Spelling suggestions: "subject:"tandem mass"" "subject:"eandem mass""
121 |
The Pharmacokinetic Profile of Synthetic Cathinones in a Pregnancy ModelStrange, Lauren G., Kochelek, Kerri, Keasling, Robert, Brown, Stacy D., Pond, Brooks B. 01 September 2017 (has links)
In recent years, the abuse of synthetic cathinones or ‘bath salts’ has become a major public health concern. Although these compounds were initially sold legally and labeled “not for human consumption”, the ‘bath salts’ are psychostimulants, with similar structures and pharmacologic mechanisms to cocaine, the amphetamines, and 3,4 methylendioxymethamphetamine (MDMA, Molly, or Ecstasy). The reported use of these substances by women of child-bearing age highlights the necessity of studies seeking to delineate risks of prenatal exposure. Three popular drugs of this type are methylone, mephedrone, and 3, 4-methylenedioxypyrovalerone (MDPV). Unfortunately, there is currently no information available on the teratogenicity of these compounds, or of the extent to which they cross the placenta. As such, the purpose of this study was to examine the pharmacokinetic profile of the ‘bath salts’ in a pregnancy model. Pregnant mice (E17.5 gestation) were injected intraperitoneally with a cocktail of 5mg/kg methylone, 10mg/kg mephedrone, and 3mg/kg (MDPV) dissolved in sterile saline. Maternal brain, maternal plasma, placenta, and fetal brain were collected at 30s, 1min, 5min, 10min, 15min, 30min, 1h, 2h, 4h, and 8h following injection. Methylone, mephedrone, and MDPV were extracted from tissue by solid phase extraction, and concentrations were determined using a previously validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Interestingly, all 3 cathinones reached measurable concentrations in the placenta, as well as the fetal brain; in fact, for MDPV, the maximal concentration (Cmax) was highest in fetal brain, while mephedrone's highest Cmax value was achieved in placenta. Additionally, the total drug exposure for all 3 compounds (as represented by area under the curve, AUC) was higher in fetal matrices (placenta and fetal brain) than in maternal matrices (maternal brain and plasma), and the half-lives for the drugs were longer. Given the extensive presence of methylone, mephedrone, and MDPV in the fetal brain following prenatal exposure, fetal risk is definitely a concern. As there are currently no prenatal studies available on the teratogenicity of these agents, pregnant patients should be informed about the potential risks that these substances may have.
|
122 |
Transcriptional regulation of mouse epidermal permeability barrier development and homeostasis by Ctip2Wang, Zhixing 05 June 2012 (has links)
Skin is the largest organ in the body that protects the organism from environmental, chemical and physical traumas of each passing day. The protective skin epidermal permeability barrier (EPB) is formed within the exterior layers of the epidermis, which are regularly sloughed off and repopulated by movement of inner cells. The epidermal permeability barrier is established during in utero development and maintained through lifetime. Impaired epidermal barrier formation is one of the major features of several dermatoses such as psoriasis and atopic dermatitis.
Chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting protein 2 (Ctip2), also known as Bcl11b, is a C���H��� zinc finger protein expressed in many organs and tissues. It has been shown to regulate the development of thymocyte, tooth and corticospinal motor neurons. Ctip2 is highly expressed in mouse epidermis during skin organogenesis and in adulthood. It is crucial for epidermal homeostasis and protective barrier formation in developing mouse embryos. Germline (Ctip2- null mice) and selective ablation of Ctip2 in mouse epidermis (Ctip2[superscript ep-/-] mice) leads to increased transepidermal water loss (TEWL), impaired epidermal proliferation and terminal differentiation as well as altered lipid distribution during embryogenesis. Sphingolipids account for ~50% of total skin lipids by weight and are crucial components of epidermal barrier. We have recently identified Ctip2 as a key regulator of skin lipid metabolism. Germline deletion of Ctip2 in mouse embryos leads to altered lipid composition in the developing mouse epidermis by modulating the expression levels of key enzymes involved in lipid metabolism (bio-synthesis and catabolism). We also demonstrated that Ctip2 is recruited to the promoter regions of several genes involved in the ceramide and sphingomyelin biosynthesis pathways and could directly regulate their expression. Thus, we have identified Ctip2 as a key regulator of several lipid metabolizing genes and hence epidermal sphingolipid biosynthesis during skin development.
