• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 103
  • 16
  • 11
  • 11
  • 7
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 180
  • 180
  • 180
  • 92
  • 84
  • 42
  • 36
  • 33
  • 21
  • 20
  • 20
  • 19
  • 19
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Využití HPLC a LC-MS/MS metod v diagnostice dědičných metabolických poruch / HPLC and LC-MS/MS methods for diagnosis of inherited metabolic diseases

Bártl, Josef January 2014 (has links)
This dissertation thesis is focused on development and optimization of high- performance liquid chromatography (HPLC) and tandem mass spectrometry (LC-MS/MS) methods, and its utility for diagnosis of inherited metabolic diseases. The first thematic part describes a comprehensive laboratory approach to diagnostics of patients with hereditary xanthinuria by determination of specific markers and enzyme activity. For this purpose HPLC method with diode array detection for measurement of hypoxanthine, xanthine, allopurinol and oxypurinol in urine and plasma and HPLC method with fluorimetric detection for analysis of pterin and isoxanthopterin in plasma were employed. These methods were successfully applied in clinical practice to ascertain two patients with hereditary xanthinuria type I. The second thematic part aims at developing and clinical application of new LC-MS/MS method for simultaneous determination of total homocysteine (tHcy), methionine (Met) and cystathionine (Cysta) in dried blood spots (DBS) and plasma. The results demonstrated the clinical utility of this method for detection of patients with homocystinuria and possibility to distinguish between defects in the remethylation and transsulfuration pathways of homocysteine metabolism. Due to ease of DBS collection and sample transportation...
102

Diagnóstico bioquímico das síndromes de deficiência de creatina / Biochemical diagnosis of creatine deficiency syndromes

Madeira, Marlene de Freitas 21 May 2010 (has links)
Recentemente, foi descrito um grupo de alterações no metabolismo da creatina denominado Síndromes de Deficiência de Creatina. Há três formas da doença geneticamente determinadas que cursam com deficiência de creatina, seja por comprometimento de sua síntese ou por defeito na proteína transportadora. O espectro de apresentação clínica dessa condição é inespecífico e inclui atraso ou estagnação do desenvolvimento neuromotor, hipotonia muscular, movimentos involuntários do tipo coreoatetose, retardo ou ausência do desenvolvimento da fala, retardo mental de grau variável, comportamento autista e epilepsia. Neste trabalho, foi desenvolvida e validada uma alternativa metodológica àquelas disponíveis na literatura, com a utilização de extração por troca catiônica forte e separação e detecção por cromatografia líquida de interação hidrofílica acoplada a espectrometria de massas em tandem em que foram exploradas as características químicas das moléculas de creatina e guanidinoacetato, metabólito intermediário da síntese de creatina. Os valores de referência para o método foram definidos pela sua aplicação a 150 amostras de urina e 197 amostras de soro de indivíduos de ambos os sexos e idades entre 0 e 16 anos. Foram também analisadas amostras de urina, soro e plasma de 54 pacientes com clínica compatível com a síndrome de deficiência de creatina sendo que 3 deles apresentaram perfil bioquímico característico de uma das formas dessa condição / Recently, a new group of inborn errors of metabolism, collectively named as creatine deficiency syndrome, was identified. Three genetically determined presentations are currently known, affecting both creatine synthesis and transport. Clinical presentation spectrum is non-specific and includes developmental delay, hypotonia, involuntary movements as choreoathetosis, delay or lack of speech acquisition, mental retardation of variable severity, autistic behavior, and epilepsy. Herein, we developed and validated an innovative method for determination of creatine and of its metabolic intermediate, guanidinoacetate, based on cation-exchange solid-phase extraction and hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry. Reference values for the method were defined testing 150 urine and 197 serum samples in males and females with age ranging from 0 to 16 years. Urine and serum samples from 54 patients with some clinical features that might be attributable to creatine deficiency were also evaluated, and in three, biochemical profile characteristic of one of the disorders was detected
103

Analyses structurale et quantitative de composés iso-mères/bares en mélange par spectrométrie de masse tandem et multi-étapes / Structural and quantitative analysis of iso-meric/baric compounds in mixture using tandem and multistage mass spectrometry

