• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 9
  • 5
  • 2
  • 2
  • 1
  • Tagged with
  • 44
  • 18
  • 17
  • 12
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Conventional heat treatment of additively manufactured AlSi10Mg

Sarentica, Atilla January 2019 (has links)
No description available.
12

A metalurgia do pó para produção de peças de alumínio na indústria metalúrgica

Santos, Marcus Aurélio dos January 2018 (has links)
O objetivo desse trabalho é analisar a fabricação de buchas a base de Alumínio empregando o processo de Metalurgia do Pó, em substituição ao processo atual de fundição e usinagem. O material testado é uma liga a base de Alumínio AlSi10Cu3, essa liga contem 87% de Alumínio, 10% de Silício, 2,5% de Cobre, 0,25% de Magnésio e Manganês, conforme a norma DIN EN 1706. As amostras foram compactadas à 600MPa, resultado obtido da curva de compressibilidade. As amostras foram sinterizadas a uma temperatura de 550ºC durante 60 minutos. Após sinterização as amostras foram submetidas ao processo de Tratamento Térmico T6, com temperatura de solubilização de 480°C por 5 horas e envelhecimento a 220°C por 5 horas, nomeado Tratamento Térmico A. Foram realizados ensaios de densidade, dureza, metalografia, compressibilidade, difração de raios-x e variação dimensional. A densidade das amostras sinterizadas atingiram 2,52 g/cm3 ± 0,25. A dureza superficial das amostras atingiram uma média de 51 HB ± 4. Com o tratamento térmico T6 a dureza elevou-se para 74 HB ± 2. A variação dimensional das amostras após sinterização foi de 0,20% na área dos corpos de prova. Foram estudadas também diferentes composições químicas para elevar a dureza superficial. Executou-se um teste com outros parâmetros de Tratamento Térmico T6 para aumento da dureza, chamado de Tratamento Térmico B, com parâmetros de temperatura de solubilização de 550°C por 1 hora e envelhecimento com 160°C por 18 horas. / The objective of this work is to analyze the manufacture of aluminum based bushings employing the Powder Metallurgy process in substitution of the current process of casting and machining. The material tested is an AlSi10Cu3 aluminum alloy, this alloy contains 87% aluminum, 10% silicon, 2.5% copper, 0.25% magnesium and manganese, according to DIN EN 1706. The samples were pressed at 600MPa, result obtained from the compressibility curve. The samples were sintered at a temperature of 550°C for 60 minutes. After sintering, the samples were submitted to the T6 Thermal Treatment process, with a solubilization temperature of 480°C for 5 hours and aging at 220°C for 5 hours, named Thermal Treatment A. Density, hardness, metallography, compressibility, X-ray diffraction and dimensional variation testings were performed. The density of the sintered samples reached 2.52 g/cm3 ± 0.25. The surface hardness of the samples reached the mean of 51 HB ± 4. With the heat treatment T6 the hardness increased to 74 HB ± 2. The dimensional variation of the samples after sintering was 0.20% by area. Different chemical compositions were also studied to raise the surface hardness. A test was performed with other parameters of T6 Thermal Treatment to increase the hardness, called Thermal Treatment B, with parameters of solubilization temperature of 550°C for 1 hour and aging with 160°C for 18 hours.
13

Friction Stir Welding in Wrought and Cast Aluminum Alloys: Microstructure, Residual Stress, Fatigue Crack Growth Mechanisms, and Novel Applications

Chenelle, Brendan F. 26 January 2011 (has links)
Friction Stir Welding (FSW) is a new solid-state welding process that shows great promise for use in the aerospace and transportation industries. One of the primary benefits of this process is that mechanical properties of the base material are not as severely degraded as they are with conventional fusion welding. However, fatigue crack initiation and growth properties of the resulting weld nugget are not fully understood at this time. The primary goal of this project is to characterize the fatigue crack growth properties of friction stir welds in 6061-T6 aluminum as relates to the microstructural evolution of the weld. This was accomplished by producing friction stir welds and testing fatigue crack growth response in different crack orientations with respect to the weld. In addition, residual stress measurements were conducted for all cases, using both the crack compliance and contour methods. The results from the methods were compared in order to evaluate the accuracy of each method. Being an immature technology, the potential for discovery of new applications for the FSW process exist. With this in mind, novel applications of the FSW process, including the addition of particles during welding were explored. The first step was the investigation of property changes that occur when secondary cast phases are refined using the FSW process. The FSW process successfully refined all secondary phases in A380 and A356, producing an increase in hardness. Next, methods for the creation of particle metal matrix composites using FSW will be investigated. Nano-scale alumina particles were successfully added to the matrix and homogenously distributed. Using multiple weld passes through the composite was found to increase the uniformity of particle distribution. However, the alumina particle composite failed to provide any statistically significant hardness increase over the base material. The FSW process was also evaluated for weldability of traditionally difficult alloy systems. FSW was found to show very good weldability for dissimilar cast and wrought alloys, as well as for high-pressure die castings. Lastly, the feasibility of friction stir welding/processing in repairing crack defects in complex structural members in combination with cold-spray technology was determined. Friction Stir processing was used on a cold spray 6061-T6 block, resulting in significant increases in hardness over the base material, as well as a reduction in porosity. In addition, FSP was shown to eliminate crack-type defects in cold spray materials, a finding that has important applications in part repair. The deliverables of this work include an understanding of the fatigue crack growth response of FSW/FSP 6061-T6, as well as a feasibility study exploring novel uses for the FSW/FSP process. In addition, the deliverables include CNC code, fixtures, procedures, and analytical code for the creation and analysis of FSW/FSP joints. This will be important for the continuation of FSW/FSP work at WPI.
14

