Spelling suggestions: "subject:"tandem"" "subject:"eandem""
61 |
III-V/Si tandem solar cells : an inverted metamorphic approach using low temperature PECVD of c-Si(Ge) / Cellules solaires tandem III-V/Si : une approche inverse métamorphique par PECVD basse température de c-Si(Ge)Hamon, Gwenaëlle 12 January 2018 (has links)
La limite théorique d’efficacité d’une cellule solaire simple jonction est de ~29 %. Afin de dépasser cette limite, une des moyens les plus prometteurs est de combiner le silicium avec des matériaux III-V. Alors que la plupart des solutions proposées dans la littérature proposent de faire croître directement le matériau III-V sur substrat silicium, ce travail présente une approche innovante de fabriquer ces cellules solaires tandem. Nous proposons une approche inverse métamorphique, où le silicium cristallin ou SiGe est cru directement sur le matériau III-V par PECVD. La faible température de dépôt (< 200 °C) diminue les problèmes de différence de dilatation thermique, et le fait de croître le matériau IV sur le matériau III-V élimine les problèmes de polarité.La réalisation de la cellule tandem finale en SiGe/AlGaAs passe par le développement et l’optimisation de plusieurs briques technologiques. Tout d’abord, nous développons l’épitaxie à 175 °C de Si(Ge) sur des substrats de Si (100) dans un réacteur de RF-PECVD industriel. La réalisation de cellules solaires à hétérojonction à partir de ce matériau Si(Ge) crû par PECVD montre que ses performances électriques s’avèrent prometteuses. Nous obtenons pour un absorbeur de 1.5 µm des Voc qui atteignent 0.57 V. L’incorporation de Ge permet d’augmenter le JSC de 15.4 % jusqu’à 16.6 A/cm2 pour Si0.72Ge0.28.En parallèle, la croissance de cellules solaires AlGaAs a été développée, ainsi que sa fabrication technologique. Nous obtenons une efficacité de 17.6 % pour une cellule simple en Al0.22Ga0.78As. Nous développons aussi des jonctions tunnel, parties essentielles d’une cellule tandem dans une configuration à deux terminaux. Nous développons notamment le dopage n du GaAs en utilisant le précurseur DIPTe, et obtenons des jonctions tunnel ayant des courants pic atteignant jusqu’à 3000 A/cm2, rejoignant ainsi les résultats de l’état de l’art.Ensuite, nous étudions l’hétéro-épitaxie de Si sur GaAs par PECVD. Le c-Si montre d’excellentes propriétés structurales. Les premiers stades de croissance sont étudiés par diffraction des rayons X avec rayonnement synchrotron. Nous trouvons un comportement inattendu : le Si est relâché dès les premiers nanomètres, mais sa maille est tétragonale. Alors que le GaAs a un paramètre de maille plus grand que le Si, le paramètre hors du plan (a⏊) du Si est plus élevé que son paramètre dans le plan (a//). Nous trouvons une forte corrélation entre cette tétragonalité et la présence d’hydrogène dans la couche de silicium. D’autre part, nous montrons que le plasma d’hydrogène présent lors du dépôt PECVD affecte les propriétés du GaAs : son dopage diminue d’environ un ordre de grandeur lorsque le GaAs est exposé au plasma H2, dû à la formation de complexes entre le H et le dopant (C, Te ou Si). Le dopage initial peut être retrouvé après un recuit à 350 °C.Enfin, nous étudions la dernière étape de fabrication de la cellule tandem : le collage. Nous avons pu reporter une cellule simple inversée en AlGaAs sur un substrat hôte (en Si), retirer le substrat GaAs et effectuer les étapes de microfabrication sur un substrat 2 pouces. Des couches épaisses de Si (>1 µm) ont été crues avec succès sur une cellule AlGaAs inversée suivie d’une jonction tunnel. Le collage de cette cellule tandem, et la processus de fabrication technologique du dispositif final sont ensuite étudiés, afin de pouvoir caractériser électriquement la première cellule solaire tandem fabriquée par croissance inverse métamorphique de Si sur III-V. / Combining Silicon with III-V materials represents a promising pathway to overcome the ≈29% efficiency limit of a single c-Si solar cell. While the standard approach is to grow III-V materials on Si, this work deals