1 |
Testes e aplicação de um novo implantador iônico. / Tesis and application of new ion implanter.Spirin, Roman 14 September 2016 (has links)
Esse trabalho descreve um implantador iônico em termos de sua caracterização e aplicação. O texto está dividido em três capítulos que são apresentados resumidamente a seguir. O primeiro capítulo descreve em detalhes um novo tipo de implantador, denominado implantador invertido. Nesse capítulo é descrito o desenvolvimento e a caracterização do implantador invertido. A otimização de uma parte dos circuitos eletrônicos e o desenvolvimento e construção do restante dos circuitos é dada em detalhes. Uma caracterização do implantador quanto à maximização do feixe iônico é apresentada, onde é realizado um estudo sistemático com a variação de parâmetros como potencial extrator, corrente do canhão de plasma (arco catódico) dentre outros. Finalizando o primeiro capítulo, é apresentado um mapeamento da densidade do feixe iônico no porta amostras do implantador invertido. No segundo capítulo é discutida a neutralidade do feixe iônico do implantador invertido. Um feixe neutro viabiliza implantações em amostras isolantes, sem que haja acúmulo de cargas positivas, o que levaria a amostra a um potencial diferente do planejado. A energia de implantação efetiva foi avaliada estudando os perfis de implantação através de microscopia de força atômica condutiva (AFM-C) e microscopia eletrônica de transmissão (TEM), e comparando com simulações numéricas realizadas pelo programa TRIDYN. Os resultados sugerem que o feixe não é neutro. No terceiro capítulo, o implantador invertido foi utilizado para modificação de superfície de alumina, gerando uma camada de nanocompósito logo abaixo de sua superfície, formada por nanopartículas de titânio na matriz de alumina. A formação dessas nanopartículas se dá espontaneamente e pode ser explicada pela ocorrência de concentração dos átomos metálicos acima do limite de solubilidade no substrato implantado, levando à nucleação e crescimento das nanopartículas metálicas. Caracterização por TEM foi utilizada para a visualização direta das nanopartículas que apresentaram dimensões da ordem de 20 nm. Simulações utilizando o programa TRIDYN foram realizadas, gerando perfis de profundidade dos íons de titânio implantados no substrato de alumina, que mostraram excelente acordo com o perfil em profundidade obtido por RBS (Rutherford Backscattering Spectrometry). Medidas de resistividade da camada compósita foram obtidas, in situ, em função da dose implantada. Utilizando modelos teóricos de percolação foi possível determinar a dose de saturação φ0 = 2,2 x 1016 átomos/cm2, que é a dose máxima para a qual o material continua a ser um nanocompósito, e para a condutividade de saturação foi φ0 = 480 S/m. A dose de percolação obtida foi φc = 0,84 x 1016 átomos/cm2, que é a dose abaixo da qual o material tem a mesma condutividade que a matriz isolante. O expoente crítico obtido foi t = 1,4 e, como a condição t < 2 é satisfeita, o processo de condutividade se dá devido a percolação, sendo o tunelamento desprezível. / This work describes an ion implanter in terms of characterization and application. The text is divided in three chapters that are briefly presented below. The first chapter describes in detail a new type of implanter called inverted implanter. In this chapter is considered my contribution in the development and characterization of the inverted implanter. The optimization of part of the electronic circuits, and development and construction of other circuits are given in details. A characterization of the implanter by the maximization the ion beam is presented, where is carried out a systematic study through the variation of parameters such as extractor potential, plasma gun current (cathodic arc) and others. Finally, it presents a mapping of the ion beam density at the sample holder of the inverted implanter. The second chapter discusses the neutrality of the ion beam of the inverted implanter. A neutral beam allows implantation into insulating samples without positive charges accumulation, which would lead sample at a different potential than expected. The effective energy evaluation was carried out studying the implantation profiles by conductive atomic force microscopy (AFM-C) and transmission electron microscopy (TEM), and compared with numerical simulations performed by TRIDYN program. The results suggest that the ion beam isn\'t neutral. In the third chapter, the inverted implanter was used for alumina