• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 14
  • 5
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 84
  • 18
  • 14
  • 14
  • 12
  • 10
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Estimation Of Tangential Momentum Accommodation Coefficient Using Molecular Dynamics Simulation

Finger, George 01 January 2005 (has links)
The Tangential Momentum Accommodation Coefficient (TMAC) is used to improve the accuracy of fluid flow calculations in the slip flow regime. Under such conditions (indicated by Knudsen number greater than 0.001), the continuum assumption that a fluid velocity at a solid surface is equal to the surface velocity is inaccurate because relatively significant fluid "slip" occurs at the surface. Prior work has not led to a method to quickly estimate a value for TMAC - it is frequently assumed. In this work, Molecular Dynamics techniques are used to study the impacts of individual gas atoms upon solid surfaces to understand how approach velocity, crystal geometry and interatomic forces affect the scattering of the gas atoms, specifically from the perspective of tangential momentum. It is a logical step in the development of a comprehensive technique to estimate total coefficient values to be used by those investigating flows in micro- and nano-channels or on orbit spacecraft where slip flow occurs. TMAC can also help analysis in transitional or free molecular regimes of flow. The gas - solid impacts were modeled using Lennard Jones potentials. Solid surfaces were modeled with approximately 3 atoms wide by 3 atoms deep by 40 or more atoms long. The crystal surface was modeled as a Face Centered Cubic (100). The gas was modeled as individual free gas atoms. Gas approach angles were varied from 10 degrees to 70 degrees from normal. Gas speed was either specified directly or by way of a ratio relationship with the Lennard-Jones energy potential (Energy Ratio). In order to adequately model the trajectories and maintain conservation of energy, very small time steps (on the order of 0.0005 [tau] , where [tau] is the natural time unit) were used. For each impact the initial and final tangential momenta were determined and after a series of many impacts, a value of TMAC was calculated for those conditions. The modeling was validated with available experimental data for He gas atoms at 1770 m/s impacting Cu over angles ranging from 10° to 70°. The model agreed within 3% of the experimental values and correctly predicted that the coefficient changes with angle of approach. Molecular Dynamics results estimate TMAC values from a high of 1.2 to a low of 0.25, generally estimating a higher coefficient at the smaller angles. TMAC values above 1.0 indicate backscattering, which has been experimentally observed in numerous instances. The ratio of final to initial momenta, when plotted for a given sequence of gas atoms spaced across a lattice cycle typically follows a discontinuous curve, with continuous portions indicating forward and back scattering and discontinuous portions indicating multiple bounces. Increasing the Energy Ratio above a value of 5 tends to decrease the coefficient at all angles. Adsorbed layers atop a surface influence the coefficient similar to their Energy Ratio. The results provide encouragement to develop the model further, so as to be able in the future to evaluate TMAC for gas flows with Maxwell temperature distributions involving numerous impact angles simultaneously.
12

Cloud Point Extraction in Conjunction with Tangential Flow Filtration (CPE-TFF) for the Enhanced Separation of Silver Nanoparticles and Silver Ions from Aqueous Colloids and Biological Matrices

Akbar, Md Ali January 2017 (has links)
No description available.
13

Surface Strain Measurement for Non-Intrusive Internal Pressure Evaluation of a Cannon

