• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 303
  • 23
  • 1
  • Tagged with
  • 327
  • 327
  • 327
  • 327
  • 44
  • 44
  • 23
  • 20
  • 20
  • 19
  • 17
  • 17
  • 17
  • 17
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Plastic Deformation at Moderate Temperatures of 6XXX-series Aluminium Alloys

Aastorp, Knut Iver January 2002 (has links)
<p>The present work has been carried out in order to investigate Al-Mg-Si alloys that are deformed at moderate temperatures. These temperatures are in the range between 200 C and 300 C. Also some experiments are performed at room temperatures. Two deformation models have been applied in the experiments: material deformation by compression testing and by forward extrusion. </p><p>The investigated alloys are AA6063, AA6082 and an alloy that is named “Alloy R” in this work. The latter alloy is the industrial alloy AA6082 without the Mn-addition (0.56wt%Mn in the AA6082). The “R” denotes the recrystallized microstructure in the material after hot forming operations.</p><p>The investigations show the effect of changing the temperature in the given temperature interval on the stress-strain relationship for each alloy. From the compression testing, it is found that none of the alloys AA6063 or Alloy “R” reaches a steady state condition as true strain approaches 0.8 for deformation temperatures between 200 C and 250 C. At compression testing performance at 300 C, the alloy “R” reaches a steady state condition at a true strain equal to 0.4.</p><p>As true stress-true strain relationship has been investigated for the “Alloy R” and the AA6063 at comparable deformation parameters, it is shown that the alloy “R”, with the highest Si-content, requires the highest true stress for a given true strain value (AA6063: 0.45wt%Si, Alloy “R”: 0.87wt%Si).</p><p>From the compression testing, the effect of Mn on the material properties in the AA6082-alloy has been determined. For the Alloy “R” and the AA6082, the true stress reached the same value after a certain amount of deformation. As deformation temperature increases, this common value of true stress corresponds to a decrease in true strain.</p><p>The AA6082 and Alloy “R” are also compared in experiments performed in forward extrusion. One observes that for the same deformation temperature and at identical die diameters, the ram force is identical. It is worth noticing that these alloys did not show the same relationship during the compression testing at low values of true strain (<0.8). On a microscopic scale, one concludes that Mn has no significant effect on the stress-strain relationship for the applied deformation parameters in the forward extrusion equipment.</p><p>Hardness measurements indicate that the age hardening potential in the extruded test specimen decreases as the deformation temperature increases. The hardness data is similar for both the AA6082 and the Alloy R, thus indicating that the Mn content has no significant effect on the strength of the material.</p><p>The deformed material has been annealed in order to investigate the recrystallization process in the AA6082 and the Alloy “R”. The recrystallization grain size in the Alloy “R” is significantly larger than in the AA6082 at comparable deformation parameters after annealing at 530 C for 15 minutes. This result is due to the effect of Mn-containing dispersoids in the AA6082. The recrystallization grain size in the Alloy “R” seems to be unaffected by the deformation temperature after annealing for 15 minutes. The observation of the AA6082 is quite different. A small increase in grain size is observed for both reduction ratios as the deformation temperature is elevated from 20C to 200 C and further to 250 C. At extrusion temperatures of 300 C the recrystallization grains are significantly larger.</p><p>Annealing experiments performed at 430 C on the AA6082 indicates that a change in the deformation temperature from 200 C to 250 C does not affect the amount of stored energy in the material significantly.</p><p>The Forge2 programme has been used to perform numeric simulations of the forward extrusion experiment. From this the temperature distribution, strain rate variation and true strain development in the test piece had been investigated. As the simulated true strain values are compared to the grain size in the annealed material, the recrystallization grain size is related to the amount of stored energy in the material in a very convincing way. It is also shown that the recrystallization grain diameter is related to the amount stored energy as the grain diameter is investigated in the radial and the extrusion direction separately.</p>
142

