1 |
Non-canonical TGFb signaling pathways in prostate cancerSong, Jie January 2016 (has links)
Prostate cancer is the second leading cause of cancer-related death in men in the Western world. Deregulation of transforming growth factor β (TGFβ) signaling pathway is frequently detected in prostate cancer and contributes to tumor growth, migration, and invasion. In normal tissue and the early stages of cancer, TGFβ acts as a tumor suppressor by regulating proliferation, differentiation, and apoptosis. In later stages of cancer, TGFβ acts as a tumor promoter by inducing angiogenesis, tumor invasion, and migration. Thus, it is important to investigate the molecular mechanisms behind the tumor-promoting effects of TGFβ, which is the topic of this thesis. The tumor necrosis factor receptor–associated factor 6 (TRAF6) controls non-canonical TGFβ signals due to its enzymatic activity, causing polyubiquitination of the cell membrane–bound, serine/threonine kinase TGFβ type I receptor (TβRI) and its subsequent cleavage in the extracellular domain by tumor necrosis factor a–converting enzyme (TACE) in a protein kinase C ζ (PKCζ)-dependent manner. TRAF6 also recruits the active g-secretase complex to the TβRI, resulting in a second cleavage in the transmembrane region and the liberation of the TβRI intracellular domain (TβRI-ICD), which enters the nucleus, where it associates with the transcriptional co-regulator p300. In Paper I, the aim was to elucidate by which mechanisms TβRI-ICD enters the nucleus. We found that the endocytic adaptor protein APPL1 interacts with TβRI and PKCζ. APPL proteins are required for TβRI translocation from endosomes to the nucleus via microtubules in a TRAF6-dependent manner. Moreover, APPL proteins are important for TGFβ-induced cell invasion, and high levels of APPL1 are detected by immunohistochemistry in prostate cancer. Finally, we demonstrated that the APPL1–TβRI complex visualized with the in situ proximity ligation assay (PLA) correlates with Gleason score, indicating that it might be a novel prognostic marker for aggressive prostate cancer. In Paper II, the aim was to explore by which mechanisms TGFβ causes activation of the AKT pathway, which regulates migration and therapy resistance of cancer cells. We found that the E3 ligase activity of TRAF6 induces Lys63-linked polyubiquitination of p85α upon TGFβ stimulation, resulting in plasma membrane recruitment, Lys63-linked polyubiquitination, and subsequent activation of AKT. Moreover, the TRAF6 and PI3K/AKT pathway were found to be crucial for the TGFβ-induced migration. Importantly, we demonstrated, by PLA, a correlation between Lys63-linked polyubiquitination of p85α and aggressive prostate cancer in tissue sections from patients with prostate cancer. In Paper III, the aim was to investigate the mechanisms for TGFβ-induced activation of PKCζ and the role of PKCζ in tumor regression. We found that TRAF6 caused Lys63-linked polyubiquitination of PKCζ. By using two novel chemical compounds that inhibit PKCζ, we demonstrated that PKCζ is crucial for prostate cancer cell survival and invasion. In Paper IV, the aim was to investigate further the target genes for the nuclear TβRI-ICD-APPL1 complex identified in Paper I. We provide evidence that APPL proteins and the TGFβ signaling pathway are important for cell proliferation. In summary, the results reported in this thesis suggest the potential usefulness of the identified signaling components of the tumor-promoting effects of TGFβ as drug targets and biomarkers for aggressive prostate cancer.