Rausch, Brennan Lee 29 August 2022 (has links)
The U.S. Army has recently developed cutting edge designs for gun barrels, projectiles, and propellants that require testing. This includes measuring the internal pressure during fire. There are concerns with the current method of drilling to mount pressure transducers near the breech and chamber of the gun barrel where pressure is highest. An alternative, non-intrusive strain measurement method is introduced and discussed in the present work. This focuses on determining the feasibility and accuracy of relating tangential strain along the sidewall of a gun barrel to the drastic internal pressure rise created during combustion. A transient structural, numerical modal was created using ANSYS of a 155 mm gun barrel. The pressure gradient was derived using a method outline in IBHVG2 (Interior Ballistics of High Velocity Guns, version 2), and the model was validated using published experimental tangential strain testing data from a gun of the same caliber. The model was used to demonstrate the ideal location for strain measurement along the sidewall of the chamber. Furthermore, three different pressure ranges were simulated in the model. The behavior of the tangential strain in each case indicates a similar trend to the internal pressure rise and has oscillation due to a dominant frequency of the barrel. A method to predict internal pressure from external tangential strain was developed. The internal pressure predicted is within 4% of the pressure applied in the model. A sensitivity study was performed to determine the primary factors affecting tangential strain. The study specifically looked at material properties and geometry of the gun barrel. The thickness and elastic modulus of the gun barrel were determined the most relevant. Overall, the present work helps to understand tangential strain behavior on the sidewall of a large caliber gun barrel and provides preliminary work to establish an accurate prediction of internal pressure from external tangential strain. / Master of Science / Innovative technology for large gun systems require testing to evaluate safety and performance. The most recent designs from the U.S. Army for long range artillery require higher pressures. Currently, large gun barrels are drilled to mount pressure transducers for internal pressure testing, but the new generation of weapons require a way to measure internal pressure of the gun without introducing these high stress locations. External strain offers a means to measure displacement of the barrel caused by the internal pressure change with minimal alteration to the gun barrel. The present work focuses on modelling a large gun barrel using finite elements to understand the behavior of strain on the external surface due to internal pressure during fire. Measurements were taken near the chamber of the gun barrel model. The strain behavior is comprised of two components, a linear change due to a pressure increase and vibrations introduced due to the sharp pressure increase over a short amount of time. Three cases were evaluated at different pressure ranges and a method was developed to predict internal pressure from the tangential strain with a maximum error of 4% for all cases studied. The model also indicates that the strain results are most sensitive to a change in thickness and the elastic modulus of the gun barrel material.
14

Utilização da ultrafiltração em fluxo tangencial como nova metodologia para determinação da capacidade de complexação e constantes de equilíbrio de íons 'Cu'(II) complexados por matéria orgânica natural /

