• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 219
  • 61
  • 29
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 1
  • Tagged with
  • 385
  • 90
  • 84
  • 68
  • 53
  • 48
  • 45
  • 43
  • 36
  • 36
  • 34
  • 32
  • 31
  • 30
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Rapid densification of the oil sands mature fine tailings (MFT) by microbial activity

Guo, Chengmai 11 1900 (has links)
The Mildred Lake Settling Basin (MLSB) is the largest disposal site for mature fine tailings (MFT) at the Syncrude Canada Ltd oil sands plant. Since 1996, MFT densification in the MLSB has significantly accelerated due to microbial activity. Methane-producing microorganisms, known as methanogens, have become very active. A field and laboratory research program has been performed to study the mechanisms leading to the rapid densification. This research program consisted of historical monitoring data analyses, field investigations, small-scale column tests, and gas MFT densification tests. The field investigations have shown that the rapid densification of the MFT has occurred in the southern part of the pond ranging from 8 m to 15 m below the water surface. A connection existed between the rapid densification zone and the zone with intense microbial activity at the pond. The small-scale column tests demonstrated that, with increases of biogas generation, water drainage from the MFT was enhanced. Gas MFT densification tests showed that, stress histories and total pressure affected MFT densification property during microbial activity. Under high total pressure (6-7 m below pond surface) gas bubbles had difficulty to release. For MFT without pre-consolidation or under a preloading, during rapid gas generation, water was rapidly drained out. For over-consolidated MFT, water flowed back into MFT quickly during intense biogas generation. The concept of operative stress, the difference between the total stress and pore water pressure for the soil with large gas bubbles, was introduced to analyze the densification behavior of gassy MFT. Under high total pressure and under a preloading (1 kPa), excess pore pressure increased and operative stress decreased during rapid gas generation while water drainage from the MFT was accelerated. Total pressure and stress history also affected the structure and permeability of the MFT during microbial activity. Under low total pressure (1 m below pond surface) and without pre-consolidation, the MFT permeability increased after intense microbial activity. / Geotechnical Engineering
362

Alternating current electrocoagulation (AC/EC) of fine particulate suspensions

Ifill, Roy O. 06 1900 (has links)
Poor settling of solids increases land requirement for tailings containment and imposes severe constraints on the water balance. Consequent to these considerations, the alternating current electrocoagulation (AC/EC) technique emerged as a candidate for enhancing the settling behaviour of suspensions in the mineral, coal and oil sands industries. Hence, a fundamental study of AC/EC was undertaken with aluminum electrodes. Ground silica (d50 = 20 m), which formed a stable suspension, served as the model tailings solid at 5.0 wt % in water. The AC/EC process consisted of two developmental stages: coagulation, marked by pH decrease in the silica suspension; and floc growth, characterized by pH increase from the minimum (i.e., the end of coagulation). AC/EC enhanced the initial settling rate of silica by over three orders of magnitude, and exhibited remarkable flexibility by virtue of the wide range of process parameters that could be optimized. For example, AC/EC can be operated in either the indirect or direct mode. The settling behaviour of bentonite (estimated d50 < 1 m) was more enhanced by indirect AC/EC, while that of silica benefited more from direct AC/EC. Any condition that increased aluminum dosage (e.g., current, retention time), increased the initial settling rate of silica. Over the feed water pH range of 3.0 to 9.1, AC/EC was effective in enhancing the settling behaviour of silica. AC/EC was also effective over a wide range of temperatures (23 to 85C). High electrical energy demand by AC/EC was observed throughout this study. Its optimization was beyond the scope of this work. Dilution of a sample of Syncrude mature fine tailings (MFT) to 4.6 wt % solids sustained a stable suspension. Settling occurred after AC/EC treatment, a crystal-clear supernatant resulted and bitumen was recovered as froth. Entrained solids were easily spray-washed from the froth with water. The settling behaviour of a Luscar Sterco fine coal tailings sample was not augmented by AC/EC, possibly due to contamination by the companys own electrocoagulation operation. After having been stored dry for more than a year, electrocoagulated silica was an effective coagulant for as-received silica and Syncrude MFT. / Chemical Engineering
363