Jeanne dit Fouque, Dany 19 December 2018 (has links)
Ces travaux de thèse sont consacrés au développement de nouvelles méthodologies pour l’analyse structurale et quantitative de composés isomères ou isobares en mélange par spectrométrie de masse en tandem (MS/MS) ainsi que par la technique des ions survivants (SY). À l’aide de cette technique, nous avons développé une méthode de « purification collisionnelle en phase gaz » consistant à purifier un composé par fragmentation sélective du contaminant isomère ou isobare afin de permettre l’analyse structurale et quantitative du composé d’intérêt. Nous avons montré que cette approche peut être utilisée avec succès à la fois lors de l’étape d’excitation collisionnelle (CID) d’une expérience MS/MS, mais également lors du processus d’ionisation (in-source CID). Utilisant cette approche MS/MS sur une fenêtre de 15 m/z, nous avons ainsi pu quantifier, par la méthode de l’étalon interne, un peptide trypsique malgré la présence d’un contaminant isobare. L’optimisation des performances de quantification pour la technique SY a ensuite été étudiée sur des peptides isomères topologiques en mélange et comparée à l’analyse par microscopie infrarouge. Parmi les alcalins, alcalino-terreux et métaux de transition testés, nous avons obtenu les meilleurs résultats avec les adduits au césium. Des résultats comparables à la technique infrarouge ont confirmé la pertinence de notre approche avec de surcroît de meilleures performances analytiques, en particulier en terme de rapidité d’exécution, de sensibilité, d’erreur de prédiction et de limite de quantification. / This PhD work focused to the development of new methodologies for the structural and quantitative analysis of isomers or isobars compounds in mixture using tandem mass spectrometry (MS/MS) and the Survival Yield technique (SY).Using this technique, we have developed a method of « gas phase collisional purification » of purifying a compound by selective fragmentation of the isomeric or isobaric contaminant to allow the structural and quantitative analysis of the compound of interest. We have shown that this approach can be used successfully both during the collisional excitation step (CID) of a MS/MS experiment, but also during the ionization process (in-source CID). Using this MS/MS approach on an isolation window of 15 m/z, we were able to quantify, by the internal standard method, a tryptic peptide despite the presence of an isobaric contaminant.Optimization of quantification performances for the SY technique was then studied on topological isomeric peptides in mixture and compared with infrared microscopy analysis. Among the alkali, alkaline earth and transition metals tested, we obtained the best results with cesium adducts.Results comparable to the infrared technique confirmed the relevance of our approach with, moreover, better analytical performances, in particular in terms of speed of execution, sensitivity, prediction error and limit of quantification.
104

Étude de la biodisponibilité orale du S-nitrosoglutathion au moyen de modèles de la barrière intestinale par chromatographie en phase liquide couplée à la spectrométrie de masse après marquage par l’isotope 15 de l’azote / Oral bioavailability studies of S-nitrosoglutathione using intestinal barrier models by liquid chromatography coupled with mass spectrometry after labeling with the nitrogen isotope 15