Romão, Luciane Pimenta Cruz January 2003 (has links)
Orientador: Julio Cesar Rocha / Banca: Antonio Celso Spínola Costa / Banca: Nelson Ramos Stradiotto / Banca: Homero Marques Gomes / Banca: Alexandre Gustavo Soares de Prado / Resumo: Um procedimento de ultrafiltração com fluxo tangencial e membrana polietersulfônica de porosidade 1 kDa foi utilizado na determinação da capacidade de complexação (CC) e constantes de estabilidade condicional (K) do íon cobre(II) para amostras de matéria orgânica natural, substâncias húmicas aquáticas e substâncias húmicas de solo de diferentes regiões do Brasil. As substâncias húmicas de solos apresentaram maiores valores de CC em relação à matéria orgânica natural e substâncias húmicas aquáticas. Os valores das capacidades de complexação das amostras de matéria orgânica aquática (1,25±0,07, 1,18±0,05 e 1,81±0,30) e das amostras de substâncias húmicas aquáticas (1,23±0,11, 1,12±0,05 e 1,44±0,04) foram similares, indicando que o procedimento de extração utilizando resina acrílica XAD-8 não modificou significativamente as características complexantes originais das amostras. Os valores das capacidades de complexação da matéria orgânica natural (MON) determinados por ultrafiltração para Cu(II) variaram de 0,17 a 1,99 mmol Cu(II)g-1 COT e os valores das constantes de estabilidade condicional variaram de 2,30 a 4,35 (log K1) e 1,36 a 2,60 (log K2) A validação da metodologia de ultrafiltração em fluxo tangencial foi feita comparando as médias das capacidades de complexação para cobre(II) determinadas por UF, e àquelas obtidas por eletrodo íon seletivo utilizando o teste de student t. Os resultados mostraram que não existem diferenças entre os valores das capacidades de complexação determinados por ambos os procedimentos. Resultados de experimentos de troca entre íons Cu(II) adicionados e espécies metálicas (Ni, Al e Fe) originalmente complexadas por substâncias húmicas, permitiram estabelecer a seguinte ordem decrescente de estabilidade relativa do complexo SH-metal: Fe<Al<<Ni. / Abstract: An tangential-flow ultrafiltration (TF-UF) procedure a polyethersulfone membrane filter (cut-off 1 kDa) was used to determine the copper(II) complexation capacity (CC) and conditional stability constants (K) of the copper(II) ion from samples of aquatic organic matter, aquatic humic substances and soil humic substances (all from different regions of Brazil). The humic soil substances presented larger values of CC compared to the aquatic organic matter and aquatic humic substances. The complexation capacities from samples of aquatic organic matter (1,25±0,07, 1,18±0,05 and 1,81±0,30) and aquatic humic substances (1,23±0,11, 1,12±0,05 and 1,44±0,04) samples were similar, indicating that the extraction procedure using XAD-8 acrylic resin didn't, significantly, modify the original complexation characteristics of the samples. The values of complexation capacities of aquatic organic matter (AOM) by Cu(II) using ultrafiltration varied from 0,17 to 1,99 mmol Cu(II)g-1 TOC and the values of the conditional stability constants varied from 2,30 to 4,35 (log K1) and 1,36 to 2,60 (log K2). The validation of the tangential-flow ultrafiltration (TF-UF) methodology was done comparing the averages of complexation capacities determined by TF-UF and those obtained by selective ion electrode using the student test t. The results showed that there aren't any differences between the values of complexation capacities for copper(II) determined by both the methods. Results of exchange experiments among Cu(II) ions added and metallic species (Ni, Al and Fe) originally complexed for humic substances allowed the establishment of the following decreasing order of relative stability of the compound HS-metal: Fe <Al << Ni. / Doutor
15

Flotação por ar dissolvido aplicado à separação de microalgas cultivadas em fotobiorreator, alimentado com vinhaça pré-tratada físico-quimicamente, com vistas à exploração de seu potencial bioenergético / Dissolved air flotation applied to separation of microalgae cultivated in photobioreactor, fed with physico-chemically pretreated vinasse, aiming its potential use as biofuel

