Spelling suggestions: "subject:"telescope"" "subject:"elescope""
231 |
Extremely large segmented mirrors: dynamics, control and scale effectsBastaits, Renaud 11 June 2010 (has links)
All future Extremely Large Telescopes (ELTs) will be segmented. However, as their size grows, they become increasingly sensitive to external disturbances, such as gravity, wind and temperature gradients and to internal vibration sources. Maintaining their optical quality will rely more and more on active control means. This thesis studies active optics of segmented primary mirrors, which aims at stabilizing the shape and ensuring the continuity of the surface formed by the segments in the face of external disturbances.<p><p>The modelling and the control strategy for active optics of segmented mirrors are examined. The model has a moderate size due to the separation of the quasi-static behavior of the mirror (primary response) from the dynamic response (secondary, or residual response). The control strategy considers explicitly the primary response of the telescope through a singular value controller. The control-structure interaction is addressed with the general robustness theory of multivariable feedback systems, where the secondary response is considered as uncertainty.<p><p>Scaling laws allowing the extrapolation of the results obtained with existing 10m telescopes to future ELTs and even future larger telescopes are addressed and the most relevant parameters are highlighted. The study is illustrated with a set of examples of increasing sizes, up to 200 segments. This numerical study confirms that scaling laws, originally developed with simple analytical models, can be used in confidence in the preliminary design of large segmented telescopes. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
|
232 |
The Cosmic Population of Extended Radio Sources : A Radio-Optical StudyThorat, Kshitij January 2014 (has links) (PDF)
This thesis presents studies of cosmic populations of extragalactic radio sources. The problems selected for this thesis are 1) the derivation of constraints on the emergence of new sub-mJy populations at flux density below about 1mJy (at1.4 GHz) paying careful attention to including sources with low surface brightness and counting sources rather than components 2) development of a new method to estimate the asymmetry in the large scale galaxy environment with respect to the axes of extended radio sources and use this to examine for evidence of impact of the environment on the morphology of radio sources. The studies presented herein have been carried out using the Australia Telescope Low Brightness Survey (ATLBS), which is a sensitive radio survey at 1.4 GHz, imaging 8.42 square degrees of the sky along with accompanying optical observations of the same region.
There are multiple populations of extragalactic radio sources in the cosmos. These consist of populations of powerful radio-loud quasars and radio galaxies to populations of weaker radio sources such as star-forming galaxies. These populations of radio sources show evidence of evolution with cosmic epoch. Because the radio galaxy phenomenon and the AGNs at the centers of their host galaxies may influence the evolution of the galaxy via feedbacks, examinations of these source populations over cosmic time are a necessary complementary study to understanding the process of galaxy formation and in general, cosmology. Below we give brief introduction to the problems studied in this thesis.
Sub-mJy Radio Source Counts
Radio source counts, which have historically been a key probe of cosmology, now represent a measure of cosmological evolution in radio source populations. Currently, the estimation of source counts at sub-mJy flux density as well as the nature and evolution of these sources is undetermined. At flux densities ≤1.0 mJy a ‘flattening’ of normalized differential source counts has been widely reported in literature( Windhorst et al.(1985),Hopkins et al.(2003),Huynh et al.(2005) and references therein). The flattening is observed as an apparent change of slope for the normalized differential source counts from ∼0.7 at5.0 −100.0 mJy to about 0.4 in the 0.25 −5.0 mJy range. Attempts to understand the nature of the sub-mJy population have arrived at discordant results and identify the sub-mJy sources with different populations: starburst galaxies(Condon(1989), Benn et al. (1993), Huynhet al. (2005)), early type galaxies (Gruppioniet al., 1999),low(radio) luminosity activegalactic nuclei(AGNs)(Huynh et al.,2008) or a mixture of these. Due to unavailability of spectroscopically complete samples of hosts of sub-mJy sources, the exact nature of the sub-mJy radio source population is currently uncertain. However, the presence of a population which emerges at sub-mJy flux density and is different from the AGN-dominated radio source population is not in doubt. The studies in the literature are inconsistent in identifying the precise location of the emergence of flattening in counts at sub-mJy flux density. Several studies show that the source counts are consistent with a continuation in the slope of the differential counts below mJy flux density (Prandoniet al.(2001) and Subrahmanyan et al.(2010)). The scatter in the sub-mJy counts from different studies may be because of the relatively small areas covered by deep surveys(in many cases, a single pointing of an interferometric array) which may have relatively large errors arising from large scale clustering in the spatial distribution of cosmic radio sources(however the study by Condon (2007) concludes that the scatter in the source counts stems from variations in corrections and sensitivity in different studies)In contrast, wide-field surveys may not reach the depth to probe sub-mJy counts. Another reason is the correction applicable to the observed source counts necessary to estimate the true source counts; these are especially pertinent at low flux densities. To resolve these is-sues, a survey which combines the attributes of wide spatial coverage as well as excellent sensitivity and a procedure which accounts for the biases in estimation of the sub-mJy source counts is needed. In conclusion, accurate measurements of the source counts at sub-mJy flux densities are needed to correctly estimate the cosmic evolution of radio sources.
