Spelling suggestions: "subject:"all oil."" "subject:"fall oil.""
21 |
Laboratory test methods for the determination of the corrosion of metals in tallol at high temperaturesMarkwood, Ira M. January 1942 (has links)
An investigation of the factors affecting the corrosion rates of metals in hot tallol was undertaken to answer questions raised by previous investigators. The items studied were as follows:
1. The change in composition of tallol on heating was determined by heating tallol at 300° C. for 48 hours, and analyzing samples withdrawn at frequent time intervals.
2. The effect of change in composition of tallol was studied by determining the corrosion rate of steel in fresh tallol at 300° C., and in tallol which had been subjected to heating for 48 hours at 300° C.
3. The effect on the corrosive properties of the tallol of removing volatile components, of which a large proportion was water, was studied by determining the corrosion rates of aluminum, steel, nickel and copper at 300° C. when condensable volatile matter was returned to the system, and when it was allowed to escape.
4. The effect of water in the tallol was studied by determining the corrosion rate of steel in tallol at 300° C. for 48 hours, during which time water and other volatile products were allowed to escape, then adding water and repeating the corrosion test for five hours.
From the results obtained in this investigation, it was decided that the most satisfactory correlation with plant data would probably be obtained by operating the test with fresh tallol at 300° C and replacing it every eighteen hours, allowing volatile components to escape from the vessel during the test periods. Separate tests must be made on those metals affected by ions of other metals, as shown by Keister(15) and Maguire(19). / M.S.
|
22 |
Synthesis and characterization of tall oil fatty acid based thermoset resin suitable for natural fiber reinforced compositeChen, Rong January 2012 (has links)
Biobased thermoset resins were synthesized by functionalizing the tall oil fatty acid with hydrogen peroxide and then methacrylic anhydride. The obtained resins were characterized by FTIR to confirm the conversions. The cross-linking ability of the resins were checked by curing experiments and followed by DSC analysis regarding the extent of cross linking. TGA analysis was conducted to identify the thermal degradation patterns of cured resins. The obtained resins (blended with or without 33wt% styrene) were used as matrix and knitted viscose fibers were used as reinforcements to make bio-based composites. Ten layers of knitted viscose fibers were stacked crosswise (0/90⁰С) and hand lay-up impregnation was performed. The fiber ratio of all composites was around 63-66%. The composites were characterized by flexural testing, dynamic mechanical thermal analysis and charpy testing. This work demonstrates that manufacture of composites with both matrix and reinforcement fiber coming from renewable resources is feasible, and the resulted composites have satisfied mechanical performance. / Program: MSc in Resource Recovery - Sustainable Engineering
|
23 |
Evaluation of fatty acid fraction derived from tall oil as a feedstock for biodiesel productionNeaves, David Edward, January 2007 (has links)
Thesis (M.S.)--Mississippi State University. David C. Swalm School of Chemical Engineering. / Title from title screen. Includes bibliographical references.
|
24 |
Potential of tall oil pitch as phase change material in lignin-shelled hybrid nanocapsules for thermal energy storage.Viberg Nissilä, Helena January 2022 (has links)
A prospect in utilizing thermal energy in development of energy systems is by the useof phase change materials (PCMs). PCMs are materials that can store and releaseenergy during phase changes, e.g. from solid to liquid. By-products from the woodand pulping industry could be of interest in this area, in part to add value to theby-products, enhance the yield of the raw product of wood and become less dependenton fossil based fuels. Capsules of lignin and tall oil pitch/tall oil fatty acids weresuccessfully produced with a straightforward coprecipitation method. The solventused was acetone and the antisolvent was distilled water. Dynamic light scatteringanalysis showed average particle diameters of 300 to 500 nm and fairly lowpolydispersity, between 0.2 to 0.3, indicating spherical particles. Scanning electronmicroscopy confirmed particle size and the formation of capsules with shell thicknessless than 100 nm. The particle dispersions showed sufficiently high zeta potential tomaintain a stable colloidal system. Thermal analysis confirmed stability in atemperature range of at least -40 °C to +50 °C, and resistance to decomposition at leastup to around 200 °C. There were also indications of enhanced thermal stability of talloil pitch due to encapsulation. A desired feature for a phase change material is theability to keep a constant temperature during phase change. Regarding using thesynthesized material as phase change material, the results show that the temperaturerange in which phase change, such as melting, occurs is too broad. Latent heat of fusionof 4.7 J/g for the material is also very low compared with commercial phase changematerials. Further studies in modifying the system to impact melting point andenhancement of latent heat is needed if the material should be applicable as an efficientand competitive phase change material.