Yu, Haiyan 29 August 2018 (has links)
Le développement de nouveaux donneurs d’oxyde nitrique (NO) dans le traitement chronique des maladies cardiovasculaires nécessite l’étude de leur biodisponibilité après administration par voie orale. Les S-nitrosothiols (RSNOs) apparaissent d’intéressants candidats médicaments pour ce faire, et l’étude de leur perméabilité intestinale est une première étape indispensable. Il est nécessaire de disposer d’une méthodologie analytique suffisamment sensible et sélective, en particulier permettant de différencier entre la production endogène de NO, l’apport alimentaire en ions nitrites et nitrate et le médicament lui-même. Nos travaux de thèse ont consisté à utiliser le S-nitrosoglutathion (GSNO) comme modèle après son marquage par l’isotope stable 15 de l’azote (15N). La dérivation du 15NO libéré par deux méthodes conventionnelles (méthode de Griess conduisant à la formation d’un adduit azoïque ; réaction avec le 2,3-diaminonaphtalène (DAN) formant l’adduit 2,3-naphtotriazole (NAT)) et l’étude de la fragmentation en spectrométrie de masse tandem (MS/MS) des deux adduits correspondants ont mené à sélectionner la dérivation par le DAN comme étant la plus sensible. Une transition originale résultant de la fragmentation du NAT en mode Higher-energy Collisional Dissociation (HCD) au lieu du mode conventionnel Collisionally Induced Dissociation (CID) a été mise en évidence ; elle permet d’atteindre une limite de quantification de 5 nM (soit 20 fois plus basse que celle offerte par la fluorescence). La méthode LC-MS/MS a été validée et appliquée à l’étude de la perméabilité intestinale du GS15NO par deux modèles : l’un in vitro (monocouche de cellules épithéliales type Caco-2), l’autre ex vivo (intestin de rat isolé (ileum) dans une chambre de Ussing). Les valeurs de perméabilité apparente calculées à partir des concentrations des métabolites du GS15NO (ions nitrites, nitrates et RSNOs) le classent comme un médicament de perméabilité intermédiaire. En outre, des études sur les mécanismes de dénitrosation du GSNO ont été menées sur intestin isolé, démontrant en particulier le rôle d’enzymes telles que la γ-glutamyltransférase et la protein disulfide isomerase / The development of innovative nitric oxide (NO) donors for the chronic treatment of cardiovascular diseases implies their bioavailability studies after oral administration. S-nitrosothiols (RSNOs) look interesting drug candidates for this purpose and evaluating their intestinal permeability appears the first step to be realized. Thus, an analytical method offering high sensitivity is needed; moreover this method should be selective by differentiating between the endogenous production of NO, the intake of nitrite and nitrate ions via the diet, and the drug itself. Our work consisted in using S-nitrosoglutathione (GSNO) labeled with the stable nitrogen isotope 15 (15N) as a model. Released 15NO species were derivatized by two conventional methods: Griess method leading to the formation of an azo adduct; reaction with 2,3-diaminonaphthalene (DAN) producing 2,3-naphtotriazole (NAT); fragmentation studies of the two adducts by tandem mass spectrometry (MS/MS) allow the selection of DAN method because it provides the highest sensitivity. An original transition resulting from the NAT fragmentation in Higher-energy Collisional Dissociation (HCD) mode instead of the conventional Collisionally Induced Dissociation (CID) mode was pointed out and permitted to reach a limit of quantification of 5 nM (20 fold less than when using fluorescence). The LC-MS/MS method was validated and applied to the GS15NO intestinal permeability studies with two models: in vitro (a monolayer of Caco-2 epithelial cells), and ex vivo (isolated intestine of rat (ileum) in an Ussing chamber). The apparent permeability values calculated with concentrations of GS15NO metabolites (nitrite, nitrate ions and RSNOs) classify it as a middle permeable drug. Studies on GSNO denitrosating processes using isolated rat intestine demonstrate that the enzymes γ-glutamyltransferase and protein disulfide isomerase play a pivotal role
105

RADICAL CHEMISTRY AND MASS SPECTROMETRY FOR ENHANCED BIOMOLECULE ANALYSIS

Sarju Adhikari (5929454) 10 June 2019 (has links)
<p>Electrospray ionization-tandem mass spectrometry (ESI-MS/MS) has been established as a powerful tool for qualitative and quantitative analysis of biomolecules. However, mass spectrometric analysis of biomolecules is often limited by poor ionization efficiency of analyte for sensitive detection and limited fragmentation for structural characterization. Over the years, various solution phase as well as gas-phase derivatization techniques, have been coupled with MS to increase the ionization efficiency and facilitate the formation of structural informative fragment ions. The research presented in this dissertation falls into two major parts; focusing on method development and application of radical chemistry for enhanced biomolecule analysis on an ESI-MS/MS platform. In the first part, a method of rapid charge tagging of neutral lipids (e.g. sterols, glycerides) with a thiol radical-based charge tag is developed, followed by comprehensive analysis via ESI-MS/MS without the use of a chromatographic separation (shotgun lipidomics). This charge tagging is performed in an easily constructible fused silica capillary-based microflow photo-reactor which is relatively low in cost and requires no instrument modifications. This method significantly enhances the ionization efficiency of the neutral lipids for sensitive MS detection (pM range). This method can be applied to the small volume of biological complex samples (e.g. 1 µL plasma) and doesn’t require extensive sample pretreatment procedure (analysis time of 2 min vs. traditional >60 min on GC-MS and HPLC-MS systems). Furthermore, the derivatized neutral lipids can also be fragmented via soft collision-induced dissociation to obtain fatty acyl chain composition of the neutral lipids (sterol esters, diacylglycerols, triacylglycerols, etc.) for structural characterization. This can especially be useful for determination for fatty acyl compositional isomers in neutral lipids for analysis related to biomarker detection. The characteristic fragmentation pattern of tagged neutral lipids has also been utilized for quantitation of lipids from biological mixture samples. Initial application of this method has shown alteration in the concentration of diacylglycerol lipid species in clinical samples of Type 2 Diabetes Mellitus patients, suggesting the potential of understanding the biological roles of such lipids in insulin resistance. </p> <p>In the second part, a unique approach of radical-induced disulfide bond cleavage in peptides and proteins is demonstrated. Using 254 nm UV emission, acetone was used as a photoinitiator to initiate secondary radical formation i.e. hydroxyalkyl radical, from alcohol co-solvents used for electrospray. These radicals can then be used to efficiently cleave the disulfide bonds (R-S-S-R) in peptide/proteins to give reduced reaction products (RSH) at the cleavage site. Upon soft collision-induced dissociation, the reduced product gave abundant <i>b-</i> and <i>y-</i> type fragment ions for complete or enhanced sequence coverage as compared to intact disulfide-linked peptides and proteins. With the use of a simple microflow photo-reactor, this radical based approach can also be coupled with infusion ESI-MS/MS for a rapid online-based peptide and protein analysis. The yield for disulfide bond reduction was almost 100% within less than 5 s of UV irradiation. Furthermore, by adjusting the UV irradiance time, different degrees of partial reduction could be achieved, which greatly facilitated the disulfide linkage mapping in peptides and proteins with multiple disulfide bonds. This method has been incorporated with both bottom-up and top-down approach for protein analysis for unraveling the molecular complexity, quantifying and deep sequencing of disulfide-linked proteins.</p>
106

