21 |
Mechanical Behavior and Microstructural Evolution in Metastable β Ti-Mo Based Alloys with TRIP and TWIP Effects / Comportement mécanique et évolution microstructurale d'alliages de titane B métastables présentant des effets TRIP et TWIPZhang, Jinyong 26 September 2014 (has links)
Dans ce travail, basé sur une approche semi empirique de conception d’alliages de titane à propriétés mécaniques contrôlées, un alliage modèle binaire Ti-12Mo (% massique) et des alliages ternaires sur la base du système Ti-Mo ont été élaborés, combinant des effets TRIP et TWIP lors de la déformation. (TRIP – Transformation Induced Plasticity : plasticité induite par transformation ; TWIP – Twinning Induced Plasticity : plasticité induite par maclage).Les résultats des essais mécaniques montrent que ces alliages présentent une haute résistance mécanique (1000-1200 MPa), une grande plasticité (entre 0,3 et 0,4) et un écrouissage amélioré grâce aux effets simultanés TRIP/TWIP. Différentes techniques de caractérisation telles que la diffraction de rayons X conventionnelle (XRD), la diffraction in-situ sur Synchrotron (SXRD), la diffraction d’électrons rétro-diffusés (EBSD), les mesures de résistivité électrique (ERM), la microscopie électronique en transmission (TEM) et les mesures et traitements automatiques des orientations cristallographiques associées (ACOM/TEM), ont été mis en œuvre pour étudier les mécanismes de déformation, les transformations de phases et l’évolution microstructurale.Différents mécanismes de déformation, tels que le maclage mécanique {332}<113> et la transformation martensitique induite sous contrainte α˝ ont été identifiés à l’issue des essais mécaniques, permettant d’expliquer l’excellente combinaison de propriétés mécaniques obtenue. L’optimisation microstructurale de ces alliages a été conduite à partir de recuits basses températures dans le domaine de précipitation de la phase ω avec pour objectif d’améliorer les propriétés mécaniques afin de contrôler la formation de la phase ω sans modifier de manière excessive la composition chimique de la matrice β, et conserver les effets combinés TRIP/TWIP. / In this work, based on combination of the ‘d-electron alloy design method’ and controlling of electron/atom ratio (e/a), a model of binary Ti-12Mo (wt. %) and ternary Ti-Mo based alloys were designed, induced combined TRIP and TWIP effects (TRIP for Transformation Induced Plasticity and TWIP for Twinning Induced Plasticity). The tensile results show that so-designed alloys exhibit true stress-strain values at uniform plastic deformation, of about 1000-1200MPa and between 0.3 and 0.4 of strain, with a large strain-hardening rate. Several characterization techniques, such as conventional X-ray diffraction (XRD), In-situ Synchrotron X-ray diffraction (SXRD), electron backscatter diffraction (EBSD), electrical resistivity measurements (ERM), transmission electron microscopy (TEM) and automatic crystal orientation measurements (ACOM) TEM, were carried out to to investigate the deformation mechanisms and microstructure evolution sequence. Various deformation mechanisms, i.e. {332}<113> mechanical twinning, deformation induced ω phase and stress-induced α’’ martensite, were identified after mechanical testing, resulting in a combination of high strength, large ductility and improved strain-hardening rate. Furthermore, low temperature aging (LTA) treatments were performed on the Ti-12Mo alloy to improve the mechanical property through controlling the ω phase transformation without excessive modification of β matrix chemical composition, keeping the possibility for combined TRIP and TWIP effects to occur. The influence of LTA treatment on the mechanical behavior and microstructural evolution of Ti-12Mo alloy was discussed in detail.