To study the role of Ctip2 in adult skin homeostasis, we have utilized Ctip2[superscript ep-/-] mouse model in which Ctip2 is selectively deleted in epidermal keratinocytes. We showed that keratinocytic ablation of Ctip2 leads to atopic dermatitis (AD)-like skin inflammation, characterized by alopecia, pruritus and scaling, as well as high infiltration of T lymphocytes and immune cells. We have also observed increased expression of Th2-type cytokines and chemokines in the mutant skin, as well as systemic immune responses that share similarity with human AD patients. Furthermore, we discovered that thymic stromal lymphopoietin (TSLP) expression is significantly upregulated in the mutant epidermis as early as postnatal day 1 and Ctip2 was recruited to the promoter region of the TSLP gene in mouse epidermal keratinocytes. The results suggest that upregulation of TSLP expression in the Ctip2[superscript ep-/-] epidermis could be due to a derepression of gene transcription in absence of Ctip2. Thus, our data demonstrated a cell-autonomous role of Ctip2 in barrier maintenance and epidermal homeostasis in adult skin, as well as a non-cell autonomous role of keratinocytic Ctip2 in suppressing skin inflammatory responses by regulating the expression of Th2-type cytokines in adult mouse skin. Present results establish an initiating role of epidermal TSLP in AD pathogenesis via a novel repressive regulatory mechanism mediated by Ctip2 in mouse epidermal keratinocytes.
Altogether, our study indicates that Ctip2 could be involved in a diverse range of biological events in skin including barrier formation, maintenance and epidermal homeostasis. Ctip2 appears to be a master regulator in skin barrier functions by directly regulating the transcription of a subset of genes involved in lipid metabolism and inflammatory responses. / Graduation date: 2013
|
123 |
Metabolic Studies with Liquid Separation Coupled to Mass SpectrometryAllard, Erik January 2009 (has links)
Metabolism is the sum of all chemical processes with the purpose to maintain life, as well as enable reproduction, in a living organism. Through the study of metabolism, increased understanding of pharmacological mechanisms and diseases can be achieved. This thesis describes several ways of doing so, including targeted analysis of selected metabolites and investigations of systematic metabolic differences between selected groups through pattern recognition. A method for exploring metabolic patterns in urine samples after intake of coffee or tea was developed. The methodology was later used with the aim to find biomarkers for prostate cancer and urinary bladder cancer. Furthermore, a fully automated quantitative method was developed for concentration measurements of the double prodrug ximelagatran and its metabolites in pig liver. The method was then used to study the roll of active transporters in pig liver cells. Moreover, a fundamental study was conducted to investigate how monitoring of small, doubly charged analytes can improve the limit of detection and precision in a quantitative method. The techniques used for the experiments were liquid separation coupled to electrospray mass spectrometry. Extra efforts were made to make the separation and the ionization as compatible as possible to each other for increased quality of the collected data.
|
124 |
PARALLEL COMPUTING ALGORITHMS FOR TANDEM2013 April 1900 (has links)
Tandem mass spectrometry, also known as MS/MS, is an analytical technique to measure the mass-to-charge ratio of charged ions and widely used in genomics, proteomics and metabolomics areas. There are two types of automatic ways to interpret tandem mass spectra: de novo methods and database searching methods. Both of them need to use massive computational resources and complicated comparison algorithms. The real-time peptide-spectrum matching (RT-PSM) algorithm is a database searching method to interpret tandem mass spectra with strict time constraints. Restricted by the hardware and architecture of an individual workstation the RT-PSM algorithm has to sacrifice the level of accuracy in order to provide prerequisite processing speed. The peptide-spectrum similarity scoring module is the most time-consuming part out of four modules in the RT-PSM algorithm, which is also the core of the algorithm.
In this study, a multi-core computing algorithm is developed for individual workstations. Moreover, a distributed computing algorithm is designed for a cluster. The improved algorithms can achieve the speed requirement of RT-PSM without sacrificing the accuracy. With some expansion, this distributed computing algorithm can also support different PSM algorithms. Simulation results show that compared with the original RT-PSM, the parallelization version achieves 25 to 34 times speed-up based on different individual workstations. A cluster with 240 CPU cores could accelerate the similarity score module 210 times compare with the single-thread similarity score module and the whole peptide identification process 85 times compare with the single-thread peptide identification process.