Dépollution et valorisation des rejets miniers sulfurés du Katanga : cas des tailings de lAncien Concentrateur de Kipushi

Kitobo Samson, Willy 07 July 2009 (has links)
Ce travail présente les résultats dune étude menée sur la dépollution des tailings de Kipushi (RD Congo) par la valorisation des métaux contenus. Ce sont les rejets anciens dun concentrateur. Ils contiennent de la pyrite et des sulfures résiduels de cuivre et de zinc. Du fait du stockage à lair libre pendant plus de 40 ans, ces sulfures sont partiellement oxydés. Ces tailings présentent une certaine instabilité physique et chimique qui est à la base de la dégradation des milieux environnants les plus proches (rivières naturelles, sols sous-jacents, nappes souterraines, etc.) suite à la migration et à la dispersion dETM (éléments traces métalliques) tels que larsenic, le cadmium, le cobalt, le cuivre, le plomb, le zinc, Linstabilité physique se manifeste par des phénomènes dérosion par les eaux de ruissellement pendant la saison des pluies et par des phénomènes dérosion éolienne pendant la saison sèche. Leur stockage en surface saccompagne dune lente oxydation des sulfures avec production deaux acides qui dans leur neutralisation par la dolomie présente dans les rejets et celle des formations géologiques sur lesquelles ils reposent, contribuent à laccroissement des réseaux karstiques, au durcissement des eaux des nappes et parfois provoquent des phénomènes daffaissements, voire même deffondrements de terrains. Pour réduire les impacts environnementaux majeurs de ces tailings, nous avons effectué ce travail en recherchant un traitement qui combinerait dune part la dépollution par la réduction des ETM et du soufre sulfure et dautre part la valorisation du cuivre et du zinc contenus. Les deux voies qui ont été testées commencent par une flottation globale de tous les sulfures (désulfuration environnementale). Les résultats de nos expérimentations montrent quon peut obtenir un nouveau rejet de flottation dans lequel une majeure partie des ETM facilement mobilisables dans lenvironnement est éliminée ainsi que presque tout le soufre (95 %), ce qui écarte donc tout risque de DMA. Nous avons démontré que pour atteindre ces résultats, il suffit de ne broyer que la fraction la moins libérée de dimension supérieure à 75 μm et dactiver par un prétraitement à pH 6 les sulfures dont la collection par le xanthate est sinon inhibée par laltération superficielle avec formation doxydes ou par les complexes cyanométalliques formés lors de la flottation avec dépression de la pyrite par les ions cyanures ayant produit les tailings étudiés. Nous avons tenté denrichir le concentré global de la désulfuration environnementale par une flottation différentielle avec dépression de la pyrite à pH 11. Cet enrichissement est difficile à réaliser à cause de la finesse des grains et des caractéristiques minéralogiques du concentré global qui contient beaucoup de grains mixtes. Les essais ont alors porté sur la lixiviation chimique acide oxydante (avec Fe3+) et la lixiviation bactérienne du concentré global après son enrichissement en cuivre et en zinc dans un circuit de flottation avec deux finissages. Une étude approfondie des paramètres qui influencent le mécanisme des biolixiviations a été effectuée et les conditions de leur mise en pratique industrielle ont été déterminées. La lixiviation chimique doit être réalisée à des températures élevées (98°C) pour fragiliser la couche de passivation de soufre élémentaire qui se forme à la surface des grains et qui tend à freiner la diffusion des réactifs et des produits de la réaction. Par contre, la biolixiviation donne de bons résultats à température modérée. Elle est techniquement applicable aux tailings de Kipushi. Nous proposons de réaliser la biolixiviation en deux étapes successives, la première avec des bactéries thermophiles modérées (55°C) à une densité de pulpe de 15 % (poids/volume) et la deuxième avec des bactéries mésophiles (33°C) sur des pulpes à 4 % de solides. Dans ces conditions, on réussit à produire deux solutions de lixiviation (PLS : pregnant leach solution), lune à 3 g/l de cuivre et 7 g/l de zinc et lautre à 0,2 g/l de cuivre et 7 g/l de zinc, quon purifie et concentre facilement dans un circuit dextraction par solvant. Lextraction par solvant du cuivre est réalisée avec le LIX984N directement sans modifier le pH des PLS (1,7-1,9) et le zinc est extrait par le D2EHPA après précipitation dions Fe3+ du raffinat cuivre à des pH entre 3 et 3,5. On obtient ainsi des solutions aqueuses de cuivre et de zinc convenant aux installations délectrolyse industrielle. Nous avons proposé