency vibration assisted drilling were also performed over a range of vibration conditions. The experimental results demonstrate that combining two different favourable vibration conditions together produces greater mean thrust force reduction than using a single frequency vibration assistance. </p> / Thesis / Doctor of Philosophy (PhD)
6

Finite element analysis of extruded AA6061-T6 mechanical connection in low-cycle fatigue

Hoffman, Nolan 01 May 2020 (has links)
The low-cycle fatigue (LCF) life of the extruded aluminum alloy 6061-T6 (AA6061-T6) AM2 matting connection system was analyzed through 3D finite element modeling in conjunction with the plasticity-damage (DMG) and multi-stage fatigue (MSF) material models. The connection was modeled in ABAQUS Explicit based on the real-world boundary conditions of AM2 matting. The DMG-MSF user-defined material model characterized the low-cycle fatigue damage evolution within the microstructure of the extruded AA6061-T6 connection and utilized the maximum effective strain amplitude to predict the life of each stage of the fatigue process. It was determined that a constant displacement range of 15.17 mm generated an effective strain amplitude of 6.8E-03 mm/mm and a predicted total fatigue life within 1% to the laboratory- and full-scale data at approximately 1,122 cycles. The LCF characterization of the connection system allows for a significant reduction in laboratory- and full-scale testing for future design improvements.
7