Photochromic molecules in polymer switch diodes

Tai, Feng-i January 2006 (has links)
<p>Photochromism has been investigated extensively during recent years. The large interest for information storage in memory applications is associated with the bi-stable character of the photochromism phenomena. In molecular photochromics, two isomers with different absorption spectrum can be obtained according to the specific wavelength of the light exposure. This reversible transformation process can be considered as optical writing/erasing step of a memory.</p><p>Here we first report the absorption spectra of solid-state films based on the blends consisting of PC molecules, the spirooxazine 1,3-dihydro-1,3,3-trimethylspiro[2H-indole-2,3’-[3H]phenanthr[9,10-b](1,4)oxazine] (PIII, Sigma-Aldrich, 32,256-3) and a polymer matrix host, poly(2-methoxy-5(2’-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV). The bi-stability in conjugated polymer matrix is studied by following the time evolution of the optical properties of the blends.</p><p>Thereafter, the electrical performance of PC-polymer diodes is characterized and reported. While the PIII molecules in the blend bulks are switched to their low energy gap state, forming external energy levels above the valence band of MEH-PPV, the injected charges (hole-dominated) will be trapped by the low energy gap isomer of PIII and that leads to current modulation. PIII molecules can be switched between two energy gap states upon the photo-stimulation, and the I-V characteristics of the device can also be controlled reversibly via the photoisomerization. The retention time of the diode’s electrical switching fits quite well with the absorption characteristics of the blend films; this correspondence builds a good link between the film property and the device behavior.</p><p>Furthermore, we observed a two-trap system in the blend diodes from the I-V curves, and a model is proposed which can explain the schematic concept of the trap-limited current modulation. To combine the knowledge and information from the investigations above, we tested a novel device design based on a bi-layer of the PC and polymer materials, and the promising result for future work is presented in the end.</p>
143

Synthesis and Characterisation of Magnetron Sputtered Alumina-Zirconia Thin Films

Trinh, David Huy January 2006 (has links)
<p>Alumina-Zirconia thin films were grown on a range of substrates using dual magnetron sputtering. Film growth was achieved at a relatively low temperature of 450 °C and at higher temperatures up to 810 °C. The films were grown on well-defined surfaces such as silicon (100) but also on industrially relevant substrates such as hardmetal (WC-Co). Radio frequency power supplies were used in combination with magnetron sputtering to avoid problems with target arcing. A range of film compositions were possible by varying the power on each target. The influence of sputtering target were investigated, both ceramic oxide targets and metallic targets being used.</p><p>The phase composition of the as-deposited films was investigated by x-ray diffraction. The pure zirconia films contained the monoclinic zirconia phase, while the pure alumina films appeared either amorphous or contained the gamma-alumina phase. The composite films contained a mixture of amorphous alumina, gamma-alumina and the cubic zirconia phase. In-depth high-resolution electron microscopy studies revealed that the microstructures consisted of phase-separated alumina and zirconia nanocrystals in the case of the nanocomposites. In-situ spectroscopy was also performed to characterise the nature of the bonding within the as-deposited films.</p><p>The oxygen stoichiometry in the films was investigated as a possible reason for the stabilisation of the cubic zirconia phase in the nanocomposite. Ion beam techniques such as Rutherford backscattering scattering and electron recoil detection analysis were used in these studies. The growth of films with ceramic targets led to films that may be slightly understoichiometric in oxygen, causing the phase stabilisation. The growth of films from metallic targets necessitates oxygen rich plasmas and it is not expected that such films will be oxygen deficient.</p><p>Initial attempts were also made to characterise the mechanical properties of the new material with nanoindentation. The nanocomposite appeared to have greater resistance to wear than the pure zirconia film. In doing so, some surface interactions and some material interactions have been studied.</p> / Report code: LIU-TEK-LIC-2006:41
144

Biomass Briquettes in Malawi

Faxälv, Olle, Nyström, Olof January 2007 (has links)
<p>In Malawi 2.5 % of the forest disappears each year. The use of firewood and charcoal, deriving from forest resources,</p><p>accounts for about 99 % of the household energy demand in Malawi and is a cause to the deforestation. The Government of</p><p>Malawi recently launched a programme called Promotion of Alternative Energy Sources Programme (PAESP) with the aim</p><p>to reduce the use of firewood and charcoal. One of the fuels included in the programme is the biomass briquette. The aim</p><p>with this study is to evaluate the viability of biomass briquettes as a sustainable alternative energy source to firewood and</p><p>charcoal for households in Malawi.</p><p>Research for the study was carried out during three months in Malawi. Visits were made to a number of briquette</p><p>production sites to study the manufacturing methods and to collect briquette samples. The briquettes were tested using</p><p>various methods and then compared with results for firewood and charcoal.</p><p>At the moment various production methods are used in Malawi, with a high difference in technical complexity and cost.</p><p>Machines produced from wood using very basic mechanics can apply similar pressure as more advanced metal pressers.</p><p>They also seem to be better suited than those made of metal, in terms of price and availability.</p><p>The majority of the briquette producers in Malawi use waste paper as base material. Although the paper briquettes are good,</p><p>other raw materials will be needed if the production is supposed to be significantly increased.</p><p>The briquettes burn well using the most common stoves in Malawi, including the commonly used charcoal stove. While</p><p>firewood is cheaper to use than other available fuels, the briquettes seem to be able to compete with the fuel costs for</p><p>charcoal.</p>
145