surface modification, generating a nanocomposite layer just below the surface, formed by titanium nanoparticles in alumina matrix. The nanoparticles formation occurs spontaneously and can be explained by the occurrence of metal atom concentration above the solubility limit in the impalnted substrate, leading to nucleation and growth of metal nanoparticles. Characterization by TEM was used for direct visualization of the nanoparticles what presented dimensions of about 20 nm. Simulations using the TRIDYN program were performed, generating depth profiles of titanium ions implanted into the alumina substrate, which showed excellent agreement with the depth profile obtained by RBS (Rutherford Backscattering Spectrometry). Resistivity measurements were obtained from the composite layer, in situ, as function of implanted dose. Using theoretical percolation models, it was possible to determine the saturation dose φ0 = 2,2 x 1016 atoms/cm2, that is the maximum dose for which the material remains a nanocomposite, and the saturation conductivity φ0 = 480 S/m. The percolation was achieved for dose φc = 0,84 x 1016 atoms/cm2, that is the dose below which the material has the same conductivity as the insulating matrix. The critical exponent obtained was t = 1,4 and, since it satisfies to condition t < 2, the conductivity process is due to percolation, tunneling being negligible.
|
2 |
Testes e aplicação de um novo implantador iônico. / Tesis and application of new ion implanter.Roman Spirin 14 September 2016 (has links)
Esse trabalho descreve um implantador iônico em termos de sua caracterização e aplicação. O texto está dividido em três capítulos que são apresentados resumidamente a seguir. O primeiro capítulo descreve em detalhes um novo tipo de implantador, denominado implantador invertido. Nesse capítulo é descrito o desenvolvimento e a caracterização do implantador invertido. A otimização de uma parte dos circuitos eletrônicos e o desenvolvimento e construção do restante dos circuitos é dada em detalhes. Uma caracterização do implantador quanto à maximização do feixe iônico é apresentada, onde é realizado um estudo sistemático com a variação de parâmetros como potencial extrator, corrente do canhão de plasma (arco catódico) dentre outros. Finalizando o primeiro capítulo, é apresentado um mapeamento da densidade do feixe iônico no porta amostras do implantador invertido. No segundo capítulo é discutida a neutralidade do feixe iônico do implantador invertido. Um feixe neutro viabiliza implantações em amostras isolantes, sem que haja acúmulo de cargas positivas, o que levaria a amostra a um potencial diferente do planejado. A energia de implantação efetiva foi avaliada estudando os perfis de implantação através de microscopia de força atômica condutiva (AFM-C) e microscopia eletrônica de transmissão (TEM), e comparando com simulações numéricas realizadas pelo programa TRIDYN. Os resultados sugerem que o feixe não é neutro. No terceiro capítulo, o implantador invertido foi utilizado para modificação de superfície de alumina, gerando uma camada de nanocompósito logo abaixo de sua superfície, formada por nanopartículas de titânio na matriz de alumina. A formação dessas nanopartículas se dá espontaneamente e pode ser explicada pela ocorrência de concentração dos átomos metálicos acima do limite de solubilidade no substrato implantado, levando à nucleação e crescimento das nanopartículas metálicas. Caracterização por TEM foi utilizada para a visualização direta das nanopartículas que apresentaram dimensões da ordem de 20 nm. Simulações utilizando o programa TRIDYN foram realizadas, gerando perfis de profundidade dos íons de titânio implantados no substrato de alumina, que mostraram excelente acordo com o perfil em profundidade obtido por RBS (Rutherford Backscattering Spectrometry). Medidas de resistividade da camada compósita foram obtidas, in situ, em função da dose implantada. Utilizando modelos teóricos de percolação foi possível determinar a dose de saturação φ0 = 2,2 x 1016 átomos/cm2, que é a dose máxima para a qual o material continua a ser um nanocompósito, e para a condutividade de saturação foi φ0 = 480 S/m. A dose de percolação obtida foi φc = 0,84 x 1016 átomos/cm2, que é a dose abaixo da qual o material tem a mesma condutividade que a matriz isolante. O expoente crítico obtido foi t = 1,4 e, como a condição t < 2 é satisfeita, o processo de condutividade se dá devido a percolação, sendo o tunelamento desprezível. / This work describes an ion implanter in terms of