un schéma de traitement des tailings de Kipushi qui pourrait fonctionner pendant 20 ans avec les 36 684 600 tonnes sèches de rejets stockés à la digue 1 et 2. Le traitement produirait un nouveau rejet plus ou moins dépollué qui représente 66 % en poids des tailings traités, 80 950 tonnes de cuivre et 631 750 tonnes de zinc. The work present results from research study devoted to de-pollution of the stocked tailings in Kipushi (DR Congo) via valorization of the metals contained in the tailings. Pyrite and copper and zinc sulfides present the principal mineral composition of the laid down tailings from the concentrator. Due to the fact that the sulphides have been stocked during more than 40 years, they are partly oxidized. These tailings present a constant risk from physical instability and spillage, which reflects in the deterioration of the surrounding environment (rivers, soil, underground water table, etc). Moreover the migration and dispersion of TEM (trace metal elements) such as arsenic, cadmium, cobalt, copper, lead, zinc, is leading to erosion and mine run-off phenomena during wet season and generate air-borne particles during dry season. The stocking of the tailings is accompanied by slow oxidation of the sulfides with concomitant production of acidic waters which are neutralized by the dolomite present, which finally reflects in hardening of the underground waters and even provoke soil subsidence and ground collapses. In order to reduce the major environmental impacts from the tailings, we have performed a study for their post-treatment which encompasses the cleanup from one side and the reduction of TEMs and sulphur on the other side. Apart from this, the aim was to economically extract the remaining non-ferrous metals, notably Zn and Cu. The approach which has been chosen to accomplish this task has been to re-float by bulk flotation the majority of the sulphides and thus by elimination of the nearly total sulphur (95 %) to eliminate the risk of AMD generation and metals immobilization. We have shown that this is possible to be achieved via grinding the 75 μm oversize fraction in order to facilitate minerals liberation, following by subsequent activation at pH 6 before flotation. Without this pretreatment step, the flotation by use of xanthates is impossible, due to the surface coatings of the grains, which are either of oxide nature or are cyano-metallic complexes formed from the use of potassium cyanide as pyrite depressor in the flotation circuit practiced at the times when the concentrator was operational. The further attempts to produce monometallic flotation concentrates via selective flotation with depression of the pyrite at pH 11 have been unsuccessful due to reasons of complex mineralogy. Therefore chemical (Fe3+) and bacterial leaching of the bulk concentrate enriched in Cu and Zn via two cleaning flotation circuits have been envisaged. The technological parameters for the both leaching options have been studied and the mechanisms of the bioleaching taking place have been proposed in view industrial scale up of the process. It has been found that the chemical leaching should be conducted at very high temperatures (98°C) in order to breakdown the passivation coatings (sulphur). In contrast, the bioleaching has shown good results at moderate temperatures. It has been found that bioleaching is technically feasible to the tailings of Kipushi. We have suggested a bioleaching in two successive stages: the first one with moderate thermophilic microorganisms (55 °C) at pulp density 15 % (weight / volume) and the second one with mesophilic microorganisms (33 °C) at pulp density of 4 % (w/v). Under these conditions two principal PLSs (pregnant leach solution) can be obtained - a one with 3 g/l Cu and 7 g/ l Zn and other one in 0.2 g/l Cu and 7 g/l Zn. The both PLSs could be further processed via solvent extraction. The solvent extraction of Cu is accomplished with LIX984N without modifying the pH of the PLS (1.7 - 1.9), while Zn is extracted using a D2EHPA at pH between 3 and 3,5, after elimination of the iron from the copper raffinate. The aqueous solutions thus obtained are suitable for Cu and Zn electrowinning. Finally, a flow sheet for re-treatment of the Kipushi tailings which could operate during 20 years has been proposed. It could treat about 37 mln tones of dry tailings stocked in the tailing ponds 1 and 2. Preliminary calculations estimate that such treatment would produce new tailings with low environmental risk which will represent about 66 % in weight of the original treated tailings and will yield about 80 950 tons of Cu and 631 750 tons of Zn.
364