Vad händer när mode påverkar möbeldesign? : En kollektion strandmöbler och badkläder

Lindahl, Veronica January 2007 (has links)
<p>Rapporten beskriver ett designprojekt, som är en del av examensarbetet på 15p, Vad händer när mode påverkar möbeldesign? En kollektion strandmöbler och badkläder, utfört av Veronica Lindahl, avgångsstudent på utbildningsprogrammet möbeldesign på Carl Malmsten, Centrum för Träteknik & Design vid Linköpings universitet. Syftet med denna rapport är att beskriva processen av detta examensarbete.</p><p>Valet av produkter tog avstamp från min bakgrund i Halmstad. En möbel för stranden och något att ha på sig. Att koppla samman mode och möbeldesign tilltalar mig. Målet var att produkterna skulle komplettera och inspirera varandra. Att tänka på hur produkterna skulle presenteras var också en del i arbetet.</p><p>Upplägget i denna rapport är enligt ordningen i min designprocess. Det börjar med en insamlingsetapp. Efter detta följer en lång skissetapp, därefter material, tillverkning och slutligen en resultatanalys med tankar och reflektioner över vad jag kommit fram till.</p><p>Arbetet startade med samtal med handledaren Daniel Östman, där vi diskuterade val av examensarbete samt vad jag ville få ut av arbetet. Jag valde att göra ett projekt med mig som uppdragsgivare, eftersom det är så jag vill arbeta i framtiden.</p><p>Ledorden i mitt arbete har varit modedesigns påverkan på möbeldesign, en möbel för stranden och något att ha på sig, trä och tyg, material som klarar utomhusklimatet.</p><p>Resultatet är en funktionell, bärbar strandstol med två lägen som är lätt, går att fälla ihop och kan bäras på ryggen. Detta är en produkt som jag skulle vilja se på stranden.</p><p>Detsamma gäller badplaggen, de väcker nyfikenhet och är ett mer påklätt badmode.</p><p>Vid presentationen av produkterna använde jag mig av en stiliserad strand som gav en känsla av hur produkterna skulle användas i den miljö de var avsedda för.</p><p>I framtiden vill jag arbeta med att kombinera modeskapande och möbeldesign. Jag har upptäckt många intressanta möjligheter och uppslag i vad som händer när mode påverkar möbeldesign.</p>
146

Arbetsmöbel för ungdomar : Beskrivning av designprocessen i ett samarbete med IKEA

Leckström, Anna January 2007 (has links)
<p>Rapporten beskriver ett designprojekt, utfört som en del av examensarbetet på</p><p>15 HP, jag utfört som avgångsstudent på möbeldesignprogrammet vid Carl Malmsten Centrum för Träteknik & Design.</p><p>Från Ronnie Runesson, produktutvecklare på IKEA of Sweden, fick jag ett uppdrag, ett reellt projekt att arbeta med. Projektet handlade om att ta fram ett koncept på en ny typ av arbetsmöbel för ungdomar i åldersgruppen 12 – 18 år.</p><p>Målet med projektet var att, förutom att leverera ett fungerande koncept till IKEA, sätta min designmetodik på prov med hjälp av ett konkret designprojekt samt att vid projektets slut analysera den.</p><p>Rapporten har en beskrivande karaktär där jag berättar om de olika etapper arbetet utförts efter: Etapp 1- Koncept- och instuderingsetapp, Etapp 2- Vidareutvecklingsetapp, Etapp 3- Konkretisering av produkt. Beskrivningen förljer en kronologisk ordning för att underlätta läsarens förståelse för designprocessens gång.</p><p>Rapporten illustreras av ett fyrtiotal bildfigurer som visar delar ur mitt skiss- och gestaltningsarbete.</p><p>Rapporten avslutas med en analys av projektet samt den designmetodik jag använt mig av.</p> / <p>This report describes a design project (within a graduation project worth 15 points) that I completed during my final year as a student in the furniture design program at the Carl Malmsten Centre for Wood Technology and Design.</p><p>I received a commission from Ronnie Runesson, product developer at IKEA of Sweden, to develop an actual project to work with. The project was about creating a concept for a new type of desk for adolescences between the ages of 12 and 18.</p><p>The aim of the project was to, apart from deliver a working concept to IKEA, try out my design methodology with the aid of a concrete design project and at the end of the project create an analysis of it.</p><p>The character of the report is descriptive and in it I describe the different phases I worked with: Phase 1- Concept and Research Phase, Phase 2- Further Development Phase,</p><p>Phase 3- Realisation of Product. To facilitate the reader’s understanding of the design process the description follows a chronological order.</p><p>The report contains some forty images, showing parts of my sketch work.</p><p>The report ends with an analysis of the project and the design methodology I used.</p>
147