characterization and application. The text is divided in three chapters that are briefly presented below. The first chapter describes in detail a new type of implanter called inverted implanter. In this chapter is considered my contribution in the development and characterization of the inverted implanter. The optimization of part of the electronic circuits, and development and construction of other circuits are given in details. A characterization of the implanter by the maximization the ion beam is presented, where is carried out a systematic study through the variation of parameters such as extractor potential, plasma gun current (cathodic arc) and others. Finally, it presents a mapping of the ion beam density at the sample holder of the inverted implanter. The second chapter discusses the neutrality of the ion beam of the inverted implanter. A neutral beam allows implantation into insulating samples without positive charges accumulation, which would lead sample at a different potential than expected. The effective energy evaluation was carried out studying the implantation profiles by conductive atomic force microscopy (AFM-C) and transmission electron microscopy (TEM), and compared with numerical simulations performed by TRIDYN program. The results suggest that the ion beam isn\'t neutral. In the third chapter, the inverted implanter was used for alumina surface modification, generating a nanocomposite layer just below the surface, formed by titanium nanoparticles in alumina matrix. The nanoparticles formation occurs spontaneously and can be explained by the occurrence of metal atom concentration above the solubility limit in the impalnted substrate, leading to nucleation and growth of metal nanoparticles. Characterization by TEM was used for direct visualization of the nanoparticles what presented dimensions of about 20 nm. Simulations using the TRIDYN program were performed, generating depth profiles of titanium ions implanted into the alumina substrate, which showed excellent agreement with the depth profile obtained by RBS (Rutherford Backscattering Spectrometry). Resistivity measurements were obtained from the composite layer, in situ, as function of implanted dose. Using theoretical percolation models, it was possible to determine the saturation dose φ0 = 2,2 x 1016 atoms/cm2, that is the maximum dose for which the material remains a nanocomposite, and the saturation conductivity φ0 = 480 S/m. The percolation was achieved for dose φc = 0,84 x 1016 atoms/cm2, that is the dose below which the material has the same conductivity as the insulating matrix. The critical exponent obtained was t = 1,4 and, since it satisfies to condition t < 2, the conductivity process is due to percolation, tunneling being negligible.
|
3 |
Ion beam processing of surfaces and interfaces – Modeling and atomistic simulationsLiedke, B. 14 March 2012 (has links) (PDF)
Self-organization of regular surface pattern under ion beam erosion was described in detail by Navez in 1962. Several years later in 1986 Bradley and Harper (BH) published the first self-consistent theory on this phenomenon based on the competition of surface roughening described by Sigmund’s sputter theory and surface smoothing by Mullins-Herring diffusion. Many papers that followed BH theory introduced other processes responsible for the surface patterning e.g. viscous flow, redeposition, phase separation, preferential sputtering, etc. The present understanding is still not sufficient to specify the dominant driving forces responsible for self-organization. 3D atomistic simulations can improve the understanding by reproducing the pattern formation with the detailed microscopic description of the driving forces. 2D simulations published so far can contribute to this understanding only partially.
A novel program package for 3D atomistic simulations called trider (TRansport of Ions in matter with DEfect Relaxation), which unifies full collision cascade simulation with atomistic relaxation processes, has been developed. The collision cascades are provided by simulations based on the Binary Collision Approximation, and the relaxation processes are simulated with the 3D lattice kinetic Monte-Carlo method. This allows, without any phenomenological model, a full 3D atomistic description on experimental spatiotemporal scales. Recently discussed new mechanisms of surface patterning like ballistic mass drift or the dependence of the local morphology on sputtering yield are inherently included in our atomistic approach.