Experimental Study on the Engineering Properties of Gelfill

Abdul-Hussain, Najlaa 29 March 2011 (has links)
Gelfill (GF) is made of tailings, water, binder and chemical additives (Fillset, sodium silicate gel). The components of GF are combined and mixed on the surface and transported (by gravity and/or pumping) to the underground mine workings, where the GF can be used for both underground mine support and tailings storage. Thermal (T), hydraulic (H), and mechanical (M) properties are important performance criteria of GF. The understanding of these engineering properties and their evolution with time are still limited due to the fact that GF is a new cemented backfill material. In this thesis, the evolution of the thermal, hydraulic, mechanical, and microstructural properties of small GF samples are determined. Various binder contents of Portland cement type I (PCI) are used. The GF is cured for 3, 7, 28, 90, and 120 days. It is found that the thermal, hydraulic and mechanical properties are time-dependent or affected by the degree of binder hydration index. Furthermore, a relationship is found between the compressive strength and the saturated hydraulic conductivity of the GF samples. The unsaturated hydraulic properties of GF samples have also been investigated. The outcomes show that unsaturated hydraulic conductivity is influenced by the degree of binder hydration index and binder content, especially at low suction ranges. Simple functions are proposed to predict the evolution of air-entry values (AEVs), residual water content, and fitting parameters from the van Genuchten model with the degree of hydration index (α). Furthermore, two columns are built to simulate the coupled thermo-hydro-mechanical (THM) behaviour of GF under drained and undrained conditions. The obtained results from the GF columns are compared with the small samples. It is observed that the mechanical properties, hydraulic properties (suction and water content), and temperature development are strongly coupled. The magnitude of these THM coupling factors is affected by the size of the GF. The findings also show that the mechanical, hydraulic and thermal properties of the GF columns are different from samples cured in plastic moulds.
365

Experimental Study on the Engineering Properties of Gelfill

Abdul-Hussain, Najlaa 29 March 2011 (has links)
Gelfill (GF) is made of tailings, water, binder and chemical additives (Fillset, sodium silicate gel). The components of GF are combined and mixed on the surface and transported (by gravity and/or pumping) to the underground mine workings, where the GF can be used for both underground mine support and tailings storage. Thermal (T), hydraulic (H), and mechanical (M) properties are important performance criteria of GF. The understanding of these engineering properties and their evolution with time are still limited due to the fact that GF is a new cemented backfill material. In this thesis, the evolution of the thermal, hydraulic, mechanical, and microstructural properties of small GF samples are determined. Various binder contents of Portland cement type I (PCI) are used. The GF is cured for 3, 7, 28, 90, and 120 days. It is found that the thermal, hydraulic and mechanical properties are time-dependent or affected by the degree of binder hydration index. Furthermore, a relationship is found between the compressive strength and the saturated hydraulic conductivity of the GF samples. The unsaturated hydraulic properties of GF samples have also been investigated. The outcomes show that unsaturated hydraulic conductivity is influenced by the degree of binder hydration index and binder content, especially at low suction ranges. Simple functions are proposed to predict the evolution of air-entry values (AEVs), residual water content, and fitting parameters from the van Genuchten model with the degree of hydration index (α). Furthermore, two columns are built to simulate the coupled thermo-hydro-mechanical (THM) behaviour of GF under drained and undrained conditions. The obtained results from the GF columns are compared with the small samples. It is observed that the mechanical properties, hydraulic properties (suction and water content), and temperature development are strongly coupled. The magnitude of these THM coupling factors is affected by the size of the GF. The findings also show that the mechanical, hydraulic and thermal properties of the GF columns are different from samples cured in plastic moulds.
366

The potential for groundwater contamination arising from a lead/zinc mine tailings impoundment.