Sacchi, Gabriel Dibbern 23 November 2015 (has links)
Apesar de ser considerado um combustível sustentável, o etanol, produzido a partir da cana de açúcar, deixa um passivo de grandes proporções durante seu processo produtivo, a vinhaça, que vem sendo depositada nas próprias lavouras de cana de açúcar. É gerada na proporção de 12 litros para cada litro de etanol produzido em média, sendo rica em diversos nutrientes, os quais podem ser aproveitados para diversos fins como, por exemplo, meio de cultivo para microalgas. A presente pesquisa avaliou em uma primeira etapa a clarificação da vinhaça por um processo de coagulação com auxílio de um polímero catiônico, seguida de uma etapa de microfiltração tangencial em filtro de fibras ocas, o que permitiu uma redução superior a 77&#37; para a cor aparente, de 99&#37; para a turbidez e de 20&#37; para a DQO, facilitando a utilização deste efluente para o cultivo de microalgas. Numa segunda etapa, foi avaliado o cultivo da microalga Chlorella vulgaris, em escala de bancada e operação em batelada, em meio preparado a partir da diluição da vinhaça em água de poço profundo, obtendo um aumento na biomassa produzida, determinado em termos de clorofila-a, em concentrações de vinhaça inferiores a 7,5&#37; utilizando inóculo da ordem de 106 indivíduos. Tais dados permitiram a realização de ensaios de cultivo em escala contínua, com fotobiorreatores em escala piloto, gerando assim a biomassa utilizada nas próximas fases do estudo, que avaliaram a separação da biomassa gerada pelo processo de flotação por ar dissolvido. Os ensaios inicialmente realizados em escala de bancada e operados em batelada permitiram identificar as condições ótimas de operação, as quais foram então avaliadas em um flotador operando em fluxo contínuo. Tal flotador permitiu a obtenção de um lodo com teor de sólidos superior a 2&#37;, o qual foi submetido à um processo final de desaguamento por centrifugação. Os ensaios de desaguamento, permitiram verificar que a utilização do mesmo polímero utilizado na etapa de clarificação permite a obtenção de um lodo mais estável, quando comparado com a não utilização de produto químico, na dosagem de polímero catiônico de 6 g.kg-1. A conclusão deste trabalho permitiu verificar a possibilidade de utilização da vinhaça como meio de cultivo de microalgas, reduzindo assim um dos impactos causados pela produção de etanol. Além disso foi possível verificar o potencial da FAD, para o espessamento de biomassa produzido em fotobiorreatores. / Considered a sustainable fuel, ethanol produced from sugar cane, leaves a major liability during its production process, which has been deposited in the own sugar cane fields. The vinasse is generated, on average, in the proportion of 12 liters per liter of produced ethanol, is rich in different nutrients, which can be used for many purposes, such as the microalgae cultivation. This study evaluated in the first step the vinasse clarification by coagulation with cationic polymer, followed by crossflow microfiltration on a hollow fibers filter, which enable a reduction over 77&#37; for apparent color, 99&#37;for turbidity and 20&#37; for COD, facilitating the use of this effluent for microalgae cultivation. In a second step, was evaluated the microalgae Chlorella vulgaris cultivation in bench scale and batch operation, in a medium prepared from the vinasse dilution in water from a deep well, getting an increase in the biomass production, measure in terms of chlorophyll-a, for a vinasse concentration below 7.5&#37;, and an inoculum of approximately 106 individuals. These data allowed the microalgae cultivation in a continuous flow pilot-scale photobioreactor, which produced biomass that was used in the next stages of the study, for the evaluation of the biomass separation by dissolved air flotation. The first DAF tests carried out in bench scale and batch operation allowed to identify the optimum operation conditions, which were then evaluated in a continuous flow pilot scale dissolved air flotation unit (DAF). The DAF unit produced a sludge with a solid content greater than 2&#37;, which was submitted to a final dewatering by centrifuge. The dewatering tests allowed to check that the use of the same polymer used for the clarification step, permit to obtain a more stable sludge when compared with the sludge without chemical add, and in the best cationic polymer dosage of 6 g.kg-1. The conclusion of this work has shown the possibility of use vinasse as a grow medium for microalgae cultivation, reducing one of impacts caused by ethanol production. In addition, it was possible to observe the potential of FAD, for biomass thickening, produced in photobioreactors.
16

Flotação por ar dissolvido aplicado à separação de microalgas cultivadas em fotobiorreator, alimentado com vinhaça pré-tratada físico-quimicamente, com vistas à exploração de seu potencial bioenergético / Dissolved air flotation applied to separation of microalgae cultivated in photobioreactor, fed with physico-chemically pretreated vinasse, aiming its potential use as biofuel