|
2 |
Biology of redox active endosomal signaling in response to Il-1-BetaOakley, Fredrick Daniel 01 May 2011 (has links)
Interleukin-1-beta (IL-1β) is a potent proinflammatory cytokine. A primary outcome of IL-1β signaling is the activation of NFκB, a transcription factor that induces a large number of immune molecules, apoptotic factors, anti-apoptotic factors, and other transcription factors. Recent work has demonstrated that the activation of NFκB involves a multistep redox-signaling cascade that requires endocytosis of the interleukin receptor (IL-1R1)/ligand pair and superoxide production by NADPH oxidase 2 (Nox2) within the resulting newly formed early endosome. Hydrogen peroxide produced by the rapid dismutation of superoxide is necessary for the subsequent downstream recruitment of IL-1R1 effectors (TRAF6, IKK kinases) and ultimately the activation of NFκB. In this thesis, I have further dissected the spatial and temporal events that coordinate signaling processes of the IL-1β pathway. Using a combination of biophotonic imaging, immunofluorescence imaging, and lipid raft density gradient isolation, I demonstrate that both Nox2 and IL-1R1 are constitutively present in lipid raft microdomains on the plasma membrane. Stimulation by IL-1β induces endocytosis of Nox2 and IL-1R1 from the plasma membrane into caveolin-1, lipid raft positive early endosomes. Further, inhibition of lipid raft mediated endocytosis or deletion of caveolin-1 inhibits activation of NFκB, by IL-1β. We have also identified Vav1 as the Rac1 guanine exchange factor that is recruited to caveolin-1 positive lipid rafts following IL-1β stimulation, and demonstrated that dominant negative Vav1 inhibits NFκB activation by IL-1β. Following this work, I utilized assays for redox sensitivity and mass spectrometry to demonstrate that C70, C73, and C105 are hydrogen peroxide sensitive cysteines within the RING domain of TRAF6. I further demonstrate that hydrogen peroxide does not alter the E3 ubiquitin ligase activity associated with the TRAF6 RING domain. My findings suggest that the redox sensitivity of the RING domain mediates TRAF6 recruitment to the receptor complex. This is supported by the observation that hydrogen peroxide treatment of TRAF6, but not early signaling effectors (IL-1R1, IRAK1, IRAK4, MyD88) mediates TRAF6 recruitment to the IL-1 receptor complex. Further, mutation of the identified redox sensitive cysteines inhibits IL-1β signaling and NFκB activation. This research has helped to refine the understanding of the IL-1β signaling pathway, and may ultimately lead to new therapeutic targets for controlling inflammation.
|
3 |
MicroRNA-125b Prevents Cardiac Dysfunction in Polymicrobial Sepsis by Targeting TRAF6-Mediated Nuclear Factor κb Activation and p53-Mediated Apoptotic SignalingMa, He, Wang, Xiaohui, Ha, Tuanzhu, Gao, Ming, Liu, Li, Wang, Ruitao, Yu, Kaijiang, Kalbfleisch, John H., Kao, Race L., Williams, David L., Li, Chuanfu 01 December 2016 (has links)
Background. This study examined the effect of microRNA-125b (miR-125b) on sepsis-induced cardiac dysfunction. Methods. Mouse hearts were transfected with lentivirus expressing miR-125b (LmiR-125b) 7 days before cecal ligation and puncture (CLP)-induced sepsis. Cardiac function was examined by echocardiography before and 6 hours after CLP (n = 6/group). Survival was monitored following CLP-induced sepsis (n = 12/group). Results. LmiR-125b transfection significantly attenuated cardiac dysfunction due to CLP-induced sepsis. Fractional shortening and ejection fraction values were significantly (P <.05) higher in the LmiR-125b-treated CLP group than in the untreated CLP group. Survival outcome in LmiR-125b-transfected septic mice was markedly improved, compared with mice with CLP-induced sepsis. Transfection of LmiR-125b into the heart significantly suppressed the expression of ICAM-1 and VCAM-1, decreased the accumulation of macrophages and neutrophils in the myocardium, and decreased serum levels of tumor necrosis factor a and interleukin 1β by targeting tumor necrosis factor receptor-associated factor 6 (TRAF6)-mediated nuclear factor κB (NF-κB) activation. In addition, sepsis-induced myocardial apoptosis was markedly attenuated by LmiR-125b transfection through suppression of p53, Bax, and Bak1 expression. In vitro transfection of endothelial cells with miR-125b mimics attenuate LPS-induced ICAM-1 and VCAM-1 expression by suppressing TRAF6 and NF-κB activation. Conclusions. Increased myocardial miR-125b expression attenuates sepsis-induced cardiac dysfunction and improves survival. miR-125b may be a target for septic cardiomyopathy.