The atomistic 3D simulations do not depend so much on experimental assumptions like reported 2D simulations or continuum theories. The 3D computer experiments can even be considered as ’cleanest’ possible experiments for checking continuum theories. This work aims mainly at the methodology of a novel atomistic approach, showing that: (i) In general, sputtering is not the dominant driving force responsible for the ripple formation. Processes like bulk and surface defect kinetics dominate the surface morphology evolution. Only at grazing incidence the sputtering has been found to be a direct cause of the ripple formation. Bradley and Harper theory fails in explaining the ripple dynamics because it is based on the second-order-effect ‘sputtering’. However, taking into account the new mechanisms, a ‘Bradley-Harper equation’ with redefined parameters can be derived, which describes pattern formation satisfactorily. (ii) Kinetics of (bulk) defects has been revealed as the dominating driving force of pattern formation. Constantly created defects within the collision cascade, are responsible for local surface topography fluctuation and cause surface mass currents. The mass currents smooth the surface at normal and close to normal ion incidence angles, while ripples appear first at θ ≥ 40°.
The evolution of bimetallic interfaces under ion irradiation is another application of trider described in this thesis. The collisional mixing is in competition with diffusion and phase separation. The irradiation with He+ ions is studied for two extreme cases of bimetals: (i) Irradiation of interfaces formed by immiscible elements, here Al and Pb. Ballistic interface mixing is accompanied by phase separation. Al and Pb nanoclusters show a self-ordering (banding) parallel to the interface. (ii) Irradiation of interfaces by intermetallics forming species, here Pt and Co. Well-ordered layers of phases of intermetallics appear in the sequence Pt/Pt3Co/PtCo/PtCo3/Co. The trider program package has been proven to be an appropriate technique providing a complete picture of mixing mechanisms.
|
4 |
Ion beam processing of surfaces and interfaces – Modeling and atomistic simulationsLiedke, B. January 2011 (has links)
Self-organization of regular surface pattern under ion beam erosion was described in detail by Navez in 1962. Several years later in 1986 Bradley and Harper (BH) published the first self-consistent theory on this phenomenon based on the competition of surface roughening described by Sigmund’s sputter theory and surface smoothing by Mullins-Herring diffusion. Many papers that followed BH theory introduced other processes responsible for the surface patterning e.g. viscous flow, redeposition, phase separation, preferential sputtering, etc. The present understanding is still not sufficient to specify the dominant driving forces responsible for self-organization. 3D atomistic simulations can improve the understanding by reproducing the pattern formation with the detailed microscopic description of the driving forces. 2D simulations published so far can contribute to this understanding only partially.
A novel program package for 3D atomistic simulations called trider (TRansport of Ions in matter with DEfect Relaxation), which unifies full collision cascade simulation with atomistic relaxation processes, has been developed. The collision cascades are provided by simulations based on the Binary Collision Approximation, and the relaxation processes are simulated with the 3D lattice kinetic Monte-Carlo method. This allows, without any phenomenological model, a full 3D atomistic description on experimental spatiotemporal scales. Recently discussed new mechanisms of surface patterning like ballistic mass drift or the dependence of the local morphology on sputtering yield are inherently included in our atomistic approach.