Gabriel Dibbern Sacchi 23 November 2015 (has links)
Apesar de ser considerado um combustível sustentável, o etanol, produzido a partir da cana de açúcar, deixa um passivo de grandes proporções durante seu processo produtivo, a vinhaça, que vem sendo depositada nas próprias lavouras de cana de açúcar. É gerada na proporção de 12 litros para cada litro de etanol produzido em média, sendo rica em diversos nutrientes, os quais podem ser aproveitados para diversos fins como, por exemplo, meio de cultivo para microalgas. A presente pesquisa avaliou em uma primeira etapa a clarificação da vinhaça por um processo de coagulação com auxílio de um polímero catiônico, seguida de uma etapa de microfiltração tangencial em filtro de fibras ocas, o que permitiu uma redução superior a 77&#37; para a cor aparente, de 99&#37; para a turbidez e de 20&#37; para a DQO, facilitando a utilização deste efluente para o cultivo de microalgas. Numa segunda etapa, foi avaliado o cultivo da microalga Chlorella vulgaris, em escala de bancada e operação em batelada, em meio preparado a partir da diluição da vinhaça em água de poço profundo, obtendo um aumento na biomassa produzida, determinado em termos de clorofila-a, em concentrações de vinhaça inferiores a 7,5&#37; utilizando inóculo da ordem de 106 indivíduos. Tais dados permitiram a realização de ensaios de cultivo em escala contínua, com fotobiorreatores em escala piloto, gerando assim a biomassa utilizada nas próximas fases do estudo, que avaliaram a separação da biomassa gerada pelo processo de flotação por ar dissolvido. Os ensaios inicialmente realizados em escala de bancada e operados em batelada permitiram identificar as condições ótimas de operação, as quais foram então avaliadas em um flotador operando em fluxo contínuo. Tal flotador permitiu a obtenção de um lodo com teor de sólidos superior a 2&#37;, o qual foi submetido à um processo final de desaguamento por centrifugação. Os ensaios de desaguamento, permitiram verificar que a utilização do mesmo polímero utilizado na etapa de clarificação permite a obtenção de um lodo mais estável, quando comparado com a não utilização de produto químico, na dosagem de polímero catiônico de 6 g.kg-1. A conclusão deste trabalho permitiu verificar a possibilidade de utilização da vinhaça como meio de cultivo de microalgas, reduzindo assim um dos impactos causados pela produção de etanol. Além disso foi possível verificar o potencial da FAD, para o espessamento de biomassa produzido em fotobiorreatores. / Considered a sustainable fuel, ethanol produced from sugar cane, leaves a major liability during its production process, which has been deposited in the own sugar cane fields. The vinasse is generated, on average, in the proportion of 12 liters per liter of produced ethanol, is rich in different nutrients, which can be used for many purposes, such as the microalgae cultivation. This study evaluated in the first step the vinasse clarification by coagulation with cationic polymer, followed by crossflow microfiltration on a hollow fibers filter, which enable a reduction over 77&#37; for apparent color, 99&#37;for turbidity and 20&#37; for COD, facilitating the use of this effluent for microalgae cultivation. In a second step, was evaluated the microalgae Chlorella vulgaris cultivation in bench scale and batch operation, in a medium prepared from the vinasse dilution in water from a deep well, getting an increase in the biomass production, measure in terms of chlorophyll-a, for a vinasse concentration below 7.5&#37;, and an inoculum of approximately 106 individuals. These data allowed the microalgae cultivation in a continuous flow pilot-scale photobioreactor, which produced biomass that was used in the next stages of the study, for the evaluation of the biomass separation by dissolved air flotation. The first DAF tests carried out in bench scale and batch operation allowed to identify the optimum operation conditions, which were then evaluated in a continuous flow pilot scale dissolved air flotation unit (DAF). The DAF unit produced a sludge with a solid content greater than 2&#37;, which was submitted to a final dewatering by centrifuge. The dewatering tests allowed to check that the use of the same polymer used for the clarification step, permit to obtain a more stable sludge when compared with the sludge without chemical add, and in the best cationic polymer dosage of 6 g.kg-1. The conclusion of this work has shown the possibility of use vinasse as a grow medium for microalgae cultivation, reducing one of impacts caused by ethanol production. In addition, it was possible to observe the potential of FAD, for biomass thickening, produced in photobioreactors.
17