|
4 |
Epithelial TRAF6 drives IL-17-mediated psoriatic inflammation / 表皮のTRAF6はIL-17を介する乾癬様皮膚炎を駆動するMatsumoto, Reiko 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第21634号 / 医博第4440号 / 新制||医||1034(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 生田 宏一, 教授 三森 経世, 教授 濵﨑 洋子 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
5 |
Dissecting the signaling pathways controlling inflammation during Gram-negative bacterial infections : the role of ALPK1, TIFA and TRAF6 during Shigella flexneri infection / Dissection des voies de signalisation contrôlant l'inflammation lors d'infections bactériennes à Gram négatif : le rôle de ALPK1, TIFA et TRAF6 lors d'une infection à Shigella flexneriMilivojevic, Milica 16 November 2017 (has links)
Les cellules épithéliales constituent la première ligne de défense face à l’infection et jouent un rôle actif dans l'immunité innée. Par la sécrétion locale de cytokines, ces cellules sont capables d'orchestrer la réponse immunitaire contre les pathogènes invasifs. L'activation des récepteurs de reconnaissance de pathogènes, qu’ils soient intracellulaires ou extracellulaires, conduit à une cascade de signalisation complexe. Cette dernière entraîne l'activation du facteur de transcription NF-kB ainsi que la production ultérieure de cytokines pro-inflammatoires. Cependant, les mécanismes moléculaires qui gouvernent ce processus n'ont pas été entièrement élucidés. La bactérie à Gram négatif Shigella flexneri est un pathogène humain majeur à l’origine de la dysenterie bacillaire. Cette maladie se caractérise par une inflammation aiguë du colon qui peut entraîner la destruction du tissu intestinal et même dans les cas les plus graves, la mort. En effet, S. flexneri peut envahir les cellules épithéliales du colon et se répliquer dans leur cytoplasme. Après la détection de bactéries intracellulaires, les cellules infectées et non infectées déclenchent des voies de signalisation inflammatoire, ce qui entraîne une production massive d'interleukine-8. En utilisant S. flexneri comme modèle d'infection, nous avons identifié une nouvelle voie de signalisation qui joue un rôle central dans l'activation de NF-kB et la production d'IL-8 qui en résulte lors des infections bactériennes à Gram négatif. Après la détection cytosolique des bactéries, les protéines TIFA forment des oligomères à travers un processus dépendant de leur thréonine en position 9, ainsi que de leur domaine « Forkhead-associated ». D’une part, ces oligomères interagissent avec TRAF6, ce qui conduit à l’oligomérisation de cette dernière et à l'activation subséquente de NF-kB. D'autre part, nous montrons que l'oligomérisation de TIFA dépend de la kinase ALPK1 et que cette voie est activée en réponse au métabolite bactérien heptose-1, 7-bisphosphate. Ces observations pourraient être étendues au pathogène entéro-invasif Salmonella typhimurium ainsi qu'à la bactérie extracellulaire Neisseria meningitidis. Nos résultats démontrent donc le rôle central de la voie de signalisation ALPK1-TIFA-TRAF6 en réponse aux pathogènes bactériens à Gram négatif intracellulaires et extracellulaires. Ainsi, ces travaux contribuent à une meilleure compréhension des mécanismes moléculaires régissant la réponse immunitaire des cellules épithéliales aux bactéries pathogènes. / Epithelial cells represent the first line of defense against pathogens and play an active role in innate immunity. Via local secretion of cytokines, they are able to orchestrate the immune response against invading pathogens. The activation of both intracellular and extracellular pathogen recognition receptors leads to a complex signaling cascade, resulting in the activation of the transcription factor nuclear factor kB(NF-kB)and the subsequent production of pro-inflammatory cytokines. However, the molecular mechanisms governing this process have not been fully elucidated. The Gram-negative bacterium Shigella flexneriis an important human pathogen and the causative agent of bacillary dysentery. This disease is characterized by acute inflammation of the colon resulting in the destruction of the intestinal tissue and, in severe cases, death. S. flexneri can invade and replicate within colonic epithelial cells. Following detection of the bacteria, both infected and uninfected bystander cells initiate inflammatory signaling pathways, which result in massive interleukin-8 (IL-8) production by the latter. Using S. flexneri as a model of infection, we have identified a novel signaling pathway, which is central to the activation of NF-kB and the subsequent production of IL-8 during Gram-negative bacterial infections. Following the cytosolic detection of bacteria, the protein TRAF-interacting factor with forkhead-associated domain (TIFA) forms oligomers, a process dependent on its threonine at position 9 and theforkhead-associated domain. These oligomers interact withTNF receptor associated factor (TRAF)6, leading to its oligomerization and the subsequent activation of NF-kB. In addition, we show that oligomerization of TIFA is dependent on the kinase alpha-kinase(ALPK)1 and that this pathway is activated in response to the detection of the bacterial metabolite heptose-1, 7-bisphosphate (HBP). These observations could be extended to the enteroinvasive pathogen Salmonella typhimurium as well as the extracellular bacteria Neisseria meningitidis. Our results therefore demonstrate the central role of the ALPK1-TIFA-TRAF6 signaling pathway in response to HBP of both intracellular and extracellular Gram-negative bacterial pathogens, and offer a better understanding of the molecular mechanisms governing the epithelial cell immune response to pathogenic bacteria.