The atomistic 3D simulations do not depend so much on experimental assumptions like reported 2D simulations or continuum theories. The 3D computer experiments can even be considered as ’cleanest’ possible experiments for checking continuum theories. This work aims mainly at the methodology of a novel atomistic approach, showing that: (i) In general, sputtering is not the dominant driving force responsible for the ripple formation. Processes like bulk and surface defect kinetics dominate the surface morphology evolution. Only at grazing incidence the sputtering has been found to be a direct cause of the ripple formation. Bradley and Harper theory fails in explaining the ripple dynamics because it is based on the second-order-effect ‘sputtering’. However, taking into account the new mechanisms, a ‘Bradley-Harper equation’ with redefined parameters can be derived, which describes pattern formation satisfactorily. (ii) Kinetics of (bulk) defects has been revealed as the dominating driving force of pattern formation. Constantly created defects within the collision cascade, are responsible for local surface topography fluctuation and cause surface mass currents. The mass currents smooth the surface at normal and close to normal ion incidence angles, while ripples appear first at θ ≥ 40°.
The evolution of bimetallic interfaces under ion irradiation is another application of trider described in this thesis. The collisional mixing is in competition with diffusion and phase separation. The irradiation with He+ ions is studied for two extreme cases of bimetals: (i) Irradiation of interfaces formed by immiscible elements, here Al and Pb. Ballistic interface mixing is accompanied by phase separation. Al and Pb nanoclusters show a self-ordering (banding) parallel to the interface. (ii) Irradiation of interfaces by intermetallics forming species, here Pt and Co. Well-ordered layers of phases of intermetallics appear in the sequence Pt/Pt3Co/PtCo/PtCo3/Co. The trider program package has been proven to be an appropriate technique providing a complete picture of mixing mechanisms.
|
5 |
Ion beam processing of surfaces and interfacesLiedke, Bartosz 28 December 2011 (has links) (PDF)
Self-organization of regular surface pattern under ion beam erosion was described in detail by Navez in 1962. Several years later in 1986 Bradley and Harper (BH) published the first self-consistent theory on this phenomenon based on the competition of surface roughening described by Sigmund's sputter theory and surface smoothing by Mullins-Herring diffusion. Many papers that followed BH theory introduced other processes responsible for the surface patterning e.g. viscous flow, redeposition, phase separation, preferential sputtering, etc. The present understanding is still not sufficient to specify the dominant driving forces responsible for self-organization. 3D atomistic simulations can improve the understanding by reproducing the pattern formation with the detailed microscopic description of the driving forces. 2D simulations published so far can contribute to this understanding only partially.
A novel program package for 3D atomistic simulations called TRIDER (TRansport of Ions in matter with DEfect Relaxation), which unifies full collision cascade simulation with atomistic relaxation processes, has been developed. The collision cascades are provided by simulations based on the Binary Collision Approximation, and the relaxation processes are simulated with the 3D lattice kinetic Monte-Carlo method. This allows, without any phenomenological model, a full 3D atomistic description on experimental spatiotemporal scales. Recently discussed new mechanisms of surface patterning like ballistic mass drift or the dependence of the local morphology on sputtering yield are inherently included in our atomistic approach.
The atomistic 3D simulations do not depend so much on experimental assumptions like reported 2D simulations or continuum theories. The 3D computer experiments can even be considered as 'cleanest' possible experiments for checking continuum theories. This work aims mainly at the methodology of a novel atomistic approach, showing that: (i) In general, sputtering is not the dominant driving force responsible for the ripple formation. Processes like bulk and surface defect kinetics dominate the surface morphology evolution. Only at grazing incidence the sputtering has been found to be a direct cause of the ripple formation. Bradley and Harper theory fails in explaining the ripple dynamics because it is based on the second-order-effect 'sputtering'. However, taking into account the new mechanisms, a 'Bradley-Harper equation' with redefined parameters can be derived, which describes pattern formation satisfactorily. (ii) Kinetics of (bulk) defects has been revealed as the dominating driving force of pattern formation. Constantly created defects within the collision cascade, are responsible for local surface topography fluctuation and cause surface mass currents. The mass currents smooth the surface at normal and close to normal ion incidence angles, while ripples appear first at incidence angles larger than 40°.