Rheology of Particle Suspensions : Fresh Concrete, Mortar and Cement Paste with Various Types of Lignosulfonates

Wallevik, Jon Elvar January 2003 (has links)
<p>The major issue concerns how the different lignosulfonate types changes the rheological properties of the cement based material (concrete, mortar and cement paste) as a function of temperature and time. In such terms, it is demonstrated that the high molecular weight lignosulfonates performs far better than the low molecular weight ones. The former type also performs considerable better compared to a naphthalene based polymer. </p><p>The above investigation is done with help from the second part of this thesis, which identifies some of the parameters p1, p2,... affecting the shear viscosity η = η ( p1, p2,...) of the cement based material. This is done by investigating the thixotropic behavior of cement paste mixed with either lignosulfonates or naphthalene. The thixotropic behavior is directly related to coagulation, dispersion and re-coagulation of the cement particles. In making the analysis, a modification is applied to the Hattori-Izumi theory, which is a theory about the bookkeeping of the number of reversible coagulated connections between the cement particles. The modification consist, among other things, of include a fading memory to the analysis. That is, the cement paste is allowed to remember its recent past. By a combination of experimental results and numerical simulations, it is demonstrated that such memory term is very important.</p><p>An experimental error is present during a viscometric measurement on concrete (a coaxial cylinders viscometer is used). The error is generated by particle migration. Investigating and compensating for this error constitutes the third part of this thesis. Realizing the nature of this error, some corrections are applied. However, with these corrections, one is only extracting the viscometric values of a "fat'' concrete that surrounds the inner cylinder of the viscometer after the particle migration is basically complete, and not of the concrete in the original homogenous state.</p>
148

Behaviour of nickel, iron and copper by application of inert anodes in aluminium production