The Pharmacokinetic Profile of Synthetic Cathinones in a Pregnancy Model

Strange, Lauren G., Kochelek, Kerri, Keasling, Robert, Brown, Stacy D., Pond, Brooks B. 01 September 2017 (has links)
In recent years, the abuse of synthetic cathinones or ‘bath salts’ has become a major public health concern. Although these compounds were initially sold legally and labeled “not for human consumption”, the ‘bath salts’ are psychostimulants, with similar structures and pharmacologic mechanisms to cocaine, the amphetamines, and 3,4 methylendioxymethamphetamine (MDMA, Molly, or Ecstasy). The reported use of these substances by women of child-bearing age highlights the necessity of studies seeking to delineate risks of prenatal exposure. Three popular drugs of this type are methylone, mephedrone, and 3, 4-methylenedioxypyrovalerone (MDPV). Unfortunately, there is currently no information available on the teratogenicity of these compounds, or of the extent to which they cross the placenta. As such, the purpose of this study was to examine the pharmacokinetic profile of the ‘bath salts’ in a pregnancy model. Pregnant mice (E17.5 gestation) were injected intraperitoneally with a cocktail of 5mg/kg methylone, 10mg/kg mephedrone, and 3mg/kg (MDPV) dissolved in sterile saline. Maternal brain, maternal plasma, placenta, and fetal brain were collected at 30s, 1min, 5min, 10min, 15min, 30min, 1h, 2h, 4h, and 8h following injection. Methylone, mephedrone, and MDPV were extracted from tissue by solid phase extraction, and concentrations were determined using a previously validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Interestingly, all 3 cathinones reached measurable concentrations in the placenta, as well as the fetal brain; in fact, for MDPV, the maximal concentration (Cmax) was highest in fetal brain, while mephedrone's highest Cmax value was achieved in placenta. Additionally, the total drug exposure for all 3 compounds (as represented by area under the curve, AUC) was higher in fetal matrices (placenta and fetal brain) than in maternal matrices (maternal brain and plasma), and the half-lives for the drugs were longer. Given the extensive presence of methylone, mephedrone, and MDPV in the fetal brain following prenatal exposure, fetal risk is definitely a concern. As there are currently no prenatal studies available on the teratogenicity of these agents, pregnant patients should be informed about the potential risks that these substances may have.
107

Transcriptional regulation of mouse epidermal permeability barrier development and homeostasis by Ctip2