with an innovative way of fabricating tandem solar cells. We use an inverted metamorphic approach in which crystalline silicon or SiGe is directly grown on III-V materials by PECVD. The low temperature of this process (<200 °C) reduces the usual thermal expansion problems, and growing the group IV material on the III-V prevents polarity issues.The realization of the final tandem solar cell made of SiGe/AlGaAs requires the development and optimization of various building blocks. First, we develop the epitaxy at 175°C of Si(Ge) on (100) Si substrates in an industrial standard RF-PECVD reactor. We prove the promising electrical performances of such grown Si(Ge) by realizing PIN heterojunction solar cells with 1.5µm epitaxial absorber leading to a Voc up to 0.57 V. We show that the incorporation of Ge in the layer increases the Jsc from 15.4 up to 16.6 A/cm2 (SiGe28%).Meanwhile, we develop the growth of AlGaAs solar cells by MOVPE and its process flow. We reach an efficiency of 17.6 % for a single Al0.22GaAs solar cell. We then develop the tunnel junction (TJ), essential part of a tandem solar cell with 2-terminal integration. We develop the growth of n-doped GaAs with DIPTe precursor to fabricate TJs with peak tunneling currents up to 3000 A/cm2, reaching state-of-the art TJs.Then, the hetero-epitaxy of Si on GaAs by PECVD is studied. c-Si exhibits excellent structural properties, and the first stages of the growth are investigated by X-ray diffraction with synchrotron beam. We find an unexpected behavior: the grown Si is fully relaxed, but tetragonal. While the GaAs lattice parameter is higher than silicon one, we find a higher out-of-plane Si parameter (a⏊) than in-plane (a//), contradicting the common rules of hetero-epitaxy. We find a strong correlation between this tetragonal behavior and the presence of hydrogen in the Si layer. We furthermore show that hydrogen also plays a strong role in GaAs: the doping level of GaAs is decreased by one order of magnitude when exposed to a H2 plasma, due to the formation of complexes between H and the dopants (C, Te, Si). This behavior can be recovered after annealing at 350°C.Finally, the last step of device fabrication is studied: the bonding. We successfully bonded an inverted AlGaAs cell, removed it from its substrate, and processed a full 2” wafer. We succeeded in growing our first tandem solar cells by growing thick layers (>1 µm) of Si on an inverted AlGaAs solar cells followed by a TJ. The bonding and process of this final device is then performed, leading, as a next step, to the electrical measurement of the very first tandem solar cell grown by inverted metamorphic growth of Si on III-V.
|
62 |
Numerical Investigation of Subsonic Axial-Flow Tandem Airfoils for a Core Compressor RotorMcGlumphy, Jonathan 18 February 2008 (has links)
The tandem airfoil has potential to do more work as a compressor blade than a single airfoil without incurring significantly higher losses. Although tandem blades are sometimes employed as stators, they have not been used in any known commercial rotors. The goal of this work is to evaluate the aerodynamic feasibility of using a tandem rotor in the rear stages of a core compressor. As such, the results are constrained to shock-free, fully turbulent flow. The work is divided into 2-D and 3-D simulations. The 3-D results are subject to an additional constraint: thick endwall boundary layers at the inlet.
Existing literature data on tandem airfoils in 2-D rectilinear cascades have been compiled and presented in a Lieblein loss versus loading correlation. Large scatter in the data gave motivation to conduct an extensive 2-D CFD study evaluating the overall performance as a function of the relative positions of the forward and aft airfoils. CFD results were consistent with trends in the open literature, both of which indicate that a properly designed tandem airfoil can outperform a comparable single airfoil on- and off-design. The general agreement of the CFD and literature data serves as a validation for the computational approach.