Lorentsen, Odd-Arne January 2000 (has links)
<p>A thorough investigation was performed on the behaviour of Ni, Fe and Cu oxides dissolved in cryolite melts, and the solubility of these species was measured as a function of alumina content, NaF/AlF<sub>3</sub> molar ratio (CR) and temperature. Predominance area diagrams showing the solid phases containing Ni, Fe and Cu, respectively, as a function of the partial oxygen pressure and the alumina activity at 1020 <sup>o</sup>C were constructed. These diagrams were based on present emf and solubility measurements.</p><p>The interpretations of the solubility measurements for the oxides of Ni and Fe gaveconclusive and consistent results. The oxides of Ni and Fe exhibit decreasing solubility with decreasing temperature and with increasing alumina concentration. The Ni(II) concentration decreased from 0.32 wt% in cryolite to 0.003 wt% in alumina-saturated melts, while that of Fe(II) decreased from 4.17 to 0.32 wt% in similar melts. FeO and NiO are stable solid phases at low alumina concentrations, while FeAl<sub>2</sub>O<sub>4</sub> and NiAl<sub>2</sub>O<sub>4</sub> are stable at high concentrations. The alumina concentrations corresponding to the points of coexistence between FeO and FeAl<sub>2</sub>O<sub>4</sub> and between NiO and NiAl<sub>2</sub>O<sub>4</sub> were determined to be 5.03 and 3.0 wt% Al<sub>2</sub>O<sub>3</sub>, respectively, corresponding to the following Gibbs energy of formation from the oxide compounds,∆G<sup>0</sup><sub>fNiAl2o4</sub> = –28.6 ± 2 kJ/mol and ∆G<sup>0</sup><sub>f FeAl2O4</sub> = –17.6 ± 0.5 kJ/mol.</p><p>The solubilities of FeAl<sub>2</sub>O<sub>4</sub> and NiAl<sub>2</sub>O<sub>4 </sub>as a function of the CR were investigated in alumina-saturated melts at 1020 <sup>o</sup>C. For both compounds a maximum solubility was found at CR ~5, being 0.008 wt% Ni(II) and 0.62 wt% Fe(II). The results are discussed with respect to the species present in solution. Both Fe(II) and Ni(II) dissolve as fluorides with different numbers of associated “NaF’s”. Ni(II) seems to form Na<sub>3</sub>NiF<sub>5</sub> in melts with molar ratios 2 to 12, while Fe(II) is present as NaFeF<sub>3</sub> in acidic (CR 3–10) melts and as Na<sub>3</sub>FeF<sub>5 </sub>and probably some Na<sub>4</sub>FeF<sub>6</sub> in basic melts (CR > 3).</p><p>The solubility of both Cu oxidation states Cu(I) and Cu(II) decreases with decreasing temperature. The solubilities of Cu(I) initially decreased with increasing alumina concentration, showing a minimum at a certain alumina concentration followed by an increase. The solubilities were 0.36 wt% Cu(I) and 0.92 wt% Cu(II) in cryolite, and 0.30wt% Cu(I) and 0.45 wt% Cu(II) in alumina-saturated cryolite at 1020 <sup>o</sup>C.</p><p>At 1020 <sup>o</sup>C the solubilities of Cu<sub>2</sub>O and CuO were little influenced when changing the CR from 3 to 8 in alumina-saturated melts (~0.30 wt% Cu(I) and ~0.45 wt% Cu(II)), but there was an upward trend for CR < 3. Solubility measurements for CuO in alumina-saturated melts at CR 3.0 to 1.2 clearly showed that the saturation concentration is dependent on both temperature and melt composition.</p><p>Copper ions in solution show a complex behaviour, since they form fluorides and oxycomplexes simultaneously. The extent of co-existence of Cu(I) and Cu(II) in the same melt is also considerable, and it is depending on the alumina activity in the melt. According to thermodynamics the stable copper oxide phases at high alumina activities are the aluminates CuAlO<sub>2</sub> and CuAl<sub>2</sub>O<sub>4</sub>. However, no clear changes in the solubilities were found for the points of coexistence between Cu<sub>2</sub>O and CuAlO<sub>2</sub> and CuO and CuAl<sub>2</sub>O<sub>4</sub>, respectively, as was the case for Ni(II) and Fe(II). Although there are uncertainties regarding the thermodynamic data available for the formation of copper aluminates, models for the dissolution mechanisms and for the species present in the melt are suggested. Cu(I) seems to form mainly CuF at low alumina contents, while Na<sub>5</sub>CuO<sub>3</sub> dominates at higher alumina concentrations. Likewise, Cu(II) seems to form CuF<sub>2</sub>, but the concentration of CuF<sub>2</sub> decreases with increasing alumina content. The species that gave the best fit for the cupric oxy-complexes was Na<sub>16</sub>CuO<sub>9</sub>, and the amount increased with increasing alumina content.</p><p>Cermet anodes were prepared with a NiFe<sub>2</sub>O<sub>4</sub>-based oxide phase mixed with a ~20 wt% copper-rich metal phase. The electrical conductivity for these materials was measured as a function of temperature, showing semiconductor behaviour in the temperature range from room temperature to 1050 <sup>o</sup>C. The highest electrical conductivity measured was ~30 S/cm at 1000 <sup>o</sup>C, which is on the low side for use as an anode material for aluminium production.</p><p>Three cermet anodes were tested by electrolysis for 48 hours. After the experiments the anodes were examined with SEM. There was no metal phase present in the outer 100 µm of the anode, not even pores were observed that could indicate where the metal grains had been. A copper-rich phase was found in one case ~2 mm from the outer surface, and it is believed that copper diffuses out of the anode.</p><p>The cermet anodes dissolved slowly in the electrolyte during electrolysis. The steady state concentrations of Fe and Cu in the electrolyte were below the saturation concentrations, while the concentration of Ni was 3 - 4 times above saturation. The dissolution of the anode does not fit a first order mass-transport model, but it can probably be explained by a controlled dissolution mechanism with some additional disintegration/spalling of the anode material. Further work is needed to draw a firm conclusion. In general, correct solubility data for the anode constituents are needed to make a proper evaluation of various anode materials. Perhaps the first order mass-transport model agrees for some materials, but based on the present results it seems untenable for cermet materials made of NiFe<sub>2</sub>O<sub>4</sub> with a copper-rich metal phase.</p><p>The solubilities of the oxides of Ni(II) and Fe(III) are very low for the alumina-saturated melt used during electrolysis, which make them promising candidates for inert anodes. However, if nickel aluminate, which is an insulator, is formed and deposited on the anode surface, it is a cause of concern. Fe(II) aluminate is not expected to form on the anode surface, since Fe(III) is the stable oxidation state in the presence of oxygen gas. However, solid Fe(II) aluminate may be formed in the bulk of the electrolyte where the partial oxygen pressure is lower.</p>
149

