• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation des procédes de croissance de SiC en phase gazeuse (PVT) et en phase liquide (TSSG) / Process modeling for the growth of SiC using PVT and TSSG methods

Ariyawong, Kanaparin 11 May 2015 (has links)
Le carbure de silicium (SiC) est l'un des matériaux les plus prometteurs pour les dispositifs électroniques de puissance. Même si la modélisation a prouvé sa capacité à assister le développement du procédé de croissance des cristaux de SiC, de nombreux aspects ne sont toujours pas décrits de façon satisfaisante. Cette thèse a pour but d'utiliser les outils de modélisation pour étudier les phénomènes fondamentaux ayant lieu dans la croissance massive du SiC, que ce soit en phase vapeur (PVT) ou en phase liquide (TSSG). Pour la méthode PVT, une attention particulière est portée sur la physico-chimie de l'interface solide-vapeur. Pour simuler la cristallisation stœchiométrique du SiC à partir d'une phase gazeuse non-congruente, phénomène mal décrit par le modèle d'Hertz-Knudsen, nous avons considéré le SiC comme une solution solide en utilisant la modélisation couplée du transfert de masse et de la thermodynamique. Cette approche donne une évaluation de la composition du cristal de SiC qui peut être liée à des paramètres contrôlables. De telles corrélations peuvent servir de base pour contrôler la densité de défauts ponctuels, la stabilité des polytypes et la concentration de dopage. Dans le cas du procédé TSSG, les effets de la vitesse de rotation du cristal et de la fréquence du champ magnétique sont étudiés. La convection électromagnétique est la principale contribution régissant les mouvements de fluide à basse fréquence alors que la convection naturelle et l'effet Marangoni deviennent dominants à haute fréquence. Dans les conditions expérimentales utilisant les basses fréquences, la vitesse de croissance du cristal pourrait encore être accrue en augmentant la vitesse de rotation. Une modélisation analytique, couplée aux calculs de dynamique des fluides a permis de décrire les interactions entre le flux de liquide et la direction de propagation des marches de croissance à la surface du cristal. Un paramètre de phase a été introduit comme critère d'apparition de macromarches, à l'origine d'instabilités morphologiques. / Silicon Carbide (SiC) is one of the most desirable materials for power electronic devices. The development of the growth process, to achieve larger size and higher quality is on the way. Even if modeling has proved its ability to assist the optimization of the growth processes, there are still some strong issues which are not considered in a satisfactory way. This thesis aims to use the modeling tools to tackle those challenging fundamental and technological issues on both industrially used PVT and emerging TSSG processes. In the PVT process, special attention is paid to the physical chemistry at the solid-vapor interfaces. Especially, we investigated the way to model the stoichiometric crystallization of SiC from a non-congruent vapor as the Hertz-Knudsen model was shown to be not adapted. We thus considered SiC as a solid solution using coupled mass transport modeling and thermodynamics. This approach gives an assessment to the chemistry of the SiC crystal which can be linked to the controllable parameters. Such correlations may serve as a basis to control the points defect density, stable polytypes, and doping concentration. Concerning the TSSG process, the effects of crystal rotation speed and operating frequency are studied. The electromagnetic convection is the main contribution governing the growth process using low frequency while the combined buoyancy and Marangoni convections become dominant at high frequency. In the experimental conditions using low frequency, the crystal growth rate could still be enhanced by increasing the rotation speed. The phase parameter is also introduced using the combined fluid dynamics and analytical modeling. This provides a comprehensive visualization of the interactions between fluid flow and step flow and a guideline to improve the surface morphology of the crystal.
2

Étude du procédé de croissance en solution à haute température pour le développement de substrats de 4H-SiC fortement dopes / Study of a high temperature solution growth process for the development of heavily doped 4H-SiC substrates