|
22 |
Investigating the Effect of Austenite Grain Size and Grain Boundary Character on Deformation Twinning Behavior in A High-Manganese TWIP Steel: A TEM In-Situ Deformation StudyHung, Chang-Yu 16 June 2021 (has links)
Nanocrystalline metals exhibit a high strength/hardness but generally poor ductility during deformation regardless of their crystal structure which is often called the strength-ductility trade-off relationship and generally appears in most ultrafine-grained metals. The ultrafine-grained (UFG) high manganese austenitic twinning-induced plasticity (TWIP) steels have been found to overcome the strength-ductility trade-off but their underlying mechanism of discontinuous yielding behavior has not been well understood. In this study, our systematic TEM characterization suggests that the plastic deformation mechanisms in the early stage of deformation, around the macroscopic yield point, show an obvious association with grain size and nucleation of deformation twin was promoted rather than suppressed in UFG. More specifically, the main mechanism shifts from the conventional slip in grain interior to twinning nucleated from grain boundaries with decreasing the grain size down to less than 1 m. We also provide insights into the atomistic process of deformation twin nucleation at 3{111} twin boundaries, the dominant type of grain boundary in the UFG-TWIP steel of interest. In response to the external tensile stresses, the structure of coherent 3{111} twin boundary changes from atomistically smooth to partly defective by the grain boundary migration mechanism thus the "kink-like" defective step can act as a nucleation site for deformation twin, which deformation process is different from the one induced by dislocation pile-ups in coarse-grained counterparts and explain why UFG TWIP steel can retain the moderate ductility.
In addition to the effect of grain size on deformation twin nucleation, grain boundary character was also taken into account. In coarse-grained TWIP steel, we experimentally reveal that deformation twin nucleation occurs at an annealing twin () boundary in a high-Mn austenitic steel when dislocation pile-up at boundary produced a local stress exceeding the twining stress, while no obvious local stress concentration was required at relatively high-energy grain boundaries such as or A periodic contrast reversal associated with a sequential stacking faults emission from boundary was observed by in-situ transmission electron microscopy (TEM) deformation experiments, proving the successive layer-by-layer stacking fault emission was the deformation twin nucleation mechanism. The correlation between grain boundary character and deformation behavior was discussed both in low- and high-sigma value grain boundaries. On the other hand, localized strain concentration causes the nucleation of deformation twins at grain boundaries regardless of the grain boundary misorientation character in UFG TWIP steel. The invisibility of stacking fault (zero contrast) was also observed to be emitted at 3{111} boundaries in the coarse-grained TWIP steel, which deformation twin nucleation mechanism is found to be identical to UFG Fe-31Mn-3Si-3Al TWIP steel. / Doctor of Philosophy / High manganese (Mn) twin-induced plasticity (TWIP) steel is a new type of steels which exhibit pronounced strain hardening rate so that offering an extraordinary potential to adjust the strength-ductility relationship. This key advantage will help implement the current development of lightweighting components in automobile industry due to a considerable reduction of material use and an improved press formability. Such outstanding ductility can be contributed by the pronounced strain hardening rate during every such deformation processes, which is highly associated with several different controlling parameters, i.e., SFE, grain orientation, grain size, and grain boundary characters. In this study, we take particular attention to the effect of grain size and grain boundary characters on deformation twinning behavior besides well-known parameters such as SFE and grain orientation.
The effect of grain size on deformation twinning behavior was found to be deeply associated with the yielding behavior in TWIP steel, i.e., a discontinuous yielding behavior with a unique yield drop was observed in ultrafine-grained TWIP while a continuous yielding behavior was observed in coarse-grained counterpart. Our TEM characterization indicates that the microstructural features of grains >10 m are different from the microstructural features in grains < 1 m. In over-10 m grains, normal dislocation slips and the formation of in-grain stacking faults are the main deformed microstructure. However, in the under-1 m grains, the in-grain dislocation slip is inhibited, but the deformation twinning is promoted at grain boundaries. This deformation transition from in-grain slip to twinning at grain boundary appears to be responsible for the discontinuous yielding behavior observed in stress-strain curve.