Environments of Extended Radio Sources
Another issue of importance in the study of extragalactic radio sources is their interaction with their environments. The gas environments in which radio sources reside and evolve ought to have an influence on the morphology of the radio sources. This has been shown in many case studies where the radio structures have been compared with the X-ray gas environments (Blanton et al. (2011); Boehringer et al.(1993)). Studies of the optical environments of radio galaxies have also been carried out previously (Longair & Seldner, 1979; Yee & Green, 1984; Hill & Lilly, 1991; Zirbel, 1997). The motivation behind these studies has been to examine differences between different classes of radio sources, the evolution of environments with cosmic epoch as well as the possibility of identifying clusters/groups of galaxies using radio sources as a tracer(Wing &Blanton, 2011). Many previous studies have found that the environments of FRI/FRII sources are different and are dependent on the cosmic epoch. FRI sources, typically, are found in rich environments. FRII sources in the local universe are generally hosted by field galaxies, but at higher red shifts are found in richer environments(Hatch et al.,2011;Best et al.,2003;Overzier et al.,2008). However, there have been fewer studies that relate the richness of the environments and morphological asymmetries of radio galaxies. Earlier investigations by Subrahmanyan et al. (2008) and Safouris et al.(2009) are noteworthy in this regard where the radio structures of two giant radio galaxies were examined in the context of the large-scale galaxy distributions in their vicinity(also see Chen et al.(2012) and references therein). The study was also used to infer properties of the ambient thermal gas medium in which the structures evolved. Clear correlations between structural asymmetries and associated extended emission-line gas were also found for radio galaxies that have relatively smaller sizes of a few hundred kpc(McCarthy et al., 1991).
Thesis Work
To progress the field in the problems highlighted above, the following work has been done in this thesis.
Radio Imaging of ATLBS Survey
To characterize the cosmic evolution of radio sources and their properties, observations and imaging of faint radio sources is essential. The Australia Telescope Low Brightness Survey(ATLBS), which has been used in the studies presented in this thesis, has been designed specifically to image diffuse radio emission to relatively high red shifts(z ∼1−1.5). Therefore obtaining good surface brightness sensitivity was a prime objective in planning the radio observations and in imaging the data obtained from these observations. This requires a nearly complete synthesized aperture and observations of a representative patch of the extra galactic sky. These requirements have been fulfilled in ATLBS survey, which has excellent uv coverage, especially at short spacings, and images a region off the galactic plane that is devoid of strong radio sources. The observations were carried out for two adjacent fields, designated as A and B with their centers at RA:00h 35m 00s,DEC:−67◦00 00 and RA:00h 59m 17s,DEC:−67◦00 00 ,in the 20 cm band, with a center frequency of1388MHz,infullpolarization mode. The radio data was imaged by using techniques such as multi-frequency deconvolution and self-calibration to make two mosaics of region A and B which are free of artefacts.
These high-resolution radio images(with beamFWHM of 6 “)of the ATLBS survey regions cover 8.42 square degrees sky area with rms noise 72 µJy beam−1 and are of exceptional quality in that there are no imaging errors or artifacts above the thermal noise over the entire field of view. The images have excellent surface brightness sensitivity and hence provide good representation of extended emission components associated with radio sources.