The evolution of bimetallic interfaces under ion irradiation is another application of TRIDER described in this thesis. The collisional mixing is in competition with diffusion and phase separation. The irradiation with He ions is studied for two extreme cases of bimetals: (i) Irradiation of interfaces formed by immiscible elements, here Al and Pb. Ballistic interface mixing is accompanied by phase separation. Al and Pb nanoclusters show a self-ordering (banding) parallel to the interface. (ii) Irradiation of interfaces by intermetallics forming species, here Pt and Co. Well-ordered layers of phases of intermetallics appear in the sequence Pt/Pt3Co/PtCo/PtCo3/Co. The TRIDER program package has been proven to be an appropriate technique providing a complete picture of mixing mechanisms.
|
6 |
Ion beam processing of surfaces and interfaces: Modeling and atomistic simulationsLiedke, Bartosz 23 September 2011 (has links)
Self-organization of regular surface pattern under ion beam erosion was described in detail by Navez in 1962. Several years later in 1986 Bradley and Harper (BH) published the first self-consistent theory on this phenomenon based on the competition of surface roughening described by Sigmund's sputter theory and surface smoothing by Mullins-Herring diffusion. Many papers that followed BH theory introduced other processes responsible for the surface patterning e.g. viscous flow, redeposition, phase separation, preferential sputtering, etc. The present understanding is still not sufficient to specify the dominant driving forces responsible for self-organization. 3D atomistic simulations can improve the understanding by reproducing the pattern formation with the detailed microscopic description of the driving forces. 2D simulations published so far can contribute to this understanding only partially.
A novel program package for 3D atomistic simulations called TRIDER (TRansport of Ions in matter with DEfect Relaxation), which unifies full collision cascade simulation with atomistic relaxation processes, has been developed. The collision cascades are provided by simulations based on the Binary Collision Approximation, and the relaxation processes are simulated with the 3D lattice kinetic Monte-Carlo method. This allows, without any phenomenological model, a full 3D atomistic description on experimental spatiotemporal scales. Recently discussed new mechanisms of surface patterning like ballistic mass drift or the dependence of the local morphology on sputtering yield are inherently included in our atomistic approach.
The atomistic 3D simulations do not depend so much on experimental assumptions like reported 2D simulations or continuum theories. The 3D computer experiments can even be considered as 'cleanest' possible experiments for checking continuum theories. This work aims mainly at the methodology of a novel atomistic approach, showing that: (i) In general, sputtering is not the dominant driving force responsible for the ripple formation. Processes like bulk and surface defect kinetics dominate the surface morphology evolution. Only at grazing incidence the sputtering has been found to be a direct cause of the ripple formation. Bradley and Harper theory fails in explaining the ripple dynamics because it is based on the second-order-effect 'sputtering'. However, taking into account the new mechanisms, a 'Bradley-Harper equation' with redefined parameters can be derived, which describes pattern formation satisfactorily. (ii) Kinetics of (bulk) defects has been revealed as the dominating driving force of pattern formation. Constantly created defects within the collision cascade, are responsible for local surface topography fluctuation and cause surface mass currents. The mass currents smooth the surface at normal and close to normal ion incidence angles, while ripples appear first at incidence angles larger than 40°.
The evolution of bimetallic interfaces under ion irradiation is another application of TRIDER described in this thesis. The collisional mixing is in competition with diffusion and phase separation. The irradiation with He ions is studied for two extreme cases of bimetals: (i) Irradiation of interfaces formed by immiscible elements, here Al and Pb. Ballistic interface mixing is accompanied by phase separation. Al and Pb nanoclusters show a self-ordering (banding) parallel to the interface. (ii) Irradiation of interfaces by intermetallics forming species, here Pt and Co. Well-ordered layers of phases of intermetallics appear in the sequence Pt/Pt3Co/PtCo/PtCo3/Co. The TRIDER program package has been proven to be an appropriate technique providing a complete picture of mixing mechanisms.
|
Page generated in 0.0145 seconds