Vergunst, Thomas Maarten. January 2006 (has links)
The mining industry produces vast quantities of overburden and mill tailings. In many instances the disposal of these wastes on the Earth's surface have caused local, and occasionally even regional, water resources to become contaminated. Contamination typically arises from the oxidation of metal sulfide minerals contained within these wastes. Upon oxidation these minerals release sulfate, their associated metal cations and acidity into solution. This study investigated the potential for groundwater contamination arising from a Pb/Zn tailings impoundment in the North West Province of South Africa (Pering Mine). The tailings is composed predominantly of dolomite, which imparts to the material an alkaline pH and a high acid buffering capacity. Acid-base accounting (ABA) established that the capacity of the tailings to buffer acidity surpasses any acid producing potential that could arise from pyrite (FeS2), galena (PbS) and sphalerite (ZnS) oxidation. These minerals account for about 3 to 6% of the tailings by mass. Total elemental analysis (XRF) showed that the material has high total concentrations of Fe (19083 mg kg-I), Zn (5481 mg kg-I), Pb (398 mg kg-I), S (15400 mg kg-I), Al (9152 mg kg-I) and Mn (29102 mg kg-I). Only a very small fraction of this, however, was soluble under saturated conditions. An estimation of potentially available concentrations, using the DTPA extraction method, indicated that high concentrations of Zn (1056 mg kg-I), and moderate concentrations of Pb (27.3 mg kg-I) and Cu (6.01 mg kg-I) could potentially be available to cause contamination. A number of leaching experiments were undertaken to accurately quantify the release of elements from the tailings material. These experiments were aimed at determining the potential for groundwater contamination and also provided a means whereby the long-term release of contaminants could be modelled using the convection-dispersion equation for solute transport. Four leaching treatments were investigated. Two consisted of using distilled water under intermittent and continuous flow, while a third used intermittent flow of deoxygenated distilled water to assess leaching under conditions of reduced oxygen. The.mobilisation of potential contaminants under a worst case scenario was assessed by means of leaching with an acetic acid solution at pH 2.88 (after the US Environmental Protection Agency's toxicity characteristic leaching procedure). The acid buffering potential of the tailings was considerable. Even after 8 months of weekly leaching with 1 pore volume of acetic acid solution the pH of the effluent was maintained above pH 5.90. The protracted acidity caused very high concentrations of Pb, Zn, Mu, Ca, Mg, Hg and S to be released into solution. Leaching the tailings with distilled water also caused the effluent to have noticeable traces of contamination, most importantly from S, Mg, Mu and Zn. In many instances concentrations significantly exceeded guideline values for South African drinking water. Modelling solute transport with the convectiondispersion equation predicted that sol- and Mu contamination could persist for a very long period of time. (±700 years under continuous saturated leaching), while Mg and Zn concentrations would most likely exceed recommended limits for a much shorter period of time (±300 years under the same conditions). In light of the various column leaching experiments it was concluded that seepage from the Pering tailings impoundment could cause groundwater contamination. A drill-rig and coring system were used to collect both tailings and pore-water samples from eight boreholes spread out across the tailings impoundment. These investigations showed that most of the impoundment was aerobic (Eh ranged from +323 to +454 mY) and alkaline (pH 8.0 to 9.5). This chemical environment favours sulfide oxidation and as a consequence high concentrations of S have been released into the pore-water of the impoundment (S concentrations ranged from 211 to 1221 mg r l ). The acidity released as a by-product of sulfide oxidation was being buffered by dolomite dissolution, which in turn was releasing high concentrations of Mg (175 to 917 mg r l ) and Ca (62.6 to 247 mg r l ) into solution. Metal concentrations in the pore-water were low as a result of the strong metal sorbing capacity of the tailings and possible secondary precipitation. The only metal which significantly exceeded recommended limits throughout the impoundment was Hg (concentrations were between 100 and 6000 times the recommended limit of 0.001 mg r l ). Under the current geochemical conditions it is expected that Hg, S and Mg will likely pose the greatest threat to groundwater. The main concerns associated with mine tailings are that of mine drainage and dust blow off..In order to eradicate the latter problem, the tailings impoundment at Pering Mine was covered with a layer of rocks. Modelling the water balance of the impoundment using the computer model HYDRUS-2D showed that the rock cladding has potentially increased the volume of drainage water seeping from the impoundment. In light of the leaching experiments and field work, which proved that water passing through the tailings became enriched with various potentially toxic elements, it is expected that the problem of groundwater contamination around Pering Mine has been further exacerbated by the rock cladding. It was therefore concluded that there would be a strong likelihood of groundwater contamination in the vicinity of the mine. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2006.
367