Optical Imaging of ATLBS Survey
The ATLBS survey region has been also observed in SDSS r band, specifically for providing information about the galaxies hosting radio sources observed in ATLBS survey as well as galaxies in the neighbourhood of the radio sources. The optical observations were carried out using the CTIO 4 meter Blanco Telescope in Chile and using theMOSAICIIimager,whichisamosaicof8CCDs. In total, 28 optical images were created from the optical data. Each image was formed from a set of 5 dithers, using which spurious sources in the images were rejected. The final images are complete down to a magnitude of 22.75.
Radio Source Counts
Using the sensitive radio and optical images, a study of radio source counts was carried out. This study made use of some novel strategies and algorithms to generate a source list and correct it for various biases to obtain the radio source counts. More specifically, care was taken to identify sources with low surface brightness by making use of low resolution images for initial identification, and using multiple indicators (including optical images) to identify components of sources. The blending issues inherent in using low resolution images has been avoided using higher resolution images to identify blended sources. Thus, use of low resolution images( beam FWHM =50”′) almost completely removes effects of resolution bias and the use of high resolution images avoids blending issues. These strategies, together with use of optical images to locate candidate galaxy hosts and a careful visual examination of resolved and complex sources instead of automated classification ensures that the ATLBS catalog is a ‘source catalog’ as opposed to a ‘component catalog’. The distinction between ‘sources’ (which are single sources) as opposed to components(parts of a single source appearing separate) is crucial in estimating the true source counts.
The source list was used toestimatetheradiosourcecountsdownto0.4 mJy. Comparing the counts with previous work shows that the ATLBS counts are systematically lower and the upturn in sub-mJy source counts has not been found down to the noise limited flux densities probed. The systematically low counts for ATLBS relative to most previous studies are attributed to the ATLBS counts representing sources as opposed to components, as well as corrections for noise bias as well as clustering effects that may affect source counts derived from the small sky coverage typical of deep surveys. This study also demonstrates the substantial difference in counts that result from using component catalogs as opposed to source catalogs: at 1 mJy flux density component counts may be as much as 50% above true source counts. This implies that automated image analysis for counts may be dependent on the ability of the imaging to reproduce connecting emission with low surface brightness as well as the ability of the algorithm to recognize sources, which require that source finding algorithms effectively work with multi-resolution and multi-wavelength data.
Galaxy Environments of Extended Radio Sources in ATLBS Survey
A study of the galaxy environments of the extended sources in the ATLBS survey was carried out using the optical images. This study of the environments of radio sources from the ATLBS survey is restricted to those that are extended and hence to a subset of the ATLBS-ESS(Extended Source Sample) sources. Briefly, the ATLBS-ESS subsample consists of 119 radio sources that have angular size ex-ceeding0’.5. Applying a red shift cut(to exclude sources with high red shifts whose optical environment may be beyond the depth of the optical images) as well as other constraints(such as availability of optical magnitudes of the host galaxy), a sub-sample of 43 sources was formed, including sources of diverse radio morphologies(FRI/FRII, WATs and HTs)as well as7 radio sources which are highly asymmetric in their radio morphology. For these sources, where no spectroscopic data was available, a red shift estimate was obtained from a magnitude-red shift relation derived from other sources in the ATLBS survey. Using the optical images convolved with a matched filter(following the prescription from Postman et al. (1996))consisting of a radial and magnitude filter, smoothed maps were formed for each source in the sample. These give the likelihood of a cluster being present in a given position in the map (in this case the location of interest being the position of the radio source in the map). Further, five parameters were defined in this study, which give estimates of the angular anisotropy of galaxy density around the axis of the radio source. This method used to quantify environmental asymmetry for the study presented in the thesis is new.