|
125 |
Einfluss präanalytischer Faktoren auf die Untersuchung des Aminosäure- und AcylcarnitinstoffwechselsBrauer, Romy 30 July 2012 (has links) (PDF)
Quantitative Untersuchungen krankheitsspezifischer oder krankheitsassoziierter metabolischer Signaturen in humanen Körperflüssigkeiten („Clinical Metabolomics“) haben zum Ziel neue Ansätze für diagnostische oder therapeutische Konzepte zu entwickeln. Die simultane quantitative Analytik von Aminosäuren (AS) und Acylcarnitinen (AC) mittels Tandem-Massenspektrometrie (MS/MS) ermöglicht die Erfassung wichtiger Stoffwechselwege des humanen Metabolismus. Hierzu zählen der Stoffwechsel der ketogenen AS, des Harnstoffzyklus oder der β-Oxidation langkettiger Fettsäuren. Allerdings wird die Konzentration der verschiedenen metabolischen Parameter in humanen Körperflüssigkeiten durch eine Vielzahl präanalytischer in vitro Störfaktoren und in vivo Einflussgrößen beeinflusst. Diese können zu signifikanten Veränderungen der Laborergebnisse führen.
Im Rahmen meiner Promotionsarbeit wurden in vitro Störfaktoren (Probenmaterial, Lagerung u. a.) und in vivo Einflussgrößen (Ernährung, physische Aktivität) untersucht und ein standardisiertes Präanalytik-Protokoll entwickelt. Dazu wurden pro Probe 3 µL Trockenblut (TB), 10 µL Serum oder Plasma nach Butylierung mittels Elektrospray-Ionisations-MS/MS analysiert und jeweils 26 AS und 35 AC in 1,5 Minuten simultan bestimmt.
Als Ergebnis der zahlreichen systematischen Präanalytik-Untersuchungen konnten signifikante Konzentrationsunterschiede der Metabolite zwischen kapillärer und venöser Blutentnahme sowie in Abhängigkeit des Hämatokrits gefunden werden. Im Vergleich zu Serum und antikoaguliertem Plasma (EDTA, Citrat, Heparin) waren die Konzentrationen der langkettigen AC im TB 5-fach höher. Nahrungsaufnahme und körperliche Aktivität führten ebenfalls zu signifikanten Veränderungen der AS- und AC-Konzentrationen. Durch Optimierung des Probenaufarbeitungsprotokolls konnte die Variabilität zwischen den Messtagen für 17 AS und 6 AC auf < 20 % gesenkt werden.
Die Ergebnisse meiner Promotionsarbeit unterstreichen den Einfluss präanalytischer Faktoren auf die Metabolomanalytik. Durch Etablierung und Einhaltung standardisierter präanalytischer Protokolle kann die präanalytische Varianz der Ergebnisse deutlich verringert werden. Sie stellen somit eine wichtige Voraussetzung für eine qualitativ hochwertige Metabolomanalytik im Rahmen klinischer Studien zur Identifizierung neuer Biomarker dar.
|
126 |
Mass Spectrometric Sequencing Of Acyclic And Cyclic PeptidesSabareesh, V 08 1900 (has links)
Elucidation of the primary structure of peptides and proteins de novo by mass spectrometry (MS) has become possible with the advent of tandem MS methods. The most widely used chemical method due to Edman (Edman & Begg, 1967) has shortcomings with regard to N- terminal blocked peptides, cyclic peptides and posttranslational modifications, for example phosphorylation (Metzger, 1994). However, mass spectrometric sequencing methods are increasingly becoming applicable for a variety of peptides and proteins, including N- and C- termini modified peptides and cyclic peptides (Jegorov et al., 2003; Sabareesh & Balaram, 2006; Sabareesh et al., 2007). Further, conventional and tandem mass spectrometry have proven useful in the detection of post-translational modifications (Hansson et al., 2004; Nair et al., 2006; Mandal et al., 2007). This thesis details mass spectrometric sequencing of acyclic and cyclic peptides, involving tandem MS methods carried out using both electrospray ionization (ESI) ion trap (Esquire 3000 plus, Bruker Daltonics) and matrix assisted laser desorption and ionization time-of-flight/time-of-flight (MALDI TOF/TOF) (Ultraflex TOF/TOF, Bruker Daltonics) instruments. The peptides are either chemically synthesized or isolated from diverse natural sources. Synthetically designed peptides possessing modified N- and C- termini and peptaibols from the soil fungus Trichoderma constitute the acyclic peptides. The cyclic peptides include backbone cyclized depsipeptides from the fungus Isaria and disulfide bonded peptides from the venom of marine cone snails.