The effect of grain boundary character on deformation twinning was examined in both coarse- and ultrafine-grained TWIP steels. In coarse-grained TWIP steel, we found that deformation twinning behavior varies as the function of boundary structure, i.e., different atomic configuration. Coherent twin boundary can act as a nucleation site for deformation twin as a localized strain concentration was introduced by dislocation pile-ups. On the other hand, incoherent boundaries can act as a deformation twin nucleation site by a boundary relaxation mechanism, i.e., grain-boundary dislocations can dissociate into partial dislocations to both side of boundary to accommodate the misfit between grains. In UFG TWIP steel, we found that the coherent twin boundary can act as a deformation twin nucleation site without presence of dislocation pile-ups. Alternatively, twin boundary becomes defective with a "kink-like" step by boundary migration. As a result, this defective step would progressively accumulate localized strain field thus stimulate the nucleation of deformation twin. Such study provides a novel insight into the UFG TWIP steel and a roadmap toward controlling TWIP effect.
|
23 |
Analyse des Einflusses verschiedener Kräfte und thermophysikalischer Eigenschaften auf das Elektronenstrahlschweißen von TRIP-Stahl und TRIP-Matrix-Compositen mittels numerischer ThermofluiddynamikBorrmann, Sebastian 20 April 2022 (has links)
Das Elektronenstrahlschweißen im Vakuum hat sich als zuverlässiges Verfahren für die Herstellung schmaler und hochpräziser Schweißnähte beim Schweißen von TRIP-Stählen bewährt. Das Verständnis für die dabei auftretenden Mechanismen und wirkenden Kräfte stellt einen wichtigen Baustein für die Weiterentwicklung des Verfahrens dar. Um zur Erweiterung dieses Verständnisses beizutragen, wird auf Basis vorhandener Berechnungsmethoden in OpenFOAM ein numerisches Modell für das Elektronenstrahlschweißen entwickelt. Es ist in der Lage, die dafür relevanten Einflussfaktoren zu berücksichtigen. So werden die Wärmeübertragung im Feststoff und der Schmelze, alle Aggregatzustandsänderungen und die auf die Dynamik der Schmelze wirkenden Kräfte einbezogen. Das entwickelte Simulationsmodell ist in der Lage zu zeigen, dass außer der natürlichen Konvektion vor allem der beim Verdampfen der Schmelze entstehende Überdruck und die thermokapillare Konvektion an der Schmelzeoberfläche für hohe Strömungsgeschwindigkeiten verantwortlich sind. Darüber hinaus haben neben der Schmelzbaddynamik die thermophysikalischen Eigenschaften des Stahls einen starken Einfluss auf die Ausprägung der Schweißnaht. Vor allem die Wärmeleitfähigkeit verändert diese erheblich, was die Simulationen unter Berücksichtigung der Temperaturabhängigkeit verdeutlichen. Die in dieser Arbeit erreichten Erkenntnisse helfen, die beim Elektronenstrahlschweißen entstehenden Nahtgeometrien und die Gründe für hohe Strömungsgeschwindigkeiten im Schmelzbad besser einordnen und verstehen zu können. Darüber hinaus dient das entwickelte numerische Modell mit der Berücksichtigung aller relevanten Mechanismen als Grundlage für Weiterentwicklungen hinsichtlich vielerlei Anwendungen, beispielsweise für das Schweißen anderer Werkstoffe, zusätzliche Effekte wie dem Spiking oder anderen Elektronenstrahltechnologien wie dem Elektronenstrahlschmelzen im Bereich der additiven Fertigung.