Wang, Zhixing 05 June 2012 (has links)
Skin is the largest organ in the body that protects the organism from environmental, chemical and physical traumas of each passing day. The protective skin epidermal permeability barrier (EPB) is formed within the exterior layers of the epidermis, which are regularly sloughed off and repopulated by movement of inner cells. The epidermal permeability barrier is established during in utero development and maintained through lifetime. Impaired epidermal barrier formation is one of the major features of several dermatoses such as psoriasis and atopic dermatitis. Chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting protein 2 (Ctip2), also known as Bcl11b, is a C���H��� zinc finger protein expressed in many organs and tissues. It has been shown to regulate the development of thymocyte, tooth and corticospinal motor neurons. Ctip2 is highly expressed in mouse epidermis during skin organogenesis and in adulthood. It is crucial for epidermal homeostasis and protective barrier formation in developing mouse embryos. Germline (Ctip2- null mice) and selective ablation of Ctip2 in mouse epidermis (Ctip2[superscript ep-/-] mice) leads to increased transepidermal water loss (TEWL), impaired epidermal proliferation and terminal differentiation as well as altered lipid distribution during embryogenesis. Sphingolipids account for ~50% of total skin lipids by weight and are crucial components of epidermal barrier. We have recently identified Ctip2 as a key regulator of skin lipid metabolism. Germline deletion of Ctip2 in mouse embryos leads to altered lipid composition in the developing mouse epidermis by modulating the expression levels of key enzymes involved in lipid metabolism (bio-synthesis and catabolism). We also demonstrated that Ctip2 is recruited to the promoter regions of several genes involved in the ceramide and sphingomyelin biosynthesis pathways and could directly regulate their expression. Thus, we have identified Ctip2 as a key regulator of several lipid metabolizing genes and hence epidermal sphingolipid biosynthesis during skin development. To study the role of Ctip2 in adult skin homeostasis, we have utilized Ctip2[superscript ep-/-] mouse model in which Ctip2 is selectively deleted in epidermal keratinocytes. We showed that keratinocytic ablation of Ctip2 leads to atopic dermatitis (AD)-like skin inflammation, characterized by alopecia, pruritus and scaling, as well as high infiltration of T lymphocytes and immune cells. We have also observed increased expression of Th2-type cytokines and chemokines in the mutant skin, as well as systemic immune responses that share similarity with human AD patients. Furthermore, we discovered that thymic stromal lymphopoietin (TSLP) expression is significantly upregulated in the mutant epidermis as early as postnatal day 1 and Ctip2 was recruited to the promoter region of the TSLP gene in mouse epidermal keratinocytes. The results suggest that upregulation of TSLP expression in the Ctip2[superscript ep-/-] epidermis could be due to a derepression of gene transcription in absence of Ctip2. Thus, our data demonstrated a cell-autonomous role of Ctip2 in barrier maintenance and epidermal homeostasis in adult skin, as well as a non-cell autonomous role of keratinocytic Ctip2 in suppressing skin inflammatory responses by regulating the expression of Th2-type cytokines in adult mouse skin. Present results establish an initiating role of epidermal TSLP in AD pathogenesis via a novel repressive regulatory mechanism mediated by Ctip2 in mouse epidermal keratinocytes. Altogether, our study indicates that Ctip2 could be involved in a diverse range of biological events in skin including barrier formation, maintenance and epidermal homeostasis. Ctip2 appears to be a master regulator in skin barrier functions by directly regulating the transcription of a subset of genes involved in lipid metabolism and inflammatory responses. / Graduation date: 2013
108

Metabolic Studies with Liquid Separation Coupled to Mass Spectrometry

Allard, Erik January 2009 (has links)
Metabolism is the sum of all chemical processes with the purpose to maintain life, as well as enable reproduction, in a living organism. Through the study of metabolism, increased understanding of pharmacological mechanisms and diseases can be achieved. This thesis describes several ways of doing so, including targeted analysis of selected metabolites and investigations of systematic metabolic differences between selected groups through pattern recognition. A method for exploring metabolic patterns in urine samples after intake of coffee or tea was developed. The methodology was later used with the aim to find biomarkers for prostate cancer and urinary bladder cancer. Furthermore, a fully automated quantitative method was developed for concentration measurements of the double prodrug ximelagatran and its metabolites in pig liver. The method was then used to study the roll of active transporters in pig liver cells. Moreover, a fundamental study was conducted to investigate how monitoring of small, doubly charged analytes can improve the limit of detection and precision in a quantitative method. The techniques used for the experiments were liquid separation coupled to electrospray mass spectrometry. Extra efforts were made to make the separation and the ionization as compatible as possible to each other for increased quality of the collected data.
109