The parameters defined thus were used to examine the environments of radio sources in the sample over a wide range in red shift. Specifically a comparison of FRI/FRII environments was made in two different red shift regimes(above and below z = 0.5) and it was found that the FRI and FRII sources inhabit environments of similar richness at low and high red shifts, with no evidence for red shift evolution. The WAT and HT sources were(as expected from earlier studies in literature)found in the most dense environments. Examination of the anisotropy parameters for the asymmetric radio sources clearly showed the influence environment has on radio source morphology, specifically in that the higher density of galaxies was found on the shorter side of the radio sources in almost all cases.
Images and Other Resources
The radio and optical images are an excellent resource for examining with auto-mated algorithms for source finding, parameter fitting, and morphological classification, and as a resource for testing such algorithms that would be used on upcoming all-sky continuum surveys with the LOFAR and ASKAP/SKA. The techniques and methods developed and presented in the thesis may be used in future studies of radio source populations.
|
233 |
Recherche indirecte de matière noire en direction des galaxies naines avec le télescope à neutrinos ANTARES / Indirect research of dark matter toward dwarf galaxies with the ANTARES neutrino telescopeDumas, Alexis 21 October 2014 (has links)
La première partie de ce document résume les arguments astrophysiques permettant de supposer l’existence de matière noire. Le modèle cosmologique ΛCDM y est présenté ainsi que la notion de section efficace d’auto-annihilation de matière noire. Les galaxies naines satellites de la Voie Lactées, sources de notre étude, sont introduites dans un second chapitre. Après un rappel des grandes structures qui composent l’univers, les problématiques liées aux galaxies naines sont abordées : nombre de ces galaxies, distribution de la densité de matière noire en leur sein et forces de marées dues à la Voie Lactée.La seconde partie discute de la modélisation de la densité de matière noire dans les galaxies naines. La méthode employée, utilisant l’équation de Jeans et la dispersion des vitesses projetées des étoiles, y est présentée. Trois profils de matière noire sont retenus : NFW, Burkert et Einasto ainsi que quinze galaxies naines. La production de neutrinos lors de l’auto-annihilation de matière noire est ensuite abordée. Les spectres énergétiques des neutrinos produits sont générés avec le logiciel PYTHIA puis comparé avec d’autres résultats pour le centre galactique. Vingt-trois hypothèses de masse du candidat de matière noire sont choisies, allant de 25 GeV/c2 `a 100 TeV/c2. Cinq canaux d’auto-annihilation sont sélectionnés pour l’analyse : χχ → b¯b, W+W−, τ+τ−, μ+μ−, νμ ¯ νμ. La troisième partie comporte une présentation du détecteur utilisé pour l’étude, le télescope à neutrinos ANTARES. Trois algorithmes de reconstruction développés et utilisés au sein de la collaboration y sont également détaillés : AAFit, BBFit et GridFit. L’analyse des données d’ANTARES ayant pour but de mettre en évidence un excès de neutrinos caractéristique de l’auto-annihilation de matière noire est résumée dans le sixième et dernier chapitre. Aucun excès n’ayant été observé, une limite sur la section efficace d’auto-annihilation de matière noire a été déterminée. / The first part of this document summarizes the astrophysical arguments to suppose the existence of dark matter. The cosmological model ΛCDM is presented as well as the concept of cross section of dark matter self-annihilation. Dwarf galaxies satellites of the Milky Way, the sources of our study are introduced into a second chapter. After recalling the large structures that make up the universe, the issues related to dwarf galaxies are addressed : missing satellites problem, distribution of dark matter density within them and tidal forces due to the Milky Way. The second part discusses the modeling of the dark matter density in dwarf galaxies. The methodology, using the Jeans equation and dispersion of projected stars velocities, is presented. Three dark matter profiles are retained : NFW, Burkert and Einasto and fifteen dwarf galaxies.Neutrino production during the self-annihilation of dark matter is then addressed. The energy spectra of neutrinos are generated with PYTHIA software and compared with other results for the galactic center. Twenty-three assumptions of mass dark matter candidates are chosen, ranging from 25 GeV/c2 100 TeV/c2. Five self-annihilation channels are selected for analysis : χχ → b¯b, W+W− τ+τ− μ+μ− νμ ¯ νμ. The third part includes a presentation of the detector used for the study, the ANTARES neutrino telescope. Three reconstruction algorithms developed and used in collaboration are also detailed : AAFIT, BBFit and GridFit. The analysis of data ANTARES aimed to find a neutrinos excess characteristic of dark matter self-annihilation is summarized in the sixth and final chapter. No excess was observed, a limit on the cross section of dark matter self-annihilation was determined.