Analysis of the cost effectiveness of alternative policies and technologies to manage water extractions by the oil sands sector along the lower Athabasca River

Mannix, Amy Elinor Unknown Date
No description available.
368

Alternating current electrocoagulation (AC/EC) of fine particulate suspensions

Ifill, Roy O. Unknown Date
No description available.
369

Rapid densification of the oil sands mature fine tailings (MFT) by microbial activity

Guo, Chengmai Unknown Date
No description available.
370

Revegetation and phytoremediation of tailings from a lead/zinc mine and land disposal of two manganese-rich wastes.

Titshall, Louis William. January 2007 (has links)
The original aims of this project were to investigate the potential for phytoremediation, with emphasis on metal accumulation, of three contrasting industrial processing wastes. These were tailings material (PT) from the decommissioned Pering Pb/Zn Mine (Reivilo, North West Province, South Africa (SA)), smelter slag (SS) from the Samancor Mnsmelter (Meyerton, Gauteng, SA) and electro-winning waste (EW) from MMC (Nelspruit, Mpumalanga, SA). It became evident, however, early in the project, that the use of metal hyperaccumulating plants was not a viable technology for these wastes. The project objectives were thus adapted to investigate alternative remedial technologies. The use of endemic and adapted grass species was investigated to revegetate the PT. In addition, chemically-enhanced phytoremediation was investigated to induce metal hyperaccumulation by grasses grown in the PT (Part 1). Revegetation of the SS and EW were not considered feasible, thus land disposal of these two Mn-rich processing wastes was investigated (Part 2). Part 1 - Revegetation of tailings from Pering Mine The PT was found to be alkaline (pH > 8.0), and consisted mainly of finely crushed dolomite. It was generally nutrient poor with high amounts of readily extractable Zn. It also had a very high P-sorption capacity. Seven grass species (Andropogon eucomus Nees; Cenchrus ciliaris L.; Cymbopogon plurinodis Stapf ex Burtt Davy; Digitaria eriantha Steud; Eragrostis superba Peyr; Eragrostis tef (Zucc.) Trotter and Fingeruthia africana Lehm) were grown in PT treated with different rates of inorganic fertiliser under glasshouse conditions. The fertiliser was applied at rates equivalent to 100 kg N, 150 kg P and 100 kg K ha-1 (full), half the full rate (half) and no fertiliser (0). Seed of C. ciliaris, C. plurinodis, D. eriantha, E. superba and F. africana were collected from Pering Mine. Seed of A. eucomus was collected from the tailings dam of an abandoned chrysotile asbestos mine. These were germinated in seedling trays and replanted into the pots. A commercial variety of E. tef was tested, but due to poor survival this species was subsequently excluded. The foliage and root biomass of the grasses and concentrations of Ca, Cu, Fe, K, Mg, Mn, Pb and Zn in the foliage were determined. The yield of all the grasses increased with an increase in fertiliser rate, with a significant species by fertiliser interaction (p = 0.002). The highest yield was measured for C ciliaris, followed by D. eriantha (4.02 and 3.43 g porI, respectively), at the full fertiliser application rate. Cymbopogon plurinodis was the third highest yielding species, while the yields of E. superba and F. africana were similar. There were positive linear correlations between foliage yield and fertiliser application rate for all grasses. The root biomass of the grasses also increased with an increase in fertiliser application rate. The interaction between grass species and fertiliser level had a non-significant (p = 0.085) effect on the yield of grasses, though there were significant individual effects of species (p < 0.001) and fertiliser (p < 0.001). Digitaria eriantha had the highest root biomass at each fertiliser application rate, followed by C plurinodis and C ciliaris. Similarly to foliage yield, there were positive linear correlations between root biomass and fertiliser application level. Positive, linear correlations were found between foliage yield and root biomass, though the strength of these varied. The weakest correlation was found for D. eriantha (R2 = 0.42) but this was attributed to a moderately high variance in foliage yield and roots becoming