Mass Spectrometric Sequencing Of Acyclic And Cyclic Peptides

Sabareesh, V 08 1900 (has links)
Elucidation of the primary structure of peptides and proteins de novo by mass spectrometry (MS) has become possible with the advent of tandem MS methods. The most widely used chemical method due to Edman (Edman & Begg, 1967) has shortcomings with regard to N- terminal blocked peptides, cyclic peptides and posttranslational modifications, for example phosphorylation (Metzger, 1994). However, mass spectrometric sequencing methods are increasingly becoming applicable for a variety of peptides and proteins, including N- and C- termini modified peptides and cyclic peptides (Jegorov et al., 2003; Sabareesh & Balaram, 2006; Sabareesh et al., 2007). Further, conventional and tandem mass spectrometry have proven useful in the detection of post-translational modifications (Hansson et al., 2004; Nair et al., 2006; Mandal et al., 2007). This thesis details mass spectrometric sequencing of acyclic and cyclic peptides, involving tandem MS methods carried out using both electrospray ionization (ESI) ion trap (Esquire 3000 plus, Bruker Daltonics) and matrix assisted laser desorption and ionization time-of-flight/time-of-flight (MALDI TOF/TOF) (Ultraflex TOF/TOF, Bruker Daltonics) instruments. The peptides are either chemically synthesized or isolated from diverse natural sources. Synthetically designed peptides possessing modified N- and C- termini and peptaibols from the soil fungus Trichoderma constitute the acyclic peptides. The cyclic peptides include backbone cyclized depsipeptides from the fungus Isaria and disulfide bonded peptides from the venom of marine cone snails. Chapter 1 gives an account of various concepts of mass spectrometry, tandem mass spectrometry and peptide fragmentation chemistry, providing necessary background information for the following chapters. Chapter 2 describes the fragmentation studies of [M + H]+ and [M + Na]+ adducts of six neutral peptides with blocked N- and C- termini investigated using an electrospray ion trap mass spectrometer. The N- terminus of these synthetically designed peptides is blocked with a tertiarybutyloxycarbonyl (Boc) group and the C- terminus is esterified. These peptides do not possess sidechains that are capable of complexation and hence the backbone amide units are the sole sites of protonation and metallation. The cleavage pattern of protonated adducts is strikingly different from that of sodium adducts. While the loss of the N- terminal blocking group happens quite readily in the case of MS/MS of [M + Na]+, the cleavage of C- terminal methoxy group seems to be a facile process in the case of MS/MS of [M + H]+. Fragmentation of the protonated adducts yields only bn ions, while yn and an type ions are predominantly formed from the fragmentation of sodium adducts. The an ions arising from the fragmentation of [M + Na]+ lack the N-terminal Boc group (termed as an*). MS/MS of [M + Na]+ species also yields bn ions of substantial lower intensities, that lack the N- terminal Boc group (bn*). Comparison of the fragmentation of [M + H]+ with [M + Na]+ of the peptides chosen in this study reveal that the combined use of both protonated and sodium adducts should prove useful in de novo sequencing of peptides that possess modified N- and C- termini, particularly naturally occurring neutral peptides, for example, peptaibols. Chapter 3 describes about the ESI-MS/MS investigation of an HPLC fraction from the soil fungus Trichoderma, which aided in identification of microheterogeneous trichotoxin peptaibols in that fraction. Dramatic differences were noted between the fragmentation spectra of [M + H]+ and [M + Na]+ species. While b-type ions were noted from the former, the latter yielded a-, b-and y- type ions (the same feature was noted in the cases presented in the previous chapter). Inspection of the isotope pattern of b-ions yielded from the dissociation of H+ species, clearly revealed the presence of three microheterogeneous trichotoxin sequences; two isobars (1718 Da), each possessing one Glu residue and another completely neutral peptide (1717 Da). The microheterogeneity is due to Gly ↔ Ala, Iva ↔ Aib and Gln ↔ Glu replacements and exchanges (Iva: DIva: R-Isovaline; Aib: α-aminoisobutyric acid). The MS/MS of [M + Na]+ adduct predominantly yielded product ions from the neutral peptaibol. Further, the fragmentation patterns of H+ and Na+ adducts of two N-acetyl peptide esters were found to be very similar to that of the neutral peptaibol component. The results presented in this chapter establish that under the electrospray ion trap conditions, the fragmentation patterns of the H+ and Na+ adducts of model peptides that possess modified N- (Boc and acetyl) and C- termini are indeed very similar to that of the neutral trichotoxin. Chapter 4 delineates the applicability of liquid chromatography coupled to conventional and tandem electrospray ionization mass spectrometry (LC-ESI-MS, LC-ESI-MS/MS, LC-ESI-MS3) for the screening of novel cyclic hexadepsipeptide metabolites directly from the crude hyphal extract of the fungus Isaria. The fungal strain was grown on a solid medium (potato carrot agar), which yields aerial hyphae growing erect from the basal mycelial colony (Ravindra et al., 2004). A total of ten microheterogeneous components were identified to belong to the isariin class of cyclodepsipeptides from the LC-ESI-MS and LC-ESI-MS/MS analysis of the crude hyphal extract. Out of ten, six are determined to be new and the remaining four are previously reported isariins A-D. The primary structures of isariins A-D were from