|
234 |
Vývoj systému řízení astronomického dalekohledu s možností sledování družic / Development of astronomical telescope control system with satellite trackingJuráň, Jakub January 2018 (has links)
The focus of this thesis is a development of an electronic guiding unit for a mount of an astronomical telescope allowing observations of artificial satellites orbiting the Earth. It contains a theoretical study of methods developed for the description of positions of objects observable on the celestial sphere, including systems used for storage of this information and regaining it in order to point the telescope in a specific direction. The work includes an analysis of the present supply of commercial devices, followed by a detailed description of the design developed here and its components. Finally, there is outline of possibilities of a future development of the system, focusing on software components.
|
235 |
Correction active des discontinuités pupillaires des télescopes à miroir segmenté pour l’imagerie haut contraste et la haute résolution angulaire / Active correction of pupil discontinuities on segmented telescopes for high contrast imaging and high angular resolutionJanin-Potiron, Pierre 19 October 2017 (has links)
La recherche de signes de vie extraterrestre par l'observation et la caractérisation d'exoplanètes est, entre autres, l'un des enjeux majeurs de l'astrophysique moderne. Cette quête se traduit de manière instrumentale par le développement de télescopes fournissant des résolutions angulaires supérieures à celles obtenues à l'heure actuelle. C'est pourquoi les projets de futurs très grands télescopes font usage de miroirs primaires dépassant les 30 mètres de diamètre. Leur conception est alors inévitablement basée, pour des raisons techniques et technologiques, sur une géométrie segmentée. De ce fait, la segmentation du miroir primaire implique une complexification des structures pupillaires du télescope. Dans le but d'atteindre les niveaux de qualité optique nécessaires aux applications scientifiques visées, la prise en compte et la correction des effets introduits par un mauvais alignement des segments est de prime importance puisque la résolution angulaire d'un télescope non cophasé serait équivalente à celle obtenue avec un segment individuel. Dans ce contexte, je développe dans cette thèse deux analyseurs de cophasage permettant de mesurer et de corriger les aberrations de piston, tip et tilt présentes sur une pupille segmentée. Le premier, nommé Self-Coherent Camera - Phasing Sensor (SCC-PS), est basé sur une analyse du signal en plan focal. Le second, nommé ZELDA - Phasing Sensor (ZELDA-PS), repose quant à lui sur une analyse du signal en plan pupille. Sont présentés dans ce manuscrit les résultats obtenus à l'aide de simulations numériques ainsi que ceux issus de l'implémentation de la SCC-PS sur un banc d'optique d'essai. / Searching for extraterrestrial life through the observation and characterization of exoplanets is, amongst others, one of the major goal of the modern astrophysics. This quest translate from an instrumental point of view to the development of telescope capable of reaching higher angular resolution that what is actually ongoing. That is why the future projects of extremely large telescopes are using primary mirrors exceeding the 30 meters in diameter. Their conception is consequently based, for technical and technological reasons, on a segmented geometry. The segmentation of the primary mirror therefore implies a growing complexity of the structure of its pupil. In order to reach the optical quality required by the sciences cases of interest, taking into account and correct for the effects introduced by a poor alignment of the segments is mandatory, as the angular resolution of a non-cophased telescope is equivalent to the one obtained with a single segment. In this context, I develop in this manuscript two cophasing sensors allowing to measure and correct for the aberrations of piston, tip and tilt present on a segmented pupil. The first one, the Self-Coherent Camera - Phasing Sensor (SCC-PS), is based on a focal plane analysis of the signal. The second one, the ZELDA - Phasing Sensor (ZELDA-PS), is based on a pupil plane analysis of the signal. The results obtained by means of numerical simulations and the first results coming from the implementation of the SCC-PS on an optical bench are presented in this manuscript.