Bounded Point Derivations on Certain Function Spaces

Deterding, Stephen 01 January 2018 (has links)
Let 𝑋 be a compact subset of the complex plane and denote by 𝑅𝑝(𝑋) the closure of rational functions with poles off 𝑋 in the 𝐿𝑝(𝑋) norm. We show that if a point 𝑥0 admits a bounded point derivation on 𝑅𝑝(𝑋) for 𝑝 > 2, then there is an approximate derivative at 𝑥0. We also prove a similar result for higher order bounded point derivations. This extends a result of Wang, which was proven for 𝑅(𝑋), the uniform closure of rational functions with poles off 𝑋. In addition, we show that if a point 𝑥0 admits a bounded point derivation on 𝑅(𝑋) and if 𝑋 contains an interior cone, then the bounded point derivation can be represented by the difference quotient if the limit is taken over a non-tangential ray to 𝑥0. We also extend this result to the case of higher order bounded point derivations. These results were first shown by O'Farrell; however, we prove them constructively by explicitly using the Cauchy integral formula.
18

Investigation on the processing of wheat bran and condensed distillers solubles as animal feed

2012 July 1900 (has links)
Owing to the increasing demand for alternative fuel additives, the Canadian ethanol industry has grown tremendously. In Western Canada, wheat has been the dominant feedstock for ethanol production because of steadily increasing domestic production and higher ethanol yields. Low protein and high starch wheat varieties have further increased the potential of grain-based ethanol production. As a consequence, the increased ethanol production has demonstrated an exponential increase in the availability of its co-products. Depending on the processes used, several co-products are produced, such as bran, condensed distillers solubles (CDS), and distillers dried grains with solubles (DDGS). Wheat bran is obtained as the co-product when debranning is incorporated in ethanol production. Debranning of wheat feedstock may be integrated into the ethanol production process to improve ethanol quality and yield. Debranning follows the principles of abrasion and friction. It improves the starch content of the feedstock and the fermentation efficiency of the ethanol plants. Several abrasive equipment that generate products having good quality and desirable ethanol yield are being used commercially. Among these, the Satake mill and the tangential abrasive dehulling device (TADD) are prominent, having high debranning efficiency, levels of sanitation, and improved production rates. In this thesis, the laboratory debranning process using these two equipment was optimized by varying the process variables in order to improve the ethanol production process. In the Satake mill, the sample size (30 and 200 g), rotational speed (1215, 1412, and 1515 rpm), grit size (30, 36, and 40), and retention time (30, 60, and 90 s) were varied. In the TADD mill, the sample size (30 and 200 g), grit size (30, 36, 50, and 80), and retention time (120, 180, 240, and 300 s) were varied while maintaining a constant rotational speed of 900 rpm. The experimental results indicated that in the Satake mill, 200 g sample size, 1515 rpm rotational speed, 30 grit size, and 60 s retention time provided optimal debranning and starch separation efficiency. For the TADD mill, 200 g sample size, 900 rpm rotational speed, 50 grit size, and 240 s retention time provided optimal results. Increased availability of ethanol co-products from the pretreatments and other processes brings forth the need for broadening the areas of application of these co-products. Among the various applications, the usage of the co-products as animal feed is predominant. Ethanol co-products have been traditionally incorporated as ingredients for animal feed. This thesis is aimed at combining the wheat bran and CDS in varying proportions (70:30, 80:20, and 90:10) and producing high quality animal feed pellets. Laboratory-scale pelleting was done at varying pelleting temperatures, 60, 75, and 90°C, to optimize the pelleting process. The results of laboratory-scale single pelleting indicated that 90:10 bran-CDS ratio and 90°C pelleting temperature produced pellets having good physical properties. Pilot-scale pelleting was done to verify the optimized variables, and to produce dimensionally stable and highly durable feed pellets. The results showed that 70:30 bran-CDS mixture produced pellets with high nutrient content and physical properties (760.88±2.04 kg/m3 bulk density and 97.79±0.76% durability). Similar to the single pelleting results, high pelleting temperatures (75°C) produced pellets with desirable physical properties. However, on cooling, the bulk density and durability change was the highest for 70:30 bran-CDS pellets, indicating an improvement in the physical characteristics. In conclusion, the bran and CDS, the two co-products of the ethanol industry, could be combined to produce feed pellets having good physical and nutritional properties.
19