A high hub-to-tip ratio 3-D blade geometry was developed based upon the best-case tandem airfoil configuration from the 2-D study. The 3-D tandem rotor was simulated in isolation in order to scrutinize the fluid mechanisms of the rotor, which had not previously been well documented. A geometrically similar single blade rotor was also simulated under the same conditions for a baseline comparison. The tandem rotor was found to outperform its single blade counterpart by attaining a higher work coefficient, polytropic efficiency and numerical stall margin. An examination of the tandem rotor fluid mechanics revealed that the forward blade acts in a similar manner to a conventional rotor. The aft blade is strongly dependent upon the flow it receives from the forward blade, and tends to be more three-dimensional and non-uniform than the forward blade. / Ph. D.
|
63 |
Investigation of the Long-Term Operational Stability of Perovskite/Silicon Tandem Solar CellsAljamaan, Faisal 14 December 2021 (has links)
With the global energy demand projected to grow rapidly, it is imperative to divest from traditional greenhouse gas-based power production toward renewable energy sources such as solar. In recent years, solar photovoltaics (PV) hold a large share among renewables sources. Currently, the market is dominated by crystalline silicon solar cells due to their low levelized cost of energy (LCOE) values. However, to sustain this progress, the power conversion efficiency of PV devices must be further improved since tiny costs cut from the other expenses is difficult. On the other hand, the margin for the PCE improvement in c-Si technology is also quite limited since the technology is approaching its practical limits. At this stage, coupling c-Si devices with another efficient solar cell in tandem configuration is a promising way to overcome this challenge. Perovskite solar cells (PSCs) represent a breakthrough solar technology to enable this target due to their proven high efficiency and potential cost-effectiveness. Whereas perovskite/silicon tandem solar cells are promising, their operational stabilities are still a significant concern for market entry.
Here, the degradation mechanism of n-i-p perovskite/Si tandem solar cells was investigated. Thermal stability tests have shown severe degradation in such tandem devices. On the other hand, tandem devices were relatively stable when placed in a humidity cabinet with 25% relative humidity (RH). Conversely, temperature degraded devices showed cracks all over the perovskite surface and rupture in the top electrode after 1000 hrs at 85 oC. Additionally, silver iodide formation was depicted in XRD and XPS analysis.
To enhance the stability, methods to reduce the hysteresis were studied. First, potassium chloride (KCl) was applied as a passivation agent to the electron transport layer (ETL) to reduce surface defects. Second, 2D passivation was applied to reduce trap density and enhance the crystallinity of the perovskite film. Finally, organic molecules were placed between the hole transport layer (HTL) and metal-oxide interface as interlayers to prevent diffusion of metal oxide to the HTL and accumulation of the dopant at the metal-oxide interface. After passivation and interface layers, stability enhanced but further improvement is still required.
|
64 |
Tip-over stability analysis of crawler cranes in heavy lifting applicationsRishmawi, Sima 27 May 2016 (has links)
Cranes are often the most conspicuous machines on a construction site. This is due to their large size, in addition to the important role they have in transporting heavy payloads vertically and horizontally. There are two major families of construction cranes: tower cranes and mobile cranes. Mobile cranes that are mounted on tracks are a subgroup referred to as ``crawler cranes''. Crawler cranes are widely used on construction sites, and are a backbone of the United States construction industry, thus a detailed study of these cranes' behavior is essential. This research studies the tip-over stability of crawler cranes in heavy-lifting applications. Two major applications are discussed: crawler cranes using movable counterweights and crawler cranes in tandem lifting.
|
65 |
Study of maillard reaction and early reaction products by mass spectrometryRuan, Dongliang., 阮棟梁. January 2009 (has links)
published_or_final_version / Biological Sciences / Doctoral / Doctor of Philosophy
|
66 |
Microsatellite Evolution in The Yeast Genome - A Genomic ApproachMerkel, Angelika January 2008 (has links)
Microsatellites are short (1-6bp long) highly polymorphic tandem repeats, found in all genomes analyzed so far. Popular genetic markers for many applications including population genetics, pedigree analysis, genetic mapping and linkage analysis, some microsatellites also can cause a variety of human neurodegenerative diseases and may act as agents of adaptive evolution through the regulation of gene expression. As a consequence of these diverse uses and functions, the mutational and evolutionary dynamics of microsatellite sequences have gained much attention in recent years. Mostly, the focus of studies investigating microsatellite evolution has been to develop more refined evolutionary models for estimating parameters such as genetic distance or linkage disequilibrium. However, there is an incentive in using our understanding of the evolutionary processes that affect these sequences to examine the functional implications of microsatellite evolution. What has emerged from nearly two decades of study are highly complex mutational dynamics, with mutation rates varying across species, loci and alleles, and a multitude of potential influences on these rates, most of which are not yet fully understood.