potbound. Generally, nutrient concentrations were within adequacy ranges reported in the literature, except for P concentrations. This was attributed to the high P-sorption capacity of the PT. Zinc concentrations were higher than the recommended range for grasses, and also increased with an increase in fertiliser application rate. This was attributed to the high available Zn concentrations in the PT and improved growth of the grasses at higher fertiliser application rates. It was recommended that C ciliaris and D. eriantha be used for revegetation due to high biomass production and that E. superba be used because of rapid growth rate and high self-propagation potential. Both C plurinodis and F. africana can also be used but are slower to establish, while A. eucomus was not a suitable species for revegetation of the PT. Inorganic fertiliser improved the growth of all these species and is recommended for the initial establishment of the grasses. An experiment was conducted to investigate the potential of inducing metal hyperaccumulation in three grass species (C ciliaris, D. eriantha and E. superba) grown in the PT. Grasses were grown in fertilised tailings for six weeks, then either ethylenediaminetetraacetic acid (EDTA) or diethylentriaminepentaacetic acid (DTPA) was added to the pots at rates of 0, 0.25, 0.5, 1 and 2 g kg-I. Grasses were allowed to grow for an additional week before harvesting. The concentrations of Cu, Pb and Zn were determined in the foliage. The interactive effect of species and chelating agent on the uptake of Cu was marginally significant (p = 0.042) and non-significant for Pb and Zn (p = 0.14 and 0.73, respectively). While the addition of the chelating agents resulted in an increase in Pb uptake by the grasses, it did not induce metal hyperaccumulation in the grasses. This was attributed to the ineffectiveness of the chelating agents in the PT in the presence of competing base cations (mainly Ca). The use of this technology was not recommended. Part 2 - Land disposal of Mn-rich processing wastes Chemical characterisation of the SS showed that it was an alkaline (pH > 9.5), Mn-rich silicate (glaucochroite), that generally·had low amounts of soluble and readily extractable metals. Acidic extractants removed high amounts of Mn, Ca and Mg, attributed to the dissolution of the silicate mineral. The EW was highly saline (saturated paste EC = 6 780 mS m,l) with a near-neutral pH. It had high amounts of soluble Mu, NHt+, S, Mg, Ca and Co. The primary minerals were magnetite, jacobsite (MnFe204) and gypsum. The effect of SS and EW on selected chemical properties of six soils was investigated by means of an incubation experiment, and their effect on the yield and element uptake by ryegrass was investigated in selected soils under glasshouse conditions. Five A-horizons (Bonheim (Ba), Hutton (Hu), lnanda (la), Shortlands (Sd) and Valsrivier (Va» and an Ehorizon (Longlands (Lo» were treated with SS at rates of 30, 60, 120,240 and 480 g kg'l and EW at rates of20, 40,80,160 and 320 g kg'l. Soils were incubated at field capacity at 24 QC and sampled periodically over 252 days. The soil pH, both immediately and over time, increased, while exchangeable acidity decreased after the addition of SS to the soils. The pH at the high rates of SS tended to be very high (about 8). The electrical conductivity (EC) of the soils also increased with an increase in SS application rates and over time. The most marked changes tended to occur in the more acidic soils (e.g. la). In the soils treated with EW, there was generally an increase in the pH of the acid soils (e.g. la) while in the more alkaline soils the pH tended to decrease (e.g. Va), immediately after waste application. There was a general decrease in pH over time, with a concurrent increase in exchangeable acidity, due to nitrification processes. The EC of all the soils increased sharply with an increase in EW application rate, attributed to the very saline nature of the EW. Water-soluble Mn concentrations in the soils treated with SS tended to be below measurable limits, except in the acid la. Iron concentrations decreased with an increase in SS application rate and over time for all soils. The water-soluble concentrations of Mn, Ca, Mg and S increased sharply with an increase in EW application rate in all soils. There was also