Synchronization and Media Exchange in Large-Scale Caenorhabditis elegans Cultures

Brown, Jason Daniels 01 May 2009 (has links)
The nematode Caenorhabditis elegans is a model organism for understanding sensory molecules of multicellular organisms. Ovulating hermaphrodites produce putative pheromone(s) that cause male attraction. Because pheromones are produced in such small quantities, adult conditioned-media from large-scale synchronous culture is necessary to analyze these pheromones. Current protocols for culture synchronization have volume constraints that limit large-scale synchronous cultures and current methodology for adult conditioned-media production is impractical. Modification of Tangential Flow Filtration (TFF) systems was investigated for use as a method to increase the volume limits of bleach egg harvest for C. elegans culture synchronization. Also, an adult retention device built within the culture vessel was investigated to optimize the environment for aseptic conditioned-media production from dense large-scale C. elegans cultures. During this investigation, we have shown that synchronous C. elegans cultures for adult conditioned-media production can be grown at scales larger than reported before, with potential for further scale up. Our growth methodologies have also yielded denser cultures than previously achieved at large scales. Since rapid bleach harvesting appears to be the bottleneck for large-scale production of synchronous C. elegans cultures, our approach of using modified TFF systems with mesh to retain C. elegans eggs increased the amount of eggs that could be bleach harvested at one time. Using this method we have been able to achieve up to 5x103 synchronous C. elegans per mL at a 50L scale. Since scale-up of TFF is straightforward, our results suggest that the technique reported here can easily be applied to larger scale systems for production of adult conditioned-media for C. elegans. Further, the adult retention device within the culture vessel can ensure that the whole process remains aseptic.
20

Simultaneous clarification and purification of recombinant penicillin G acylase using tangential flow filtration anion-exchange membrane chromatography

Orr, Valerie 29 March 2012 (has links)
Downstream purification often represents the most cost-intensive step in the manufacturing of recombinant proteins. Conventional purification processes are lengthy, technically complicated, product specific and time-consuming. To address this issue, herein we develop a one step purification system that due to the nature of the non-selective secretion system and the versatility of ion-exchange membrane chromatography can be widely applied to the production of many recombinant proteins. This was achieved through the integration of the intrinsically coupled upstream, midstream and downstream processes, a connection that is rarely exploited. A bioprocess for effective production and purification of penicillin G acylase (PAC) was developed. PAC was overexpressed in a genetically engineered Escherichia coli strain, secreted into the cultivation medium, harvested, and purified in a single step by anion-exchange chromatography. The cultivation medium developed had a sufficiently low conductivity to allow direct application of the extracellular fraction to the anion-exchange chromatography medium while providing all of the required nutrients for sustaining cell growth and PAC overexpression. It was contrived with the purposes of (i) providing sufficient osmolarity and buffering capacity, (ii) minimizing ionic species to facilitate the binding of extracellular proteins to anion-exchange medium, and (iii) enhancing PAC expression level and secretion efficiency. Employing this medium recipe the specific PAC activity reached a high level of 487 U/L/OD600, with more than 90% was localized in the extracellular medium. Both, the osmotic pressure and induction conditions were found to be critical for optimal culture performance. Furthermore, formation of inclusion bodies associated with PAC overexpression tended to arrest cell growth, leading to potential cell lysis. iv At harvest, the whole non-clarified culture broth was applied directly to a tangential flow filtration anion-exchange membrane chromatography system. One-step purification of recombinant PAC was achieved based on the dual nature of membrane chromatography (i.e. microfiltration-sized pores and anion-exchange chemistry). Due to their size, cells remained in the retentate while the extracellular medium penetrated the membrane. Most contaminate proteins were captured by the anion-exchange membrane, whereas the purified PAC was collected in the filtrate. The batch time for both cultivation and purification was less than 24 h and recombinant PAC with high purity (19 U/mg), process yield (74%), and productivity (41 mg/L) was obtained.

Page generated in 0.0636 seconds