Chapter 1 gives an account of various concepts of mass spectrometry, tandem mass spectrometry and peptide fragmentation chemistry, providing necessary background information for the following chapters.
Chapter 2 describes the fragmentation studies of [M + H]+ and [M + Na]+ adducts of six neutral peptides with blocked N- and C- termini investigated using an electrospray ion trap mass spectrometer. The N- terminus of these synthetically designed peptides is blocked with a tertiarybutyloxycarbonyl (Boc) group and the C- terminus is esterified. These peptides do not possess sidechains that are capable of complexation and hence the backbone amide units are the sole sites of protonation and metallation. The cleavage pattern of protonated adducts is strikingly different from that of sodium adducts. While the loss of the N- terminal blocking group happens quite readily in the case of MS/MS of [M + Na]+, the cleavage of C- terminal methoxy group seems to be a facile process in the case of MS/MS of [M + H]+. Fragmentation of the protonated adducts yields only bn ions, while yn and an type ions are predominantly formed from the fragmentation of sodium adducts. The an ions arising from the fragmentation of [M + Na]+ lack the N-terminal Boc group (termed as an*). MS/MS of [M + Na]+ species also yields bn ions of substantial lower intensities, that lack the N- terminal Boc group (bn*). Comparison of the fragmentation of [M + H]+ with [M + Na]+ of the peptides chosen in this study reveal that the combined use of both protonated and sodium adducts should prove useful in de novo sequencing of peptides that possess modified N- and C- termini, particularly naturally occurring neutral peptides, for example, peptaibols.
Chapter 3 describes about the ESI-MS/MS investigation of an HPLC fraction from the soil fungus Trichoderma, which aided in identification of microheterogeneous trichotoxin peptaibols in that fraction. Dramatic differences were noted between the fragmentation spectra of [M + H]+ and [M + Na]+ species. While b-type ions were noted from the former, the latter yielded a-, b-and y- type ions (the same feature was noted in the cases presented in the previous chapter). Inspection of the isotope pattern of b-ions yielded from the dissociation of H+ species, clearly revealed the presence of three microheterogeneous trichotoxin sequences; two isobars (1718 Da), each possessing one Glu residue and another completely neutral peptide (1717 Da). The microheterogeneity is due to Gly ↔ Ala, Iva ↔ Aib and Gln ↔ Glu replacements and exchanges (Iva: DIva: R-Isovaline; Aib: α-aminoisobutyric acid). The MS/MS of [M + Na]+ adduct predominantly yielded product ions from the neutral peptaibol. Further, the fragmentation patterns of H+ and Na+ adducts of two N-acetyl peptide esters were found to be very similar to that of the neutral peptaibol component. The results presented in this chapter establish that under the electrospray ion trap conditions, the fragmentation patterns of the H+ and Na+ adducts of model peptides that possess modified N- (Boc and acetyl) and C- termini are indeed very similar to that of the neutral trichotoxin.
Chapter 4 delineates the applicability of liquid chromatography coupled to conventional and tandem electrospray ionization mass spectrometry (LC-ESI-MS, LC-ESI-MS/MS, LC-ESI-MS3) for the screening of novel cyclic hexadepsipeptide metabolites directly from the crude hyphal extract of the fungus Isaria. The fungal strain was grown on a solid medium (potato carrot agar), which yields aerial hyphae growing erect from the basal mycelial colony (Ravindra et al., 2004). A total of ten microheterogeneous components were identified to belong to the isariin class of cyclodepsipeptides from the LC-ESI-MS and LC-ESI-MS/MS analysis of the crude hyphal extract. Out of ten, six are determined to be new and the remaining four are previously reported isariins A-D. The primary structures of isariins A-D were from the fungi Isaria cretacea and Isaria felina (Vining & Taber 1962; Deffieux et al., 1981) and the fungal strain used in this study resembles Isaria felina (Sabareesh et al., 2007). Isariins are backbone cyclized hexadepsipeptides composed of a D-β-hydroxy acid possessing a hydrocarbon sidechain and five α-amino acids; one of the α-amino acids is a D-amino acid (Vining & Taber 1962; Deffieux et al., 1981). The detection of fragment ions due to loss of CO concomitant with the loss of H2O from the protonated precursor ion ([M + H]+) ascertained the cyclic depsipeptide nature of both the known and the new components. The fragmentation behavior of the [M + H]+ of known isariins facilitated sequence determination of the new components. Therefore, the configuration of the amino acids and the β-hydroxy acid of the new components is assumed to be same as that of the reported peptides. The microheterogeneity of the ten sequences is due to changes in the D-β-hydroxy acid (residue 1) and the adjoining α-amino acid (residue 6), whose carbonyl is linked to the hydroxyl function by an ester linkage. The number of methylene units ((-CH2)n) in the hydrocarbon sidechain of the residue 1 differs between 2 and 8 and the variability of the residue 6 is limited to Ala/Val. The ester oxygen atom was chosen as the preferable site of protonation causing ring-opening, based on the observed distribution of the fragment ions.