The increasing availability of whole genome sequences has immensely extended the scope for studying microsatellite evolution. For example, where once it was common to examine single loci, it is now possible to examine microsatellites using genome wide approaches. In the first part of my dissertation I discuss approaches and issues associated with detecting microsatellites in genomic data. In Chapter 2 I undertook a meta-analysis of studies investigating the distribution of microsatellites in yeast and showed that studies comparing the distribution of microsatellites in genomic data can be fraught due to the application of different definitions for microsatellites by different investigators. In particular, I found that variation in how investigators choose the repeat unit size of a microsatellite, handle imperfections in the array and especially the choice of minimum array length used, leads to a large divergence in results and can distort the conclusions drawn from such studies, particularly where inter-specific comparisons are being made. In a review of the currently available suite of bioinformatics tools (Chapter 3), I further showed that this bias extends beyond a solely theoretical controversy into a methodological issue because most software tools not only incorporate different definitions for the key parameters used to define microsatellites, but also employ different strategies to search and filter for microsatellites in genomic data. In this chapter I provide an overview of the available tools and a practical guide to help other researchers choose the appropriate tool for their research purpose.
In the second part of my thesis, I use the analytical framework developed from the previous chapters to explore the biological significance of microsatellites exploiting the well annotated genome of the model organism Saccharomyces cerevisiae (baker’s yeast). Several studies in different organisms have indicated spatial associations between microsatellites and individual genomic features, such as transposable elements, recombinational hotspots, GC-content or local substitution rate. In Chapter 4, I summarized these studies and tested some of the underlying hypotheses on microsatellite distribution in the yeast genome using Generalized Linear Models (GLM) and wavelet transformation. I found that microsatellite type and distribution within the genome is strongly governed by local sequence composition and negative selection in coding regions, and that microsatellite frequency is inversely correlated with SNP density reflecting the stabilizing effect point mutations have on microsatellites. Microsatellites may also be markers for recent genome modifications, due to their depletion in regions nearby LTR transposons, and elements of potential structural importance, since I found associations with features such as meiotic double strand breaks, regulatory sites and nucleosomes. Microsatellites are subject to local genomic influences, particularly on small (1-2kb) scales. Although, these local scale influences might not be as dominant as other factors on a genome-wide scale they are certainly of importance with respect to individual loci.
Analysis of locus conservation across 40 related yeast strains (Chapter 5) showed no bias in the type of microsatellites conserved, only a negative influence of coding sequences, which supports again the idea that microsatellites evolve neutrally. Polymorphism was rare, and despite a positive correlation with array length, there was no relationship with either genomic fraction or repeat size. However, the analysis also revealed a non-random distribution of microsatellites in genes of functionally distinct groups. For example, conserved microsatellites (similar to general microsatellites in yeast) are mostly found in genes associated with the regulation of biological and cellular processes. Polymorphic loci show further an association with the organization and biogenesis of cellular components, morphogenesis, development of anatomical structures and pheromone response, which, is absent for monomorphic loci. Whether this distribution is an indication of functionality or simply neutral mutation (e.g. genetic hitch-hiking) is debatable since most conserved microsatellites, particularly variable loci, are located within genes that show low selective constraints. Overall, microsatellites appear as neutrally evolving sequences, but owing to the sheer number of loci within a single genome, individual loci may well acquire some functionality. More work is definitely needed in this area, particularly experimental studies, such as reporter-gene expression assays, to confirm phenotypic effects.