the fungi Isaria cretacea and Isaria felina (Vining & Taber 1962; Deffieux et al., 1981) and the fungal strain used in this study resembles Isaria felina (Sabareesh et al., 2007). Isariins are backbone cyclized hexadepsipeptides composed of a D-β-hydroxy acid possessing a hydrocarbon sidechain and five α-amino acids; one of the α-amino acids is a D-amino acid (Vining & Taber 1962; Deffieux et al., 1981). The detection of fragment ions due to loss of CO concomitant with the loss of H2O from the protonated precursor ion ([M + H]+) ascertained the cyclic depsipeptide nature of both the known and the new components. The fragmentation behavior of the [M + H]+ of known isariins facilitated sequence determination of the new components. Therefore, the configuration of the amino acids and the β-hydroxy acid of the new components is assumed to be same as that of the reported peptides. The microheterogeneity of the ten sequences is due to changes in the D-β-hydroxy acid (residue 1) and the adjoining α-amino acid (residue 6), whose carbonyl is linked to the hydroxyl function by an ester linkage. The number of methylene units ((-CH2)n) in the hydrocarbon sidechain of the residue 1 differs between 2 and 8 and the variability of the residue 6 is limited to Ala/Val. The ester oxygen atom was chosen as the preferable site of protonation causing ring-opening, based on the observed distribution of the fragment ions. Chapter 5 demonstrates the utility of the LC-ESI-MS and LC-ESI-MS/MS methods in the identification and characterization of six microheterogeneous backbone cyclized hexadepsipeptides, isaridins, directly from the crude hyphal extract of the fungus Isaria. Among the six components, four were found to be novel. The other two peptides, isaridins A and B were identified earlier from this laboratory (Ravindra et al., 2004). The isaridins are characterized by the presence of unusual amino acids such as N-methylated residues, β-methylproline (β-MePro) and hydroxyleucine (HyLeu) (Ravindra et al., 2004). The cyclic nature of both the known and the new peptides were confirmed from the observation of peaks due to loss of CO and H2O from the protonated precursor ion ([M + H]+). However, unlike isariins (Chapter 4), the intensity of the peak corresponding to [M + H - H2O]+ was noted to be of very low intensity, in the case of isaridins. Detection of product ion peak due to [M + H - CO2]+ suggests an additional dissociation pathway involving cleavage at the depsipeptide linkage and is supportive of the cyclic depsipeptide nature (Eckart, 1994). The sequencing of the newly detected components was enabled by understanding the fragmentation mechanism of the known isaridins. The tertiary amide nitrogens of the N-methylated residues were regarded as the preferable sites of protonation leading to ring-opening, as noted from the fragmentation spectra. The microheterogeneity in the sequences was identified using the diagnostic product ions obtained from the protonated precursor of the known isaridins. The microheterogeneity can be attributed to the variations of two residues; Pro ↔ β-MePro and N-MePhe ↔ N-MeLxx (Lxx: Leu, Ile, alloIle). The recently reported ‘isarfelins’ from the fungus Isaria felina (Guo et al., 2005) were reassigned as ‘isaridins’. The reassignment was based on very similar fragmentation profiles observed for the [M + Na]+ adduct of isaridins and isarfelins; further, the fungal strain used in this study resembles Isaria felina (Sabareesh et al., 2007). Chapter 6 presents mass spectrometric sequencing of disulfide bonded peptides from marine cone snails (conopeptides), using the MALDI LIFT MS/MS method. Lo959, a single disulfide bonded octapeptide isolated from Conus loroisii, was identified to belong to the class of contryphans (Sabareesh et al., 2006). Contryphans are small single disulfide bonded conopeptides, whose length is in the range of 7-11 residues and are rich in tryptophan. A significant feature of the contryphans is the presence of conserved DTrp (DW) at the 3rd residue within the disulfide loop (Sabareesh et al., 2006). Lo959 displays an unusual behavior under reverse phase chromatographic conditions, typical of the DW containing contryphans (Jacobsen et al., 1998). It undergoes slow conformational interconversion on the chromatographic time scale exhibiting two distinct peaks. The presence of DW at the 4th position in Lo959 was established by comparing the chromatographic profiles of natural peptide with that of two chemically synthesized peptides, one containing LW (4) and another possessing DW (4). De novo sequencing of the two peptides Ar1446 and Ar1430 from Conus araneosus established that they belonged to M-superfamily of conotoxins, in particular m-2 branch. M-superfamily conotoxins are three-disulfide bonded peptides characterized by the consensus cysteine framework, CC…C…C…CC (Corpuz et al., 2005). Ar1446 and Ar1430 are fourteen residue long peptides, each possessing three disulfide bonds. The peptides have the cysteine scaffold typical of the M-superfamily, as shown above. Specifically, the peptides belong to m-2 branch of M-superfamily, where the fourth and fifth cysteines are separated by two residues (Corpuz et al., 2005). The sequences of the peptides were derived following chemical and enzymatic modifications. The carboxamidomethylation reaction established the presence of three disulfide bonds. Indeed, the sequences were deduced from the MALDI LIFT MS/MS of [M + H]+ of the tryptic peptides. The sequences of the two peptides are almost identical and they differ only at residue 12; hydroxyproline in Ar1446, proline in Ar1430.
110