|
24 |
Mechanical behaviour of a new automotive high manganese TWIP steel in the presence of liquid zincBeal, Coline 25 March 2011 (has links) (PDF)
High manganese TWIP (TWinning Induced Plasticity) steels are particularly attractive for automotive applications because of their exceptional properties of strength combined with an excellent ductility. However, as austenitic steels, they appear to be sensitive to liquid zinc embrittlement during welding, the liquid zinc arising from the melted coating due to the high temperatures reached during the welding process. In this framework, the cracking behaviour of a high manganese austenitic steel has been investigated in relation to the liquid metal embrittlement (LME) phenomenon by hot tensile tests carried out on electro-galvanized specimens using a Gleeble 3500 thermomechanical simulator. The influence of different parameters such as temperature and strain rate on cracking behaviour has been studied. Embrittlement appears within a limited range of temperature depending on experimental conditions. Conditions for which cracking occurs could be experienced during welding processes. The existence of a critical stress above which cracking appears has been evidenced and this critical stress can be used as a cracking criterion. Finally, the study of the influence of different parameters such as time of contact between steel and liquid zinc before stress application, coating and steel on LME occurrence provides understanding elements of LME mechanism and permits to suggest solutions for preventing cracking during spot welding of such steels.
|
25 |
Plastizität, deformationsinduzierte Phänomene und Élinvareigenschaften in antiferromagnetischen austenitischen FeMnNiCr-Basislegierungen: Plastizität, deformationsinduzierte Phänomene und Élinvareigenschaften in antiferromagnetischen austenitischen FeMnNiCr-BasislegierungenGeißler, David 29 May 2012 (has links)
Hoch manganhaltige Eisenbasislegierungen sind bei Raumtemperatur austenitisch und antiferromagnetisch (afm). Dabei besteht die Besonderheit, dass sich durch Legierung die afm Übergangstemperatur (Néeltemperatur) so einstellen lässt, dass sie nahe Raumtemperatur liegt. FeMn-Basislegierungen zeigen in Abhängigkeit von der Zusammensetzung Transformation Induced Plasticity (TRIP) und/oder Twinning Induced Plasticity (TWIP), d.h. die niedrige Stapelfehlerenergie dieser Legierungen führt zu verformungsinduzierter, metastabiler Phasenbildung (TRIP) bzw. zur Bildung von Verformungszwillingen (TWIP) und dadurch zu außerordentlich hoher Duktilität bei gleichzeitig hoher Verfestigung. Darüber hinaus haben FeMn-Basislegierungen einen ausgeprägten Magnetovolumeneffekt und magnetoelastischen Effekt durch magnetische Ordnung. Daher sind die untersuchten FeMnNiCr-Basislegierungen auch prototypisch für afm Élinvarlegierungen. Da Élinvar jedoch für invariable Elastizität steht, bedingt eine Anwendung als temperaturkompensierte Konstantmodullegierungen die Glättung der ausgeprägten magnetischen Anomalien, die industriell noch in keiner Anwendung realisiert wurde. Der Vorteil dies für eine Anwendung zu erreichen, läge in der Unempfindlichkeit feinmechanischer Bauelemente, gegenüber magnetischen Feldern, die bei den industriell verfügbaren ferromagnetischen Élinvarlegierungen nicht gewährleistet ist. Mit Bezug zu feinmechanischen Schwingsystemen spielen dabei neben der Einstellung der magnetoelastischen Eigenschaften die Prozessierbarkeit, Kaltumformbarkeit und Festigkeit sowie deren wechselseitige Beeinflussung eine große Rolle. Die vorliegende Arbeit befasst sich daher mit der Anwendbarkeit der untersuchten FeMnNiCr-Legierungen. Dabei wurden grundlegende Untersuchungen zur Plastizität durchgeführt, die die mechanische Zwillingsbildung in diesen Legierungen charakterisiert und ein Modell der mechanischen Zwillingsbildung bei kleinen plastischen Dehnungen vorschlägt, das eine Abschätzung der Stapelfehlerenergie erlaubt. Die Untersuchung des Antiferromagnetismus umgeformter Proben zeigt das Auftreten thermoremanenter Magnetisierung (TRM), deren Größe mit dem Umformgrad der untersuchten Proben skaliert. Sie wird den durch Umformdefekte erzeugten unkompensierten Momenten in der afm Spinstruktur zugeschrieben. Diese werden durch eine magnetische Feldkühlung magnetisiert und