Structure-based drug discovery approaches to identify modulators of the Nrf2 pathway and glutamate receptors AMPA GluA2 and Kainate GluK1 and GluK2

Carreno Velazquez, Thalia Lizbeth January 2018 (has links)
Nrf2 project: The protein nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that provides protection against oxidative stress and the dysfunction of this pathway has been suggested to be implicated in many neurodegenerative diseases. The aim of this thesis was to identify novel Nrf2 activators that disrupt the protein-protein interaction between Nrf2 and Keap1 and thereby induce increased expression of antioxidant enzymes and protective genes. The crystal structure of the Keap1-Nrf2 interface was used to perform a virtual screen and compounds from the screen were assayed using a cellular nuclear complementation assay that measures the nuclear translocation of Nrf2 from the cytosol. Although two novel compounds were found to increase the Nrf2 nuclear translocation, they had low activity and further characterisation did not provide sufficient evidence of a Nrf2-Keap1 robust interaction. iGluRs project: AMPA and kainate receptors are ionotropic glutamate receptors (iGluRs) that are important for excitatory transmission and synaptic plasticity and are linked to several neurological disorders such as epilepsy, schizophrenia and autism. This project aimed to find novel allosteric modulators binding in the ligand-binding domain (LBD) of the GluA2 and GluK1 and GluK2 subtypes of AMPA and kainate receptors, respectively, using protein purification and X-ray crystallography methodologies. Fragment screening for GluA2 identified eight novel fragments, five of which were located at the dimer interface and three located in a novel site near the glycine-threonine dipeptide linker. As regards kainate receptors, structural information on the Gluk1 and GluK2 LBD was obtained, both proteins were soaked with in-house fragments with one compound displaying 20% occupancy in the GluK2 dimer interface. These data form the basis of future studies in the search for novel drugs for the treatment of epilepsy and schizophrenia.
15

Exploring interactions between Epstein-Barr virus transcription factor Zta and the human genome

Naranjo Perez Fernandez, Ijiel Barak January 2018 (has links)
Epstein-Barr virus is a gamma herpesvirus that is present in human adult's B-lymphocytes infecting 90% of the global population. EBV causes many types of lymphoma and carcinoma. The virus life cycle can be divided in two stages, latency and lytic cycle. Viral gene BZLF1 codes for the viral transcription and replication factor Zta (also known as BZLF1, ZEBRA, EB1, and Z) which is part of the signalling required to switch from latency to the lytic cycle. Zta is part of the bZIP family of proteins, it forms homodimers and can bind to specific sequences termed Zta Response Elements (ZREs). It binds to the EBV lytic origin of replication as well as to specific targeted promoters in the viral genome and regulates its expression. Recent research found and mapped interactions between the key viral transcription factor Zta and the B-cell genome, this showed interactions of Zta proximal (closer than 2Kb) and distal (farther than 2 Kb) to the transcription start site of several genes. In this work, I asked the questions: Can enhancer properties be found in the sequences where Zta binds to? Is Zta distally regulating expression by looping of DNA? This was approached first by identifying potential sequences that could be conferring enhancing activity, then inserting them into vectors and transfecting them into two different cell lines. In this way, through luciferase reporter assays, any enhancing capabilities of the sequences were tested when placed in a proximal and distal manner to promoters known to be regulated by Zta, as well as mutated promoters not regulated by Zta. This resulted in finding discreet enhancer activity in the sequences analysed, with some being specific to the cell type that was used in the experiment. To answer the second question, chromosome conformation capture (3C) was used to test the possibility of a spatial rearrangement bringing together distal Zta binding regions and promotor regions of selected genes (looping). However, I did not find evidence of looping between Zta binding sites and the neighbouring promoters analysed, in the cell context employed.
16

Fixed bobbin friction stir welding of marine grade aluminium.