|
6 |
Étude de la signalisation virale de l'induction du gène de l'IL-15 dans les cellules monocytaires THP-1Ennaciri, Jamila January 2006 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
7 |
The role of Smad7 and TRAF6 in Prostate Cancer Cell Invasion, Migration and SurvivalEkman, Maria January 2011 (has links)
Transforming growth factor (TGF) β is a tumor suppressor during early tumor development, by inhibiting proliferation and inducing apoptosis. At later stages of cancer, it becomes a tumor promoter, and promotes tumor cell migration and invasion. TGFβ signals via its type II and type I receptors to several downstream signaling pathways. In the present work we have focused on the TRAF6 (tumor necrosis factor receptor-associated factor 6)/ TAK1 (TGFβ activated kinase 1) signaling pathway and the Smad7-dependent activation of p38 in prostate carcinoma cells (PC3U). We found that TGFβ-induced activation of the ubiquitin ligase TRAF6 was needed for cell invasion, by a mechanism that involves activation of the metalloproteinase TNFα converting enzyme (TACE), via protein kinase Cζ (PKCζ). TACE cleaves the TβRI, whereafter the intracellular domain (ICD) translocates to the nucleus, where it binds to the transcriptional co-activator p300 and regulates gene expression, promoting invasion. Interestingly, the translocation of the TβRI ICD was observed in several cancer cell lines and in sections of primary tumors, but not in primary prostate epithelial cells. We also found that Smad7 and adenomatous polyposis coli (APC) are important for TGFβ- and epidermal growth factor (EGF)-induced cell migration in PC3U cells. TGFβ induces the formation of a complex consisting of Smad7, p38, glycogene synthase kinase 3β (GSK-3β), APC and β-catenin, which localizes to the membrane ruffles in the leading edge of migrating cells. The complex links the TβRI to the microtubule system and promotes membrane ruffling and microtubule polarization, which are known to be important for cell migration. In the EGF signaling pathway, Smad7 was found to be important for phosphorylation of the EGF receptor at Tyr1068, for the activation of p38 and JNK, and for induction of membrane ruffles. Smad7 is required for TGFβ-induced activation of p38 and apoptosis. We found that Smad7 forms a complex with p38 and ataxia telangiectasia mutated (ATM), which is important for activation of p53 mediated apoptosis. Many tumor cells including the PC3U cells lack a functional p53, which is one of the reasons to why cancer cells can avoid the tumor suppressor effects of TGFβ.