koppeln durch Austauschwechselwirkung an die umgebende antiferromagnetische Matrix unterhalb der Néeltemperatur. Das komplexe thermomagnetische Verhalten der unkompensierten Momente wird experimentell beschrieben und phänomenologisch gedeutet. Die Weiterentwicklung und Bewertung technischer, ausscheidbarer FeMnNiCrBe- und FeMnNiCr(Ti, Al)-Legierungen wird mit Bezug zu den grundlegenden Untersuchungen dargestellt. Es wird gezeigt, dass die neu entwickelten ausscheidbaren FeMnNiCr(Ti, Al)-Legierungen eine vielversprechende Ausgangsbasis darstellen, afm Élinvarlegierungen technisch umzusetzen. / High manganese iron-base alloys are austenitic and antiferromagnetic (afm) at room temperature. By further alloying it is possible to tune the afm transition temperature (Néel temperature) near room temperature. FeMn-base alloys show extraordinary strain hardening as well as ductility because of Transformation Induced Plasticity (TRIP) and/or Twinning Induced Plasticty (TWIP), i.e. in dependence on composition the generally low stacking fault energy in these alloys allows for the mechanically induced formation of metastable phases (TRIP) or deformation twinning (TWIP). Furthermore, magnetic order causes distinct magnetovolume and magnetoelastic effects in these afm FeMn-base alloys. The investigated FeMnNiCr-base alloys are therefore prototypic for afm Élinvar alloys. However, as Élinvar is meant for invariant elasticity, an application as temperature compensated alloy with constant elastic modulus requires the smoothing of the pronounced magnetic anomalies, that is not industrially available yet. The advantage of afm Élinvar alloys in precision mechanics applications, would be their impassiveness with respect to magnetic fields that is not achievable by their ferromagnetic counterparts. For precision components like mechanic oscillators not only the tuning of the magnetoelastic properties but also the processing, cold formability and mechanical properties as well as their interplay have strong influence. Therefore this work addresses the applicability of the studied FeMnNiCr alloys. Elementary investigations on plasticity characterise the occurrence of TWIP in these alloys and propose a modell for deformation twinning at low plastic strains that allows for an estimation of the stacking fault energy. The investigations on the antiferromagnetism of deformed samples show the appearance of thermoremanent magnetisation (TRM). Its magnitude scales with the degree of deformation. The TRM is therefore attributed to uncompensated moments in the afm spin structure due to deformation induced defects. These are magnetised by a magnetic field cooling and couple to the afm matrix by exchange interaction below the Néel temperature. The complex thermomagnetic behaviour of the uncompensated moments is experimentally described and phenomenologically explained. The further development and assessment of engineering-grade pecipitable FeMnNiCrBe and FeMnNiCr(Ti, Al) alloys is presented in relation to the aforementioned elementary investigations. It is shown that the newly developped precipitable FeMnNiCr(Ti, Al) alloys are good candidates for afm Élinvar alloys in application.
|
26 |
Thermodynamic modelling as applied to the development of TRIP-Matrix-Composite materials: The Fe–Mg–Mn–Ti–Zr–O systemSaenko, Ivan 26 January 2021 (has links)
This thesis performed within the Collaborative Research Center 799 describes a development of the metal-ceramic thermodynamic databases as applied to the design of the TRIP-Matrix-Composite materials. A wide range of theoretical and experimental investigations have been carried out in the relevant systems of Fe–Mg–Zr–O, Mg–Ti–Zr–O and Mg–Mn–Zr–O. Thermodynamic data were obtained using experimental methods of calorimetry and ab-initio calculations. Phase relations in the constituent binary and ternary systems have been studied using different types of static and dynamic methods. The obtained results allowed an assessment of thermodynamic parameters of the aforementioned systems using CALPHAD approach. The thermodynamic calculations have been performed to predict interfacial reactions within the composite material as well as to made recommendations for the design and further development of production processes for TRIP-Matrix-Composite materials.