Chapter 5 demonstrates the utility of the LC-ESI-MS and LC-ESI-MS/MS methods in the identification and characterization of six microheterogeneous backbone cyclized hexadepsipeptides, isaridins, directly from the crude hyphal extract of the fungus Isaria. Among the six components, four were found to be novel. The other two peptides, isaridins A and B were identified earlier from this laboratory (Ravindra et al., 2004). The isaridins are characterized by the presence of unusual amino acids such as N-methylated residues, β-methylproline (β-MePro) and hydroxyleucine (HyLeu) (Ravindra et al., 2004). The cyclic nature of both the known and the new peptides were confirmed from the observation of peaks due to loss of CO and H2O from the protonated precursor ion ([M + H]+). However, unlike isariins (Chapter 4), the intensity of the peak corresponding to [M + H - H2O]+ was noted to be of very low intensity, in the case of isaridins. Detection of product ion peak due to [M + H - CO2]+ suggests an additional dissociation pathway involving cleavage at the depsipeptide linkage and is supportive of the cyclic depsipeptide nature (Eckart, 1994). The sequencing of the newly detected components was enabled by understanding the fragmentation mechanism of the known isaridins. The tertiary amide nitrogens of the N-methylated residues were regarded as the preferable sites of protonation leading to ring-opening, as noted from the fragmentation spectra. The microheterogeneity in the sequences was identified using the diagnostic product ions obtained from the protonated precursor of the known isaridins. The microheterogeneity can be attributed to the variations of two residues; Pro ↔ β-MePro and N-MePhe ↔ N-MeLxx (Lxx: Leu, Ile, alloIle). The recently reported ‘isarfelins’ from the fungus Isaria felina (Guo et al., 2005) were reassigned as ‘isaridins’. The reassignment was based on very similar fragmentation profiles observed for the [M + Na]+ adduct of isaridins and isarfelins; further, the fungal strain used in this study resembles Isaria felina (Sabareesh et al., 2007).
Chapter 6 presents mass spectrometric sequencing of disulfide bonded peptides from marine cone snails (conopeptides), using the MALDI LIFT MS/MS method. Lo959, a single disulfide bonded octapeptide isolated from Conus loroisii, was identified to belong to the class of contryphans (Sabareesh et al., 2006). Contryphans are small single disulfide bonded conopeptides, whose length is in the range of 7-11 residues and are rich in tryptophan. A significant feature of the contryphans is the presence of conserved DTrp (DW) at the 3rd residue within the disulfide loop (Sabareesh et al., 2006). Lo959 displays an unusual behavior under reverse phase chromatographic conditions, typical of the DW containing contryphans (Jacobsen et al., 1998). It undergoes slow conformational interconversion on the chromatographic time scale exhibiting two distinct peaks. The presence of DW at the 4th position in Lo959 was established by comparing the chromatographic profiles of natural peptide with that of two chemically synthesized peptides, one containing LW (4) and another possessing DW (4). De novo sequencing of the two peptides Ar1446 and Ar1430 from Conus araneosus established that they belonged to M-superfamily of conotoxins, in particular m-2 branch. M-superfamily conotoxins are three-disulfide bonded peptides characterized by the consensus cysteine framework, CC…C…C…CC (Corpuz et al., 2005). Ar1446 and Ar1430 are fourteen residue long peptides, each possessing three disulfide bonds. The peptides have the cysteine scaffold typical of the M-superfamily, as shown above. Specifically, the peptides belong to m-2 branch of M-superfamily, where the fourth and fifth cysteines are separated by two residues (Corpuz et al., 2005). The sequences of the peptides were derived following chemical and enzymatic modifications. The carboxamidomethylation reaction established the presence of three disulfide bonds. Indeed, the sequences were deduced from the MALDI LIFT MS/MS of [M + H]+ of the tryptic peptides. The sequences of the two peptides are almost identical and they differ only at residue 12; hydroxyproline in Ar1446, proline in Ar1430.