|
25 |
Decay and environmental studies on southern pineDahlen, Joseph Martin 10 December 2010 (has links)
This work focused on decay and dimensional stability of southern pine lumber and environmental issues associated with emissions released during kiln drying of southern pine. In one study decking boards were treated with a 3% resin acid solution to increase the dimensional stability. The boards were placed on a roof and weathered for two years. The increased water repellency reduced moisture gain following summer rainstorms by one-third compared to untreated matched samples, this significantly reduced splitting by half and cupping by one-third. In one study decking boards from matched samples were weathered for two years in the roof setup described above, and in a fungal ground proximity test. The ground proximity samples had slightly more decay than the roof samples. Correlation between decay ratings for the matched samples was 37%, suggesting above-ground decay susceptibility is dependent on the macro- and micro-environment. Decay in roof exposure was modeled based on moisture content factors, whereas decay in ground proximity was modeled by the resin and fatty acids. One study tested pole sections with varying amounts of sapwood, heartwood, and knots dried in a pilot-scale kiln. A sample of the kiln exhaust was measured for volatile organic compounds. Emissions from poles were similar to clear lumber. Emissions from heartwood poles were less than for heartwood lumber, perhaps due to the poles’ sapwood band. The final study was conducted with clear and knotty lumber kiln dried to below 8% moisture content using three kiln schedules. Wood dried to this lower moisture content is used in interior applications or exported. During drying, a sample of the kiln exhaust was analyzed for total VOCs, and a sample of the kiln exhaust was collected and analyzed for hazardous air pollutants via gas chromatography and spectrophotometry. For all three kiln schedules, mills would reach 10 tons of methanol and thus must comply with maximum achievable control technology standards before reaching 25 tons of methanol, formaldehyde, acetaldehyde, acrolein, and propionaldehyde.
|
26 |
Conversion of renewable feedstocks into polymer precursors and pharmaceutical drugsShi, Yiping January 2018 (has links)
Fossils fuels are highly demanded in everyday life domestically or industrially. Fossil fuels are finite resources and they are rapidly depleting, as such alternative renewable feedstocks are sought to replace fossil fuels. Tall oil from paper processing and cashew nut shell liquid from the cashew nut industry are the two major renewable sources we studied, they are both waste byproducts, and have the potential to be converted into value-added materials. Tall oil from the paper industry mainly contained tall oil fatty acid, and under isomerising methoxycarbonylation with palladium catalyst, dimethyl 1,19-dimethyl nonadecanedioate can be obtained. This difunctional ester, dimethyl 1,19-dimethyl nonadecanedioate, is converted to diols, secondary and primary diamines by a hydrogenation reaction with ruthenium complexes of 1,1,1-tris(diphenylphosphinometyl)ethane (triphos) as catalysts in the presence of water, amine or aqueous ammonia respectively. In the case of aqueous ammonia it is necessary to use a two step reaction via diol to obtain 1,19-diaminononadecane. Diesters, diols and diamines are useful precursors for the synthesis of polyesters and polyamides. Difunctional substrates with 8-19 carbon chains are all tolerated under the reaction conditions and are successfully converted to the corresponding diols and diamines in high yields. Under similar hydrogenation conditions with the same ruthenium catalyst, cyclic products were predominantly produced with decreased chain length. N-heterocycles, which are important building blocks for the synthesis of drug molecules, were formed from the hydrogenation of diesters with 4-7 carbon chains in the presence of an amine. Another polymer precursor, ε-caprolactam, which is the precursor for Nylon 6, is obtained in a reasonable yield from both adipic acid and adipate esters together with aqueous ammonia in the presence of ruthenium catalyst. Cashew nut shell liquid was also converted into useful medical drugs, such as norfenefrine, rac-phenylephrine, etilefrine and fenoprofene in reasonable yields. Most of these drug molecules have been formed from 3-vinylphenol by catalytic hydroxyamination followed by methylation or ethylation. 3-Vinylphenol was synthesised from cardanol by ethenolysis to 3-non-8-enylphenol followed by isomerising ethenolysis, whilst the N-alkylation reactions used methyl or ethyl triflate to avoid dialkylation. Fenoprofene was formed by firstly O-phenylating cardanol then ethenolysis followed by isomerising ethenolysis to form 1-phenoxy-3-vinylbenzene. Methoxycarbonyation followed by hydrolysis formed the final product in good yield. Our methods start from renewable waste materials and avoid unpleasant reagents in the original stoichiometric synthesis of those drugs, for example, cyanide is no longer essential for the synthesis of fenoprofene.
|
27 |
Soap separation efficiency at Gruvön mill : An evaluation of the process before and after a modificationTran, Tony January 2011 (has links)
Wood consists not only of cellulose, lignin and hemicellulose but also of so called extractives which includes fats and acids and these components are separated in the mill from the black liquor. These extractives are in the mill denoted as tall oil soap. Tall oil has a large field of applications like chemicals and fuel and as it is produced to the atmosphere if it can replace oil and thus reduce the oil consumption. Tall oil soap is separated from the black liquor in a skimmer and the focus of this thesis was to examine the effect of air injection and the soap layer thickness on the soap separation efficiency in a skimmer. The work was focused on in analyzing the soap content of the inlet and outlet black liquor flow of the skimmer and to detect if an enhancement has been achieved with the two mentioned methods. The reason for the pulp mill to improve the soap separation efficiency was to decrease the risk of foaming and fouling in the evaporator but also to be able to increase the production of tall oil. The air injection gave a 41% improvement of the soap separation efficiency and further improvements are probably possible to achieve. The air injection flow was about 7 l air /m3 liquor in the black liquor feed. The airflow lowers the density of soap, creating a greater difference in density between soap and black liquor and this improves the separation efficiency. A thicker soap layer could increase the likelihood for soap drops to raise and reach the soap-liquor interface, because the soap drops have the tendency to bind with each other and will be separated from the liquor instead of following with the skimmed liquor outlet (fig. i.2). However, this study shows no indication of improvement with thicknesses that exceeds 0,75- 3,5 m which also endanger the skimmer due to overflow from the skimmer or create a short circuit between the in- and the outlet black liquor flow.
|
Page generated in 0.0487 seconds