Electrospray ionization tandem mass spectrometry methods for the analysis of DNA and DNA/drug complexes

Smith, Suncerae I. 14 December 2010 (has links)
Many anticancer therapies are based on the interaction of small molecule drugs with nucleic acids, particularly DNA. Electrospray ionization tandem mass spectrometry has established itself as an irreplaceable tool for the characterization of DNA adducts produced by alkylating agents, carcinogens, and antitumor drugs, in addition to the characterization of nucleic acid post-transcriptional modifications. ESI-MS was used to assess the non-covalent binding of a novel series of intercalating anthrapyrazoles to duplexes containing different sequences. Relative binding affinities paralleled the shift in melting point of the DNA duplexes measured from a previous study. Upon collisionally induced dissociation of the duplex/anthrapyrazole complexes, different binding strengths were discerned based on the fragmentation patterns. In addition, the interactions of a new series of sulfur-containing acridine ligands, some that functioned as alklyating mustards, with duplex DNA were also evaluated. Non-covalent and covalent binding of each ligand was determined, and the site of adduction (G > A) was revealed for the covalent modifications. The distribution of cross-linked products and mono-adducts by psoralen analogs was also monitored by both LC-UV and IRMPD-MS methods. Reactions at 5’-TA sites were favored over 5’-AT sites. The sites of interstrand cross-linking were determined by fragmentation of the duplex/psoralen complexes by infrared multiphoton dissociation (IRMPD). Ultraviolet photodissociation (UVPD) at 193 nm caused efficient charge reduction of deprotonated oligodeoxynucleotides via electron detachment. Subsequent CID of the charge-reduced oligodeoxynucleotides formed upon electron detachment, in a net process called electron photodetachment dissociation (EPD), resulted in a diverse array of abundant sequence ions which allowed the modification site(s) of three modified oligodeoxynucleotides to be pinpointed to a more specific location than by conventional CID. Electron transfer dissociation (ETD) caused efficient charge reduction of multi-protonated oligonucleotides. Subsequent CAD of the charge-reduced oligonucleotides formed upon electron transfer, in a net process termed electron transfer collision activated dissociation (ETcaD), resulted in rich backbone fragmentation, with a marked decrease in the abundance of base loss ions and internal fragments. ETcaD of an oligonucleotide duplex resulted in specific backbone cleavages, with conservation of weaker non-covalent bonds. In addition, IRMPD and UVPD were used to activate charge-reduced oligonucleotides formed upon electron transfer. ET-IRMPD afforded tunable characterization of the modified DNA and RNA, allowing for modified bases to be directly analyzed. ET-UVPD promoted higher energy backbone fragmentation pathways and created the most diverse MS/MS spectra. The numerous products generated by the hybrid MS/MS techniques (ETcaD, ET-IRMPD, and ET-UVPD) resulted in specific and extensive backbone cleavages which allowed for the modification sites of multiple oligonucleotides to be pinpointed. / text

Page generated in 0.1057 seconds