|
127 |
Glycopeptide Enrichment Workflows for Downstream Mass Spectrometric AnalysisBodnar, Edward 01 November 2013 (has links)
Mass spectrometry (MS) is a power analytical tool which is capable of analyzing biomolecules in great detail, both structurally and quantitatively. With regards to glycans, special considerations regarding sample preparation are necessary in order to achieve reproducible identification and relative quantification of these analytes. A workflow for isolation at the glycopeptide level and subsequent detection at the glycan level with phenylhydrazine, demonstrated that monoclonal antibodies (mAbs) containing a specific amino acid mutation were able to express approximately an additional 50% of the α2,6 disialylated glycan compared to their non-mutant analogues. In a second experiment using mAbs, an azide modified glycan (Ac4ManAz) was introduced both metabolically and enzymatically during mAb production. This glycan is a precursor in the sialic acid pathway and the azide moiety allows for specific chemistry post-production including the potential for highly specific enrichment. The results of this workflow demonstrated that [100 μM] of Ac4ManAz precursor added to the cell media was necessary for metabolic expression. More complex samples however, may contain multiple sites of glycosylation. To conserve the site of attachment, these molecules are often studied at the glycopeptide level, and require enrichment of glycopeptides to improve the lower signal intensity observed in the presence of co-eluting peptides. Carboxymethyl chitosan (CMCH) as well as amine-functionalized magnetic-nanoparticles (MNP) were developed as novel materials for this purpose. CMCH is naturally occurring, and therefore is cost-effective and readily available. In a 12 protein mixture CMCH demonstrated the bulk enrichment of glycopeptides yielding an approximately 20% higher enrichment of sialylated species as compared to a commercially available glycopeptide kit through the use of tandem mass tags for relative quantification. In the same approach, amine functionalized MNP were produced and used to enrich glycopeptides from tryptic digests. This approach was fast (about 10 mins) and quantitatively demonstrated improved retention for sialylated species. Examples of these techniques and their applications are reported in this work. / October 2015
|
128 |
Electrospray ionization tandem mass spectrometry methods for the analysis of DNA and DNA/drug complexesSmith, Suncerae I. 14 December 2010 (has links)
Many anticancer therapies are based on the interaction of small molecule drugs with nucleic acids, particularly DNA. Electrospray ionization tandem mass spectrometry has established itself as an irreplaceable tool for the characterization of DNA adducts produced by alkylating agents, carcinogens, and antitumor drugs, in addition to the characterization of nucleic acid post-transcriptional modifications.
ESI-MS was used to assess the non-covalent binding of a novel series of intercalating anthrapyrazoles to duplexes containing different sequences. Relative binding affinities paralleled the shift in melting point of the DNA duplexes measured from a previous study. Upon collisionally induced dissociation of the duplex/anthrapyrazole complexes, different binding strengths were discerned based on the fragmentation patterns. In addition, the interactions of a new series of sulfur-containing acridine ligands, some that functioned as alklyating mustards, with duplex DNA were also evaluated. Non-covalent and covalent binding of each ligand was determined, and the site of adduction (G > A) was revealed for the covalent modifications. The distribution of cross-linked products and mono-adducts by
psoralen analogs was also monitored by both LC-UV and IRMPD-MS methods. Reactions at 5’-TA sites were favored over 5’-AT sites. The sites of interstrand cross-linking were determined by fragmentation of the duplex/psoralen complexes by infrared multiphoton dissociation (IRMPD).
Ultraviolet photodissociation (UVPD) at 193 nm caused efficient charge reduction of deprotonated oligodeoxynucleotides via electron detachment. Subsequent CID of the charge-reduced oligodeoxynucleotides formed upon electron detachment, in a net process called electron photodetachment dissociation (EPD), resulted in a diverse array of abundant sequence ions which allowed the modification site(s) of three modified oligodeoxynucleotides to be pinpointed to a more specific location than by conventional CID.