Sued, Mohammad Kamil January 2015 (has links)
PROBLEM - The bobbin friction stir welding (BFSW) process has potential benefits for welding thin sheet aluminium alloy. The main benefits of friction stir welding over conventional thermal welding processes are minimisation of energy usage, no need for consumables, potential for good weld quality without porosity, no fumes, minimal adverse environmental effects (green), minimal waste (lean), and reduced threats to personal health and safety. The BFSW process has further advantages over conventional friction stir welding (CFSW) in the reduction of welding forces, faster welding, and less fixturing. It is especially attractive to industries that join thin sheet material, e.g. boat-building. The industrial need for this project arose from the desire to apply the technology at a ship manufacturing company, INCAT located in Hobart, Tasmania, Australia. However there are peculiar difficulties with the specific grade of material used in this industry, namely thin sheet aluminium Al6082-T6. Early efforts with a portable friction stir welding machine identified the process to have low repeatability and reproducibility, i.e. process-instability. There are a large number of process variables and situational factors that affect weld quality, and many of these are covert. This is also the reason for divergent recommendations in the literature for process settings. PURPOSE - The main purpose of this research was to identify covert variables and better understand their potentially adverse effects on weld quality. Therefore, this thesis investigated the hidden variables and their interactions. Developing this knowledge is a necessity for making reliable and repeatable welds for industrial application. APPROACH - An explorative approach that focused on the functional perspective was taken. An extensive empirical testing programme was undertaken to identify the variables and their effects. In the process a force platform and BFSW tools were designed and built. A variety of machine platforms were used, namely portable friction stir welding, manual milling machine and computer numerical control (CNC) milling machine. The trials were grouped into 14 test plans. These are tool shoulder gap, spindle and travel speed, tool features, machines, tool fixation, machinery, welding direction, plate size (width and dimension), support insulation, tool materials, substrate properties and fixation. For the welded plates besides visual inspection of the weld, current, force, and temperature were measured. The Fourier transform was used to analyse the frequency response of machines. Also the welded samples were tested to the maritime standards of Det Norske Veritas (DNV). A number of relationships of causality were identified whereby certain variables affected weld quality. A model was developed to represent the proposed causality using the IDEF0 systems engineering method. FINDINGS - From these trials six main variables have been identified. These are tool features, spindle speed, travel speed, shoulder gap compression, machine variability, tool and substrate fixation. A rigid system is required for a consistent weld results. Under this condition, full pin features (threads and flats) need to be used to balance the adverse effects of individual features. It has been shown that fabricated bobbin tools with sharp edges can cause cuts and digging thus this feature should be avoided. Additionally, the substrate should have continuous interaction with the tool so the shoulder interference needs to be fixed and well-controlled. It is found that the compression generated by the shoulder towards the substrate helps material grabbing for better tool-substrate interaction. It is also shown that tool entry causes ejection of material and hence an enduring mass deficit, which manifests as a characteristic tunnel defect. The new explanation of the formation, origin and location of this defect has been explained. Material transportation mechanisms within the weld have been elucidated. It is also found that the role of the travel speed is not only to control heat generation but also for replacing the deficit material. Additionally, heat supplied to the weld depends not only on thickness, but also the width of the plate. Different types of machine cause an interaction in the material flow through their controller strategies. Jerking motion can occur at a slow travel speed, which also alters the way material is being transported. The Fourier transform (FFT) has been used to identify the characteristics of good and bad BFSW welds. This has the potential to be expanded for real-time process control. IMPLICATIONS - Tool deflection and positioning, material flow and availability are identified as affecting weld quality through stated mechanisms. The impact is even more severe when involving thin-plate aluminium. For the industry to successfully adopt this technology the process typically needs tight control of shoulder gap, tool strength and stiffness, feature fabrication, substrate and tool fixation. Additionally spindle and travel speed need to be adjusted not only based on the type of materials and thickness, but also the width, type of machine and method of tool entry. ORIGINALITY - New data are presented, which lead to new insights into the welding mechanics, production settings, material transportation and weld defects for BFSW on thin sheet material. The conventional idea that the welding tool has a semi-steady interaction with the substrate is not supported. Instead the interaction is highly dynamic, and this materially affects the weld-quality, especially in the difficult-to-weld material under examination. Factors such as shoulder gap, tool and substrate fixation compliance and machine types emerge as variables that need to be given attention in the selection of process parameters. The causal relationships have been represented in a conceptual model using an IDEF0 system approach. This study has made several original contributions to the body of knowledge. First is the identification of previously hidden variables that effect weld formation for the fixed gap BFSW process. The second contribution is a new way of understanding the material transportation mechanics within the weld. This includes the flow around the pin in the plane of the weld, the vertical transportation of material up the pin, the formation of turbulent-like knit lines at the advancing side, and the formation of tunnel defects. Also included here is a new understanding of how material deficit arises at tool entry and exit, and from flash/chips, and how this contributes to the tunnel weld defect. In addition, new understandings of the role of feed rate have been identified. Related to the material transportation, the work has also identified the importance of an interference fit between the substrate and tool. A third contribution is the identification of the dynamic interaction between tool and substrate. This identifies the important role rigidity plays. Associated with this is the identification of frequency characteristics of the motors under load. The fourth contribution is identification of the specific process settings for the difficult-to-weld material of AL6082-T6. The fifth contribution is the development of a novel method of fabricating bobbin friction stir welding tools as embodied in a patent application.
17