|
67 |
Cross-lingual automatic speech recognition using tandem featuresLal, Partha January 2011 (has links)
Automatic speech recognition requires many hours of transcribed speech recordings in order for an acoustic model to be effectively trained. However, recording speech corpora is time-consuming and expensive, so such quantities of data exist only for a handful of languages — there are many languages for which little or no data exist. Given that there are acoustic similarities between different languages, it may be fruitful to use data from a well-supported source language for the task of training a recogniser in a target language with little training data. Since most languages do not share a common phonetic inventory, we propose an indirect way of transferring information from a source language model to a target language model. Tandem features, in which class-posteriors from a separate classifier are decorrelated and appended to conventional acoustic features, are used to do that. They have the advantage that the language used to train the classifier, typically a Multilayer Perceptron (MLP) need not be the same as the target language being recognised. Consistent with prior work, positive results are achieved for monolingual systems in a number of different languages. Furthermore, improvements are also shown for the cross-lingual case, in which the tandem features were generated using a classifier not trained for the target language. We examine factors which may predict the relative improvements brought about by tandem features for a given source and target pair. We examine some cross-corpus normalization issues that naturally arise in multilingual speech recognition and validate our solution in terms of recognition accuracy and a mutual information measure. The tandem classifier in work up to this point in the thesis has been a phoneme classifier. Articulatory features (AFs), represented here as a multi-stream, discrete, multivalued labelling of speech, can be used as an alternative task. The motivation for this is that since AFs are a set of physically grounded categories that are not language-specific they may be more suitable for cross-lingual transfer. Then, using either phoneme or AF classification as our MLP task, we look at training the MLP using data from more than one language — again we hypothesise that AF tandem will resulting greater improvements in accuracy. We also examine performance where only limited amounts of target language data are available, and see how our various tandem systems perform under those conditions.
|
68 |
Tetra-substituted olefin synthesis using palladium-catalysed C-H activationLopez Suarez, Laura January 2012 (has links)
In an effort to obtain more efficient and greener chemical transformations, a substantial amount of research interest has been directed towards the use of arene C-H bonds as functional groups. Hydroarylation of alkynes through direct functionalisation of C-H bonds has been studied in recent years leading to the development of high-yielding metal-mediated processes. The main aim of the current work is the addition of a third component in the hydroarylation of alkynes trough C-H activation, in order to achieve a second C-C bond formation. Attempts at palladium-catalysed three-component reaction of unactivated indoles with alkynes and aryliodides are described. The three-component reaction was studied in the intermolecular mode with both aryliodides and the more reactive diaryliodonium salts. These latter regents are reactive arylating and oxidising agents and have been used in the direct arylation of indoles under mild conditions through a PdII-PdIV catalytic cycle. In both cases the three-component product was not obtained. The intramolecular version of the reaction using alkyne-tethered indoles and diaryliodonium salts is also described. In this case the tandem process was successful, especially when using ethynylbenzyl indole derivatives, the Z-tetrasubstituted olefins could be selectively obtained under mild conditions. Finally, a low-yielding synthesis of chromenes from propargylaryl ethers and diaryliodonium salts is also discussed.
|
69 |
Contribution à la modélisation du comportement rhéologique des enrobés bitumineux : influence des conditions extrêmes de température et de trafic en fatigueMerbouh, M’hammed 21 December 2010 (has links)
Les particularités de climat et les nouveaux avions très gros porteurs, imposent des effets cycliques dangereux sur les couches de roulement. Les simulations en laboratoire de ces phénomènes ont montrées leur influence sur les qualités viscoélastiques du bitume et enrobé, qui sont fonctions des variations de la température. Telles que les déformations permanentes avec perte de résistance et le durcissement du bitume associé au vieillissement accéléré. Les lois de comportement en fatigue sous trafic prouvent que les grandes amplitudes de déformation en tandem endommagent sévèrement l’enrobé. Les informations recueillies permettent de mieux prévoir l’évolution du comportement in situ du bitume et enrobé. / Abstract
|
70 |
Préparation d'azabicycles d'importance biologiqueTremblay, Martin January 2004 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
Page generated in 0.0302 seconds