Studies On Friction Stir Welding Of Precipitation Hardenable Aluminium Alloys

Kumar, K 01 1900 (has links)
Friction Stir Welding (FSW) is an emerging solid state welding process. It has been a proven method for welding high strength aluminium alloys which were previously not recommended for conventional fusion welding. Since the invention of the process by The Welding Institute, United Kingdom, in 1991, a number of studies have been conducted on the material flow, microstructural evolution and mechanical properties of friction stir welds. However, there is not enough conceptual background available on FSW process for physical understanding of the mechanism of weld formation. In addition to that, FSW welds of high strength precipitation hardenable aluminium alloys suffer from reduced joint efficiency due to overaging in the heat affected zone. In the present investigation, experimental analysis has been carried out to understand the mechanism of weld formation and parameter optimization for aluminium alloys 7020-T6 and 6061-T6. For this purpose the investigations have been made on both the process aspects and the material aspects. The process aspects are analyzed with the objective of learning the mechanism to produce defect free welds. For this purpose experiments have been carried out to analyze the effect of FSW parameters, material flow and the frictional characteristics between the tool and base metal. Preliminary experiments are conducted on aluminium alloy 7020-T6 with different tool geometries to analyze the interaction of the tool with the base metal using a knee-type vertical milling machine. Then, the tool geometry which produced defect-free weld is used for further experimentation. The role of tool pin, shoulder and axial load on the formation of defect free weld is analyzed in an innovative experiment, where the tool and base metal interaction is continuously increased by continuously increasing the interference between the tool and base metal. In another experiment the initial abutting interface position with respect to the tool is continuously varied to study the interaction of the tool with the initial interface and to find the positional information where the initial interface is completely eliminated. Further, the tool metal interface condition is studied using a specially designed tribological experiment which simulates the FSW condition. From the base metal point of view, due to the strain, strain rate and temperature imposed on the base metal during the process, the microstructure is altered. In precipitation hardenable aluminium alloys the strengthening precipitates are dissolved or overaged in the weld region depending on the peak temperature in the region, which reduces the joint efficiency. However, the dissolution and overaging are kinetic process. In order to analyze this time dependant softening behavior of the base metal 7020-T6 and 6061-T6, isothermal annealing and differential scanning calorimetric studies are performed. In order to obtain FSW welds with maximum joint efficiency, the welding temperature should not exceed the “softening temperature” of the base metal. But, to produce defect free welds favorable material flow in the weld nugget is necessary. The material flow and consolidation depend on the process temperature. Hence, for a given tool to produce defect free weld there is a need for minimum temperature. If the weld formation temperature is less than the base metal softening temperature, the weld can be made with 100% joint efficiency. In order to optimize the FSW parameter which gives defect free weld with lowest possible temperature, an instrumented programmable FSW machine is designed and developed. The machine is designed in such a way that welding parameters – rotation speed, traverse speed and plunging depth – can be continuously varied from the start to end of the weld between given two values. This reduces the number of experimental trials, material and time. Based on the experimental results the following conclusions are derived. 1.The minimum diameter of the pin required for FSW depends on the base metal and tool material property for a given set of parameters. If the pin diameter is insufficient for a given set of welding parameters, it fails during plunging operation itself. 2.There is a minimum diameter of the shoulder for a given diameter of the pin which produces defect free weld. The ratio of pin to shoulder to produce a defect free weld is not a constant value. It changes with tool geometry and process parameters. 3.Increasing the area of contact between the tool and shoulder for a given set of parameters increases the heat input and results in increased weld nugget grain size. 4.Initial abutting interface of the base metal is eliminated at the leading edge of the tool. However, new surfaces are generated due to interaction with the tool and the newer surfaces are consolidated at the trailing edge of the tool. Importantly, the weld strength is controlled by the defects generated due the improper elimination of newly generated surfaces. 5.Optimal axial load is required to generate the required pressure to consolidate the transferred material at the trailing edge of the tool and should be equal to the flow stress of the material at the processing temperature. The optimal axial load is 8.1kN for a tool having 20mm diameter shoulder with 6mm diameter frustum shaped pin. 6.Only the material that approaches the tool at the leading edge on the advancing side is stirred and the remaining material is simply extruded around the tool. Further, the initial abutting interface is completely removed only when it is located in the stirring zone, otherwise the initial abutting interface is not eliminated. In the present study the interface is completely stirred when it is located on the advancing side of the tool between 0.5mm away from the centerline and edge of the tool. 7.The temperature and pressure at the tool–base metal interface is above the temperature and pressure required for seizure to occur for given tool material (H13) and base metal (7020-T6). Hence, it is clear that during FSW the base metal transfers on to the tool and interaction occurs between transferred layer on tool and base metal. The coefficient of friction between the given tool material and base metal in FSW condition is in the range of 1.2 – 1.4. 8.The minimum temperature requirement for FSW of 7020-T6 is 400oC and 6061-T6 is 430oC. However, 7020-T6 and 6061-T6 softens at lower temperatures than that of the minimum FSW temperature. 7020-T6 softens 30% in 7min at 250oC, 4min at 300oC, 2min at 350oC and 1min at 400oC. After softening 30%, there is 10% recovery in hardness and the hardness remains constant thereafter. Whereas 6061-T6 softens gradually up to 47% in 7min at 350oC and 400oC, below the temperature of 250oC for 7020-T6 and 350oC for 6061-T6 there is no softening observed in 7min. 9.The maximum joint efficiency of the 7020-T6 weld is 82% and 6061-T6 weld is 60%. 10. The reduction in joint efficiency is attributed to overaging of the material in the heat affected zone.
8

The role of stirring time on the metallurgical and mechanical properties during modified friction stir clinching of AA6061-T6 and AA7075-T6 sheets

Memon, S., Paidar, M., Ojo, O.O., Cooke, Kavian O., Babaei, B., Masoumnezhad, M. 25 November 2020 (has links)
Yes / In this study, the modified friction stir clinching process was successfully utilized to weld the AA7075-T6 to AA6061-T6 aluminum alloys. The approach of this study was to appraise the influence of the stirring time (6, 12, and 18 s) on the metallurgical and mechanical behavior of the welded samples. The microstructural study demonstrated that stirring time significantly affected joint properties and material flow, which can be ascribed to the discrepancy in the properties of the Al alloys used in this study. Void, local melting and defect-free joints were produced under the stirring times of 6 s, 18 s, and 12 s respectively. It was found that tensile/shear strength increased significantly from 63.5 MPa to 109 MPa as the stirring time increased from 6 s to 12 s, while a further increase in the stirring time to 18 s significantly decreased the joint's strength to 76.1 MPa. The observed failed samples showed that stirring time did not influence fracture mode.
9