|
8 |
Molecular mechanisms for activation of non-canonical TGFβ pathways and their importance during prostate cancer progressionHamidi, Anahita January 2015 (has links)
Prostate cancer is the most common invasive cancer diagnosed in men and a major and growing health problem in Western countries. Deregulation of different pathways has been implicated in progression of prostate cancer, namely nuclear factor kappa enhancer binding protein (NF-κB), transforming growth factor β (TGFβ), phosphoinositide 3ʹ-kinase/AKT (PI3K/AKT) and Src kinase pathways. However, the detailed mechanisms by which TGFβ activates these pathways to contribute in tumorigenesis and invasive behavior of prostate cancer cells have not been elucidated. We have demonstrated (paper I) that the E3 ligase activity of TRAF6 is crucial for recruitment of the regulatory subunit of PI3K, p85α, to TβRI and for TGFβ-induced Lys63-linked polyubiquitination of p85α. TRAF6 is required for the TGFβ-induced recruitment of AKT to the complex of PI3K and TβRI, where the polyubiquitination and activation of AKT occurs. When activated, AKT promotes TGFβ-induced cell migration which is dependent on p85 and PI3K activity, as well as on TRAF6, but not on TβRI kinase activity. Thus, TGFβ-induced activation of PI3K/AKT induces cell motility contributing to the progression of cancer. We have demonstrated (paper II) a pivotal role of TAK1 polyubiquitination in three different pathways, including TNFR, IL-1R, and TLR4 signaling. Lys63-linked polyubiquitination of TAK1 at Lys34 is essential for downstream signaling to NF-κB-mediated target gene expression in both cancer and immune cells. These findings are of importance for the understanding of the mechanism of activation of NF-κB in inflammation and may aid in the development of new therapeutic strategies to treat chronic inflammation and cancer. We have also shown (paper III) that TGFβ activates the tyrosine kinase Src via formation of a complex between TβRI and Src. The E3 ligase TRAF6 promotes the formation of the complex in a manner not dependent on its ubiquitin ligase activity, suggesting that TRAF6 acts as an adaptor. Moreover, the activation of Src is not dependent on the kinase activity of TβRI. On a functional level, Src activity was found to be necessary for TGFβ-induced chemotaxis. In conclusion, we have elucidated molecular mechanisms whereby TGFβ activates non-Smad pathways, i.e. PI3K and Src. Our findings shed light on the pro-tumorigenesis mechanisms of TGFβ. In addition, we have demonstrated how the activation of TAK1, an important component of the TGFβ non-Smad pathway, by TGFβ and other stimuli leads to the activation of NF-κB and thereby induction of inflammation which likely contributes to prostate cancer progression.
|
9 |
Regulation of mRNA Stability in Chemokine Gene ExpressionHartupee, Justin Curtis 08 July 2008 (has links)
No description available.
|
10 |
TRAF6, a key regulator of TGFβ-induced oncogenesis in prostate cancerSundar, Reshma January 2015 (has links)
Prostate cancer is the most common cancer in men, with the incidence rapidly increasing in Europe over the past two decades. Reliable biomarkers for prostate cancer are currently unavailable. Thus, there is an urgent need for improved biomarkers to diagnose prostate cancer at an early stage and to determine the best treatment options. Higher expression of transforming growth factor-β (TGFβ) has been reported in patients with aggressive cancer. TGFβ is a multifunctional cytokine that acts as a tumor suppressor during early tumor development, and as a tumor promoter at later stages of cancer. TGFβ signals through the canonical Smad or non-Smad cascade via TGFβ type II and type I receptors. The TGFβ signaling cascade is regulated by various post-translational modifications of its key components. The present investigation aimed to identify a potential function of TRAF6 in TGFβ-induced responses in prostate cancer. The first two articles of this thesis unveil the proteolytic cleavage of TGFβ type I receptor (TβRI), and the biological importance of the liberated TβRI intracellular domain (TβRI-ICD) in the nucleus. We found that tumor necrosis factor receptor-associated factor 6 (TRAF6) polyubiquitinates TβRI, which leads to cleavage of TβRI by tumor necrosis factor alpha converting enzyme (TACE) in a protein kinase C zeta (PKCζ)-dependent manner. Following ectodomain shedding, TβRI undergoes a second cleavage by presenilin 1 (PS1), which liberates TβRI-ICD. TβRI-ICD translocates to the nucleus, where it regulates its own expression as well as expression of the pro-invasive gene Snail1, thereby promoting invasion. We further found that TβRI-ICD associates with Notch intracellular domain (NICD) to drive expression of the pro-invasive gene Snail1, as well as Notch1 ligand Jag1. The third article provides evidence that TRAF6 promotes Lys63-linked polyubiquitination of TβRI at Lys178 in a TGFβ-dependent manner. TβRI polyubiquitination was found to be a prerequisite for TβRI nuclear translocation, and thus for regulation of the genes involved in cell cycle, differentiation, and invasion of prostate cancer cells. In the fourth article we investigated the role of the pro-invasive gene Snail1 in TGFβ-induced epithelial-to-mesenchymal transition (EMT) in prostate cancer cells.
|
Page generated in 0.0312 seconds