Goodness-of-fit Tests Based On Censored Samples

Cigsar, Candemir 01 July 2005 (has links) (PDF)
In this study, the most prominent goodness-of-fit tests for censored samples are reviewed. Power properties of goodness-of-fit statistics of the null hypothesis that a sample which is censored from right, left and both right and left which comes from uniform, normal and exponential distributions are investigated. Then, by a similar argument extreme value, student t with 6 degrees of freedom and generalized logistic distributions are discussed in detail through a comprehensive simulation study. A variety of real life applications are given. Suitable test statistics for testing the above distributions for censored samples are also suggested in the conclusion.
18

Excimer laser surface melting treatment on 7075-T6 aluminium alloy for improved corrosion resistance

Elkandari, Bader M. H. M. January 2013 (has links)
High strength 7xxx aluminium alloys are used extensively in the aerospace industry because the alloys offer excellent mechanical properties. Unfortunately, the alloys can suffer localised corrosion due to the presence of large intermetallic particles at the alloy surface that are aligned in the rolling direction. Laser surface melting (LSM) techniques offer the potential to reduce and/or to eliminate the intermetallic phases from the surface of the alloy without affecting the alloy matrix.The present study concerns the application of LSM using an excimer laser to enhance the corrosion resistance of AA 7075-T6 aluminium alloy. The initial stage of the project was aimed at optimising the laser conditions for production of a uniform microstructure, with the increase in the corrosion resistance of the alloy being determined by potentiodynamic polarization measurements in sodium chloride solution. Low and high laser energy densities were used with a different number of pulses per unit area to treat the alloy surface, which were achieved by changing both the laser fluence and the pulse repetition frequency. A laser fluence of 3.3 J/cm2 with 80 pulses was subsequently selected as the optimum condition to treat the surface of the alloy. The composition and microstructure of the alloy before and after LSM treatment, and following corrosion tests, were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD).After the laser treatment, the surface and the cross-sections of the alloy showed a significant reduction in the number of large intermetallic particles and a relatively homogenous melted layer was generated that provided significant improvement in the resistance of the alloy against corrosion, as assessed by several corrosion test methods, including exfoliation corrosion (EXCO) tests. However, delamination of the melted layer was observed after extended testing in the EXCO solution which is possibly related to the formation of bands of fine magnesium and zinc-rich precipitates within the melted layer. Therefore, anodising in sulphuric acid was applied to the LSM alloy, in order to further increase the corrosion resistance and to protect the laser treated layer from delamination by generating a thin oxide film over the LSM layer. The results revealed that the anodic treatment increased the resistance of the alloy to exfoliation attack.
19

Damage and Stress State Influence on Bauschinger Effect in Aluminum Alloys

Jordon, J Brian 13 May 2006 (has links)
In this work, the Bauschinger effect is shown to be intimately tied not only to plasticity but to damage as well. The plasticity-damage effect on the Bauschinger effect is demonstrated by employing different definitions (Bauschinger Stress Parameter, Bauschinger Effect Parameter, the Ratio of Forward-to-Reverse Yield, and the Ratio of Kinematic-to-Isotropic Hardening) for two differently processed aluminum alloys (rolled and cast) in which specimens were tested to different prestrain levels under tension and compression. Damage progression from second phase particles and inclusions that were generally equiaxed for the cast A356-T6 aluminum alloy and elongated for the rolled 7075 aluminum alloy was quantified from interrupted experiments. Observations showed that the Bauschinger effect had larger values for compression prestrains when compared to tension. The Bauschinger effect was also found to be a function of damage to particles/inclusions, dislocation/particle interaction, the work hardening rate, and the Bauschinger effect definition.
20

Characterization of Inhibition and Leachability of Corrosion Inhibitors in Commercial Primer Systems

Klomjit, Pitichon 27 May 2015 (has links)
No description available.

Page generated in 0.0284 seconds