a general increase in Mn concentrations over time. Iron concentrations tended to be low in the EW-treated soils, while Co concentrations increased as EW application rate increased. Exchangeable (EX, 0.05 M CaCh-extractable) concentrations of Fe, Co, Cu, Zn and Ni were low in the SS-treated soils. The concentrations of EX-Mn tended to increase with an increase in SS application rate in the la soil, but generally decreased in the other soils. There was also a decrease over time, attributed to the high pH leading to immobilisation of Mn. The EX-metal concentrations of the EW-treated soils were generally low, except for Mn. The concentrations of EX-Mn increased sharply as EW application rate increased. The contribution of EX-Mn was calculated to range from 209 to 3 340 mg Mn for EW rates of 20 to 320 g kg-I, respectively. In the Lo soil the expected amount of Mn was extracted at the different EW application rates. In the other soils the EX-Mn concentrations were typically higher than expected. This was attributed primarily to the dissolution ofMn from the EW due to the interaction between soil organic matter and the EW. There was generally an increase in EX-Mn concentrations over time, attributed to the decrease in pH of the soils treated with EW. The above-ground biomass production of ryegrass grown in Lo and Hu soils treated with SS increased at low application rates, but decreased again at the highest rates. The reduction in yield was attributed to an increase in soil pH leading to trace nutrient deficiencies. At the lower SS application rates, nutrient concentrations of the ryegrass tended to be within typical adequate ranges reported in the literature. Of concern was the elevated Mn concentration in the ryegrass foliage, though no toxicity symptoms were seen. This was attributed to the dissolution of the silicate mineral due to soil acidification processes and the possible ameliorating effect of high Ca and Si concentrations on Mn toxicity. The growth of ryegrass was generally poor in the Hu soil treated with EW and it did not survive beyond germination in the Lo soil treated with EW. In the Hu soil plants grew well in the 20 and 40 g kg-I EW treatments, but died at the higher rates. In both cases mortality was thought to be due to the high salinity that resulted in toxicity and osmotic stress in the newly germinated seedlings. The improved growth at the lower rates ofEW, in the Hu soil, was attributed mainly to increased N availability. The concentrations of Mn in the foliage were elevated in the soils treated with EW. A pot experiment was conducted to test the effect of applying either humic acid (HA) or compost (at a rate of 20 g kg-I) with lime (at rates of 0, 5 and 10 Mg ha-I) on the growth and nutrient uptake of ryegrass grown in the Hu soil treated with EW at rates of 0, 10, 20 and 40 g kg-I. A basal P-fertiliser was also applied in this experiment. The highest yields were measured in the treatments receiving either HA or compost at the highest application rate ofEW. The addition oflime did not improve the yield of the HA treatments, but did in the compost treatments. Generally, nutrient concentrations were adequate. The Mn concentrations were markedly lower than expected, and this was attributed to the formation of insoluble Mn-P compounds due to the addition of fertiliser. The effect of either HA or compost on Mn concentrations was not marked, but lime reduced Mn uptake. A leaching column experiment showed that, generally, the Mn was not readily leached through a simulated soil profile, though the addition of compost may enhance mobility. There was also evidence to indicate an increase in salinity and that Co concentrations of the leachate may be a problem. These data suggest that soil organic matter may be a very important factor in determining the release of Mn from the wastes, notably the EW. The land disposal of the SS and EW was not recommended at the rates investigated here, as both showed the potential for Mn accumulation in above-ground foliage, even at low application rates, while high application rates negatively impacted on plant growth. It appears that P-compounds may be beneficial in reducing Mn availability in the EW, but further testing is required. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2007.

Page generated in 0.0355 seconds