Electron transfer dissociation (ETD) caused efficient charge reduction of multi-protonated oligonucleotides. Subsequent CAD of the charge-reduced oligonucleotides formed upon electron transfer, in a net process termed electron transfer collision activated dissociation (ETcaD), resulted in rich backbone fragmentation, with a marked decrease in the abundance of base loss ions and internal fragments. ETcaD of an oligonucleotide duplex resulted in specific backbone cleavages, with conservation of weaker non-covalent bonds. In addition, IRMPD and UVPD were used to activate charge-reduced oligonucleotides formed upon electron transfer. ET-IRMPD afforded tunable characterization of the modified DNA and RNA, allowing for modified bases to be directly analyzed. ET-UVPD promoted higher energy backbone fragmentation pathways and created the most diverse MS/MS spectra. The numerous products generated by the hybrid MS/MS techniques (ETcaD, ET-IRMPD, and ET-UVPD) resulted in specific and extensive backbone cleavages which allowed for the modification sites of multiple oligonucleotides to be pinpointed. / text
|
129 |
Isocyanates, Amines and Alkanolamines : Sampling, Chromatography and DetectionRiddar, Jakob B. January 2013 (has links)
Isocyanates, aromatic-, aliphatic- and alkanolamines are commonly used in the industry today. Millions of workers in Europe are exposed. The most frequent health symptoms are respiratory and dermal disorder. Due to the health risk most of the compounds in this thesis are regulated by authorities and have occupational exposure limits (OELs). Consequently, reliable and robust air sampling methods are urgently needed. In this thesis dry samplers for isocyanates, aliphatic- and alkanolamines have been developed and evaluated. The isocyanate sampler is now a commercial product (ASSET EZ4-NCP Dry Sampler, Supelco). The samplers were based on a denuder with a filter in series. The denuder and filter were impregnated with di-n-butylamine for the isocyanate sampler and with sulphuric acid for the aliphatic- and alkanolamine sampler. The robustness of the dry samplers was extensively evaluated. This was performed in a climate chamber containing a controlled atmosphere of the studied compounds. New methods based on hydrophilic interaction liquid chromatography (HILIC) coupled with tandem mass spectrometry (MSMS) were developed for determination of aromatic-, aliphatic- and alkanolamines in aqueous solutions. Isocyanates were determined by reversed-phase liquid chromatography MSMS. HILIC in combination with MS is a most powerful system, and highly sensitive determinations, several orders of magnitude below the OELs, of polar compounds present in the work environment can be accomplished. The selected samplers enable sampling during short sampling times and for whole work shifts. The samplers can be stored for months before and after sampling. The performance of the samplers was unaffected by variation in temperature, humidity, flow-rate and pre- and post-sampling of ambient air. Sampling for the compounds studied is now greatly simplified, and assessment of the work environment is facilitated. / <p>At the time of the doctoral defence the following papers were unpublished and had a status as follows: Paper 1: Epub ahead of print; Papers 3-5: Manuscripts</p>
|
130 |
Mass Spectrometric Applications for Diagnosing Metabolic and Endocrine DiseasesKushnir, Mark M. January 2008 (has links)
Disease-specific compounds (biomarkers) are analyzed in clinical laboratories to assist with diagnosing diseases. This thesis describes development and validation of liquid chromatography tandem mass spectrometry (LC-MS/MS) based tests for diagnosing a diverse group of endocrine and metabolic diseases. The analytical methods used on-line and off-line sample extraction and analytical derivatization as means of enhancing the analytical sensitivity, specificity and clinical utility. All developed methods were extensively validated and reference intervals for the biomarker concentrations were established in blood samples of healthy adults and children. Advantages of the LC-MS/MS as an analytical technique include possibility of simultaneous measurement of multiple analytes and ability of confirming their identity. In this thesis we proposed and evaluated approaches for the assessment of the specificity of analysis in the methods that use tandem mass spectrometry detection. To enhance throughput of the LC-MS/MS tests for the biomarkers that have endogenous or exogenous isomers an approach was developed for quantitation of isomers from unresolved chromatographic peaks. Using methods developed in this thesis we performed a study of the steroidogenesis in ovarian follicles of healthy women and women with polycystic ovary syndrome (PCOS). Obtained data on the steroid concentrations and associations between the steroid metabolites in the pathway would be helpful for better understanding of the ovarian pathophysiology. Potential biomarkers of PCOS were identified in the thesis; further studies will be necessary to confirm their clinical utility.
|
Page generated in 0.076 seconds