Estudo do desempenho mecânico e microestrutural de uniões da liga de alumínio, AA6061-T6, por solda a ponto por fricção (FSpW)

FERNANDES, Camila Albuquerque 29 July 2016 (has links)
Submitted by Rafael Santana (rafael.silvasantana@ufpe.br) on 2017-04-19T18:29:57Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Dissertação CAMILA ALBUQUERQUE FERNANDES 2016.pdf: 2707069 bytes, checksum: 1af5a8e892dd9aa2682c79f98c6cde09 (MD5) / Made available in DSpace on 2017-04-19T18:29:57Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Dissertação CAMILA ALBUQUERQUE FERNANDES 2016.pdf: 2707069 bytes, checksum: 1af5a8e892dd9aa2682c79f98c6cde09 (MD5) Previous issue date: 2016-07-29 / Solda a Ponto por Fricção (Friction Spot Welding – FSpW) é um processo relativamente novo de soldagem desenvolvido e patenteado pelo GKSS na Alemanha, que visa complementar e/ou substituir tecnologias de uniões de soldagem convencionais. Essa nova tecnologia de soldagem se dá pela união no estado sólido, onde duas ou mais chapas são unidas através da transferência de energia térmica e mecânica que é gerada pela rotação da ferramenta. O presente trabalho visou avaliar a aplicabilidade da união da liga de alumínio 6061-T6 pela técnica de Solda a Ponto por Fricção. Essas soldas foram produzidas em configuração de sobreposição utilizando condições de soldagens variadas, por meio de diferentes combinações de velocidade de rotação, profundidade de penetração e velocidade de penetração; os quais foram estabelecidos através de uma análise estatística, utilizando como ferramenta o Box-Behnken. A integridade da junta soldada foi avaliada através dos efeitos dos parâmetros de processo, na geometria e na microestrutura da junta, e também no desempenho mecânico. Realizou-se também a otimização do processo de soldagem e um estudo sobre o comportamento de fratura das soldas submetidas a um esforço de cisalhamento. Os resultados mostraram que a melhor combinação de parâmetros foi encontrada na condição de soldagem: 130 rpm, 4,0 mm/s e 1,4 mm, com um valor médio de resistência ao cisalhamento de 6243,29 N, com boa reprodutibilidade. O botão da solda é constituído por três elementos geométricos que se mostraram inerentes ao processo: cunha, união principal e união secundária. Estes elementos mostraram possuir forte influência sobre o desempenho mecânico. / Friction Spot Welding (FSpW) is a relatively new welding process patented by GKSS in Germany. This new welding technology is given by the joining in a solid state, in which two or more plates are joined by thermal and mechanical energy transfer that is generated by the rotation of the welding tool. The aim of this work is to study the integrity of the welds of AA6061-T6, by the FSpW process. These welds were produced in an overlapping configuration using different welding conditions, through different combinations of rotational speed, depth of penetration and penetration speed, which were set through a statistical approach using the Box-Behnken. The integrity of the welded joint was evaluated by the effects of process parameters on geometry and microstructure of the joint, and also in the mechanical performance. It was also performed the optimization of the welding process and a brief study on the fracture behavior of the welds subjected to a shear stress. The results showed that the best combination of parameters was found in the welding condition: 130 rpm 4.0 mm / s and 1.4 mm with an average value of the shear strength of 6243.29 N, with good reproducibility. The metallurgical investigation revealed three geometric elements that are inherent to the process: primary union and secondary union and hook. These elements were shown to have strong influence on the mechanical performance.
10

Contribution à la modélisation et à la simulation numérique du soudage par friction et malaxage / A contribution to the modeling and numerical simulation of friction stir welding