|
27 |
Processing-structure-mechanical property relationships in high carbon medium manganese steels with austenitic microstructureLuan, Guoqing 20 December 2023 (has links)
A balance between strength and ductility has been one of the most important considerations in the steel industry. Austenitic steel or multi-phase steel with retained austenite has plasticity-enhancing mechanisms, which can make it achieve high strength and good formability. Due to the occurrence of twinning-based mechanisms in high Mn steels, they have improved strength without sacrificing ductility. However, high Mn steels with extraordinary mechanical properties has not been used in mass production because of its high material cost together with welding problems and so on. As a consequence, many researchers have attempted to decrease the Mn concentration of high Mn twinning-induced plasticity steels without significant sacrifice of the mechanical properties.
In the present work, a novel medium Mn steel with high C is designed with the aim of obtaining comparable mechanical properties as high Mn TWIP steel. In addition to Mn, C is also common effective austenite stabilizing element. C and Mn both increase the SFE of austenite. It should be possible to substitute at least some of the Mn in high Mn steels with C and still retain the TWIP effect. If the reduction in Mn content is not compensated for by the addition of other alloying elements, the microstructure will additionally contain some ferrite or martensite. The problem with C concentration is that it will result in the formation of carbide during the cooling process. As long as the carbide formation is suppressed, the formation of ferrite/martensite in medium Mn steels can be inhibited by an increase in the C concentration. In such cases, a soft and formable austenitic microstructure can be achieved by quenching from high austenitization temperatures to retain austenite with appropriate mechanical stability.
The precipitation and dissolution of cementite in austenitic medium Mn high C steels capable of deformation-induced twinning were analyzed based on the associated length changes. Al addition was found to significantly retard the kinetics of cementite precipitation, indicating its usefulness in the design of cementite-free austenitic medium Mn steels with high C concentrations. Furthermore, Al addition changes the morphology of intragranular cementite from plate-shaped to equiaxed.
The tensile properties of alloy were also examined in the present study. The present contribution discusses the mechanical properties of a bulk medium Mn high C steel with special alloying additions to oppose the precipitation of cementite. In particular, it aims to justify the mechanical properties based on crack nucleation and growth mechanisms. The reported mechanical properties enable a comparison with those of the well-known high Mn and Hadfield steels.
|
28 |
An Elevated-Temperature Tension-Compression Test and Its Application to Mg AZ31BPiao, Kun 20 October 2011 (has links)
No description available.
|
29 |
Deformation twinning in corrosion-resistant nickel alloys : with a rising nickel contentNordström, Joakim January 2024 (has links)
Sanicro 28 and Alloy 625 are corrosion-resistant nickel alloys with a fully austenitic structure and a very low carbon content, which means they are both well suited for cold working. Since the millennium shift deformation twinning has been a live research issue as it enhances strength and ductility simultaneously. As nickel has been pointed out as a high stacking fault energy element and deformation twinning should be promoted by a low stacking fault energy level they have been considered as opposite poles. Nonetheless, it is known since long that deformation twins can emerge in high stacking fault face centred cubic elements at low temperatures. In this thesis, we have investigated deformation twinning behaviour in corrosion-resistant nickel alloys. The objective is trying to distinguish between deformation twinning in TWIP steel and corrosion resistant nickel alloys regarding for instance size and bundles. Interrupted uniaxial tensile tests have been performed at several cold working