Shin, Yun ji 13 October 2016 (has links)
Le carbure de silicium est un semi-conducteur à grand gap qui s’est récemment imposé comme un matériau clé pour l’électronique de puissance. Les cristaux massifs ainsi que les couches épitaxiales actives sont aujourd’hui obtenus par des procédés en phase gazeuse, comme la croissance par sublimation (ou PVT) et le dépôt chimique en phase gazeuse (CVD), respectivement. Le procédé de croissance en solution à haute température est actuellement revisité en raison de sa capacité à atteindre des qualités cristallines exceptionnelles. Ce travail est une contribution au développement du procédé de croissance en solution à partir d’un germe (TSSG), avec comme objectif principal l’accès à des cristaux de 4H-SiC fortement dopés de type p. Le dopant p le plus utilisé est l’Aluminium. Différentes étapes élémentaires du procédé sont étudiées, avec pour chaque étape l’évaluation de l’effet de l’Al. Après un bref rappel historique sur le SiC, les données fondamentales du SiC sont introduites dans le chapitre 1 et discutées par rapport aux applications en électronique de puissance. Dans le chapitre 2, le réacteur de croissance est détaillé. Les trois principaux aspects techniques du procédé sont exposés : i) l’apport en carbone par dissolution à l’interface entre le creuset en graphite et le liquide, ii) le transport du carbone de la zone de dissolution à la zone de cristallisation, et iii) la cristallisation sur le germe. Ces trois aspects ont été étudiés et améliorés par l’ajout de métaux de transition (Fe ou Cr) au solvant de façon à augmenter la solubilité en carbone, en favorisant le transport du carbone par l’optimisation de la convection forcée (i.e. la rotation du cristal) et en stabilisant le front de croissance. Après optimisation, un cristal de 4H-SiC a pu être obtenu à une vitesse supérieure à 300 µm/hr et avec un élargissement du diamètre d’environ 41% par rapport au diamètre initial du germe. Le chapitre 3 porte sur l’étude de l’interaction entre le solvant et la surface du 4H-SiC à l’équilibre, sans croissance, en utilisant la méthode de la goutte posée. L’effet du temps, de la température et de l’ajout d’Al ont été étudiés. L’interface liquide/solide présente une évolution en trois étapes : i) dissolution, ii) step-bunching et iii) facettage, la surface initiale en marches et terrasses se décomposant en facettes de type (0001), (10-1n) et (01-1n). L’augmentation de la température de 1600°C à 1800°C provoque le même effet que l’ajout d’aluminium : une accélération de la deuxième étape ainsi qu’une limitation de la troisième étape. Dans le chapitre 4, des phénomènes transitoires ont été étudiés lorsque le substrat touche la surface du liquide. A l’instant du contact, il a été démontré par simulation numérique que le liquide au voisinage du substrat est sujet à de très fortes fluctuations de températures et donc à de fortes fluctuations de sursaturation. Ceci est à l’origine d’une germination transitoire de 3C-SiC sur la surface du cristal et ce, même à très haute température. Ce phénomène peut être évité soit en préchauffant le cristal avant le contact soit en ajoutant de l’aluminium dans le liquide. L’amélioration de la convection forcée est un moyen efficace pour augmenter la vitesse de croissance. Cependant, au-delà d’une certaine vitesse de rotation du cristal, un type d’instabilité spécifique se développe. Elle est basée sur l’interaction entre la direction d’avancée de marches à la surface du cristal et la direction locale du flux de liquide au voisinage de la surface. Ceci fait l’objet du chapitre 5. Finalement, la concentration de porteurs ainsi que la concentration totale en azote (N) et en aluminium (Al) sont étudiées en fonction de différents paramètres de croissance dans le chapitre 6. Une concentration en Al aussi élevée que 5E+20 at/cm3 a pu être obtenue à 1850°C. Cette valeur est très prometteuse pour le futur développement de substrats de 4H-SiC de type p+. / Silicon Carbide is a wide band gap semiconductor which has recently imposed as a key material for modern power electronics. Bulk single crystals and active epilayers are industrially produced by vapor phase processes, namely seeded sublimation growth (PVT) and chemical vapor deposition (CVD) respectively. The high temperature solution growth is currently being revisited due to its potential for achieving high structural quality. This work is a contribution to the development of the top seeded solution growth (TSSG) process, with a special focus on heavily p-type doped 4H-SiC crystals. Aluminum (Al) is the most commonly used acceptor in SiC. Different elementary steps of the process are studied, and for every cases, the effect of Al is considered and discussed. After a brief history of SiC material, basic structural and physical properties of silicon carbide are introduced in chapter 1 and discussed with respect to power electronics applications. In chapter 2, the crystal growth puller is detailed and the three most important technical issues of the SiC solution growth process are discussed : i) carbon supply by dissolution at the graphite crucible/liquid interface, ii) carbon transport from the dissolution area to the growth front, and iii) crystallization on the seed substrate. These three steps are studied and improved by adding transition metals (Fe or Cr) to the solvent in order to increase the carbon solubility, by increasing the carbon transport with the optimization of the forced convection (i.e. rotation of the crystal) and by stabilizing the growth front. After optimization, a 4H-SiC crystal is demonstrated with a growth rate of over 300 µm/h and a diameter enlargement of about 41% compared to the original seed size. Chapter 3 is dedicated to the investigation of the interaction between the liquid solvent and the 4H-SiC surface under equilibrium conditions, i.e. without any growth, using a sessile drop method. Effect of time, temperature and the addition of Al to pure liquid silicon are investigated. It is shown that the liquid/solid exhibits a three stages evolution: i) dissolution, ii) step bunching and iii) faceting, the original step and terrace structure being decomposed into (0001), (10-1n) and (01-1n) facets. Increasing the temperature from 1600°C to 1800°C or adding Al drastically enhances the second stage, but reduces the third one. In chapter 4, transient phenomena during the seeding stage of the growth process on the seed crystal are investigated. With the help of numerical modeling, it is shown that strong temperature fluctuations during the contact between the seed and the liquid can give rise to transient 3C-SiC nucleation on the crystal surface, even at high temperatures. This phenomenon can be avoided by either pre-heating the seed or by adding Al. Increasing forced convection (rotation rate of the crystal) is a good way to increase the growth rate. However, above a critical rotation rate, a special surface instability develops. It is based on the interaction between the step flow at the growing surface and the local fluid flow directions close to the surface. This is investigated in Chapter 5. Finally, carrier concentrations and total dopant (nitrogen and aluminum) concentrations are investigated as a function of different process parameters in chapter 6. Al incorporation as high as 5E+20 at/cm3 has been achieved in layers grown at 1850°C. This value is very promising for the future development of p+ 4H-SiC substrates.

Page generated in 0.0235 seconds