Guedoiri, Ammar 18 December 2012 (has links)
Le soudage par friction malaxage « Friction Stir Welding » est un procédé d'assemblage de pièces en phase semi solide. Le cordon de soudure est obtenu grâce à un outil de révolution composé d'un épaulement et d'un pion. Ce procédé utilise le principe de la conversion de l'énergie mécanique en énergie thermique par frottement de l'outil avec les pièces à assembler. Ce travail de thèse est une contribution à la modélisation expérimentale et à la simulation numérique de ce procédé permettant de fournir des modèles pour aider à la compréhension des phénomènes thermiques et mécaniques ainsi que les interactions entre les paramètres de soudage. Les études expérimentales sont principalement orientées vers la caractérisation de l'écoulement de matière à l'aide de marqueurs et vers l'optimisation des paramètres du procédé. L'effet de la géométrie de l'outil (outil à pion cylindrique ou outil avec méplats) sur l'écoulement de la matière au cours du soudage est étudié. Pour représenter la géométrie de l'écoulement et prédire les champs thermiques et mécaniques à l'état stationnaire, des modèles formulés sur la base de la dynamique des fluides sont adoptés dans la présente thèse. Deux modèles thermomécaniques sont développés: (1) un premier modèle numérique construit sous Fluent permet d'étudier le comportement thermomécanique et l'écoulement au cours du soudage FSW. Une loi de comportement dépendante de la température et de la vitesse de déformation est utilisée et une discussion sur les conditions de contact entre l'outil et les plaques à souder est présentée. Les résultats de l'écoulement sont comparés avec ceux obtenus expérimentalement dans le cas de suivi des trajectoires de particules de cuivre. (2) un deuxième modèle original basé sur une procédure itérative est mis en œuvre permettant le soudage de plaque de grandes dimensions. En effet, pour une meilleure prise en compte des conditions aux limites thermiques, un modèle thermomécanique construit autour de l'outil de soudage et couplé avec un modèle thermique pour tout le reste du domaine étudié. Ce modèle permet de prendre en compte le transfert de chaleur dans l'outil et dans la plaque support. Les cycles thermiques et la plage de viscosité pour deux alliages d'aluminium (AA7020-T6 et AA6061-T3) sont analysés et comparés avec succès aux résultats expérimentaux. Les efforts et le couple de soudage calculés numériquement sont validés par rapport à la littérature. / The friction stir welding is a process for assembling a semisolid phase parts. The weld seam is achieved by a revolution tool consists of the shoulder and the pin. This process converts the mechanical energy into heat energy by friction of the tool with the parts to be joined.This thesis is a contribution to the experimental modeling and numerical simulation of this process in order to provide models to assist in understanding the thermal and mechanical phenomena and interactions between the welding parameters. Experimental studies are used for the characterization of the material flow with markers and to optimize the process parameters. The effect of tool geometry (cylindrical pin or tool with flats) on the material flow during welding is studied. To represent the flow geometry and predict the thermal and mechanical fields in the steady state, CFD models are adopted in this thesis. Two thermomechanical models are developed: (1) first numerical model is used to study the thermomechanical behavior and flow during FSW. FLUENT is employed to solve the coupled thermal and fluid flow equations. A behavior law depending on temperature and strain rate is used and a discussion on the contact conditions between the tool and the workpieces is presented. The results of the flow are compared with those obtained experimentally in the followed case of trajectories copper particles. (2) A second original model based on iterative procedure is implemented to welding large plates. To take account the correctly thermal boundary conditions, a thermomechanical model built around the welding tool and coupled with a thermal model for the rest of the area studied. This model allows taking into account the transfer of heat in the tool and in the backing-bar. Thermal cycles and the viscosity range for two aluminum alloys (AA7020-T6 and AA6061-T3) are successfully analyzed and compared with experimental results. The loads and torque welding are calculated numerically and validated in the literature.

Page generated in 0.0511 seconds