temperatures for the alloys: Sanicro 28 (31% nickel) and Alloy 625 (61% nickel). The microstructure has been characterized in homogeneous deformation volume, by scanning electron microscopy electron backscattering diffraction and electron channelling contrast imaging, transmission electron microscopy and X-ray diffraction. In one investigation fracture behaviour has also been studied with secondary electrons. Ab initio calculations, crystal plasticity modelling and DAMASK simulations have been performed to support emphasizing active deformation mechanisms. It has been revealed that deformation twinning can occur in high Ni alloys. With increasing deformation twinning levels, the diffuse necking decreases. Ab initio calculations indicates that the initiation of deformation twins cannot be determined solely by the stacking fault energy. Distinct features were discovered at low strains that could be rejected from being neither deformation twins nor stacking faults. Level of texture increases with increasing strain and decreasing temperature and the texture modes are changed with decreasing temperature. / Sanicro 28 och Alloy 625 är två legeringar med ett imponerande korrosionsmotstånd, ett lågt kolinnehåll och en helaustenitisk struktur. Det gör dem väl lämpade för kallbearbetning. Sedan millenieskiftet har aktivten varit mycket hög inom forskningsområdet: deformationstvillingar. TWIP (twinning induced plasticity)-effekten har den så eftertraktade egenskapen att både styrkan och duktiliteten förbättras på samma gång. Eftersom nickel har en hög staplingsfelsenergi och TWIP-effekten har uppmätts/beräknats till att aktiveras vid ett snävt och lågt värde, för densamma, har ett ökande nickelinnehåll och TWIP-effekten setts som direkta motpoler. Trots det, har man länge vetat om att deformationstvillingar också framträder, om än, vid låga temperaturer, i legeringar med kubiskt ytcentrerat gitter och hög staplingsfelsenergi. I den här avhandlingen har vi undersökt hur deformationstvillingar utvecklas, om de ens kan bildas i korrosionsbeständiga legeringar med ett högt nickelinnehåll. Målet är att se om det finns några större skillnader i tvillingbeteendet i TWIP-stål i jämförelse med korrosionsbeständiga legeringar med ett högt nickelinnehåll. Några egenskaper vi har tänkt att undersöka är: tjocklek på tvillingarna och om tvillingarna bildas i grupper. Vi hoppas på så sätt kunna svara på den övergripande forskningsfrågan: är det möjligt att designa ett rostfritt TWIP-stål, baserat på det vanligaste legeringssystemet för rostfria austenitiska stål, nämligen: järn-krom-nickel? Enaxliga dragprov har genomförts vid flera kallbearbetningstemperatuer; de har utförts både till brott och till förutbestämda töjningsnivåer. Legeringarna som har testats är: Sanicro 28 (31% nickel) och Alloy 625 (61% nickel). Mikrostrukturen har framför allt karakteriserats i material uttaget från volym där deformationen har varit homogen. De analysmetoder som har använts är: svepelektronmikroskopi, mer specifikt: ”electron backscatter diffraction” och ”electron channelling contrast imaging”. Transmissionselektronmikroskop och röntgendiffraktion har också använts. I en undersökning har också brottbeteende studerats med hjälp av "secondary electrons". Ab initioberäkningar, modellering av kristallplasticitet och materialbeteende med hjälp av DAMASK har också utförts för att kunna se vilka deformationsmekanismer som är aktiva. Vi upptäckte att deformationstvillingar faktiskt kan bildas i korrosionsbeständiga legeringar med ett högt nickelinnehåll. Den diffusa midjebildningen minskar på samma gång som andelelen deformationstvillingar ökar. Ab initioberäkningarnas resultat indikerar också på att deformationstvillingarnas inträde inte enbart kan bestämmas med staplingsfelsenergin. Tydliga mikrostrukturmönster upptäcktes med hjälp av transmissionsmiroskop och vid låga töjningsnivåer. De mikrostrukturmönstren kunde avfärdas från att vara både deformationstvillingar och staplingsfel. Texturnivån ökar med ökande töjningsnivå och sjunkande temperatur. Typen av textur förändras också med sjunkande temperatur. / <p>Funding agency: Tube division, Alleima AB</p>
|
Page generated in 0.0597 seconds