Tool steel for tool holder applications : microstructure and mechanical properties

Medvedeva, Anna January 2008 (has links)
<p>Large improvements in cutting tool design and technology, including the application of advanced surface engineering treatments on the cemented carbide insert, have been achieved in the last decades to enhance tool performance. However, the problem of improving the tool body material is not adequately studied.</p><p>Fatigue is the most common failure mechanism in cutting tool bodies. Rotating tools, tool going in and out of cutting engagement, impose dynamic stresses and require adequate fatigue strength of the tool. Working temperatures of milling cutter bodies in the insert pocket can reach up to 600°C depending on the cutting conditions and material of the workpiece. As a result, steel for this application shall have good hot properties such as high temper resistance and high hot hardness values to avoid plastic deformation in the insert pocket of the cutting tool. Machinability of the steel is also essential, as machining of steel represents a large fraction of the production cost of a milling cutter.</p><p>This thesis focus on the improvement of the cutting tool performance by the use of steel grades for tool bodies with optimized combination of fatigue strength, machinability and properties at elevated temperatures.</p><p>The first step was to indentify the certain limit of the sulphur addition for improved machinability which is allowable without reducing the fatigue strength of the milling cutter body below an acceptable level. The combined effect of inclusions, surface condition and geometrical stress concentrator on the fatigue life of the tool steel in smooth specimens and in tool components were studied in bending fatigue.</p><p>As the fatigue performance of the tools to a large extent depends on the stress relaxation resistance at elevated temperature use, the second step in this research was to investigate the stress relaxation of the commonly used milling cutter body materials and a newly steel developed within the project. Compressive residual stresses were induced by shot peening and their response to mechanical and thermal loading as well as the material substructures and their dislocation characteristics were studied using X-ray diffraction.</p><p>Softening resistance of two hot work tool steels and a newly developed steel was investigated during high temperature hold times and isothermal fatigue and discussed of with respect to their microstructure. Carbide morphology and precipitation as well as dislocation structure were determined using transmission electron microscopy and X-ray line broadening analysis.</p>
150

Nanoscale Characterisation of Barriers to Electron Conduction in ZnO Varistor Materials

Elfwing, Mattias January 2002 (has links)
<p>The work presented in this thesis is concerned with the microstructure of zinc oxide varistor materials used in surge protecting devices. This class of material has been characterised with special emphasis on the functional microstructure and the development of the microstructure during sintering. Several different techniques have been used for the analysis, especially scanning electron microscopy (SEM) in combination with electron beam-induced current (EBIC) analysis and <i>in-situ</i> studies of heat-treatment experiments and transmission electron microscopy (TEM) in combination with energy dispersive X-ray spectrometry (EDS) and electron holography. </p><p>Detailed TEM analyses using primarily centred dark-field imaging of grain boundaries, especially triple and multiple grain junctions, were used to reveal the morphological differences between the various Bi<sub>2</sub>O<sub>3</sub> phases. The triple and multiple grain junctions were found to exhibit distinct differences in morphology, which could be attributed the difference in structure of the crystalline Bi<sub>2</sub>O<sub>3</sub> polymorphs present in the junctions. </p><p>Electrical measurements were performed on individual ZnO/ZnO grain boundaries using EBIC in the SEM. The EBIC signal was found to depend strongly on the geometric properties of the interface and also on the symmetry of the depletion region at the interface. A symmetric double Schottky barrier was never observed in the experiments, but instead barriers with clear asymmetry in the depletion region. Experimental results together with computer simulations show that reasonably small differences in the deep donor concentrations between grains could be responsible for this effect.</p><p>Electron holography in the TEM was used to image the electrostatic potential variation across individual ZnO/ZnO interfaces. The sign of the interface charge, the barrier height (about 0.8 eV) and the depletion region width (100 to 150 nm) were determined from holography data. Asymmetries of the depletion region were also found with this technique. </p><p>The full sintering process of doped ZnO powder granules was studied <i>in-situ</i> in the environmental SEM. The densification and grain growth processes were studied through the sintering cycle. The formation of a functional microstructure in ZnO varistor materials was found to depend strongly on the total pressure.</p>

Page generated in 0.0904 seconds