|
236 |
Pozorování zdrojů gama záření a kalibrace observatoře Cherenkov Telescope Array / The observations of gamma ray sources and calibration of the Cherenkov Telescope Array ObservatoryJuryšek, Jakub January 2020 (has links)
In this thesis, we present the Monte Carlo study of two prototypes of tele- scopes for the Cherenkov Telescope Array (CTA) observatory, followed by the first data analysis partially using our reconstruction pipeline based on Random Forests. The Monte Carlo model of the SST-1M prototype is created and val- idated by comparison with data. Using the precise Monte Carlo models, we evaluate the performance of the SST-1M and LST-1 prototypes, working so-far in mono-regime as standalone telescopes, resulting in their energy and angular resolution, and the differential sensitivity. We also present an analysis of the data from the first two Crab Nebula observation campaigns conducted with the LST-1 telescope. In the last part of the thesis, we present a study of aerosol optical depth of the atmosphere above both future sites of the CTA observa- tory, retrieved from photometric measurements of Sun/Moon photometers. We focus on the photometer in-situ calibration for nocturnal measurements and introduce corrections to minimize systematic shifts between diurnal and noc- turnal measurements. Using the developed methods, we present the aerosol characterization of both CTA sites based on the photometric data. 1
|
237 |
Methods for Multisensory Detection of Light Phenomena on the Moon as a Payload Concept for a Nanosatellite MissionMaurer, Andreas January 2020 (has links)
For 500 years transient light phenomena (TLP) have been observed on the lunar surface by ground-based observers. The actual physical reason for most of these events is today still unknown. Current plans of NASA and SpaceX to send astronauts back to the Moon and already successful deep-space CubeSat mission will allow in the future research nanosatellite missions to the cislunar space. This thesis presents a new hardware and software concept for a future payload on such a nanosatellite. The main task was to develop and implement a high-performance image processing algorithm which task is to detect short brightening flashes on the lunar surface. Based on a review of historic reported phenomena, possible explanation theories for these phenomena and currently active and planed ground- or space-based observatories possible reference scenarios were analyzed. From the presented scenarios one, the detection of brightening events was chosen and requirements for this scenario stated. Afterwards, possible detectors, processing computers and image processing algorithms were researched and compared regarding the specified requirements. This analysis of available algorithm was used to develop a new high-performance detection algorithm to detect transient brightening events on the Moon. The implementation of this algorithm running on the processor and the internal GPU of a MacMini achieved a framerate of 55 FPS by processing images with a resolution of 4.2 megapixel. Its functionality and performance was verified on the remote telescope operated by the Chair of Space Technology of the University of Würzburg. Furthermore, the developed algorithm was also successfully ported on the Nvidia Jetson Nano and its performance compared with a FPGA based image processing algorithm. The results were used to chose a FPGA as the main processing computer of the payload. This concept uses two backside illuminated CMOS image sensor connected to a single FPGA. On the FPGA the developed image processing algorithm should be implemented. Further work is required to realize the proposed concept in building the actual hardware and porting the developed algorithm onto this platform.
|
238 |
Développement d'un télescope Comton avec un calorimètre imageur 3D pour l'astronomie gamma / Development of a Compton Telescope with 3D Imaging Calorimeter for Gamma-Ray AstronomyGostojić, Aleksandar 21 April 2016 (has links)
La thèse porte sur le développement d’un petit prototype de télescope Compton pour l'astronomie gamma spatiale dans la gamme d’énergie du MeV (0.1-100 MeV). Nous avons étudié de nouveaux modules de détection destinés à l'imagerie Compton. Nous avons assemblé et testé deux détecteurs à scintillation, l'un avec un cristal de bromure de lanthane dopé au cérium (LaBr₃:Ce) et l'autre avec un cristal de bromure de cérium (CeBr₃). Les deux cristaux sont couplés à des photomultiplicateurs multi-anodes 64 voies sensibles à la position. Notre objectif est d’optimiser la résolution en énergie en même temps que la résolution en position du premier impact d'un rayon gamma incident dans le détecteur. Les deux informations sont vitales pour la reconstruction d'une image avec le prototype de télescope à partir de l’effet Compton. Nous avons développé un banc de test pour étudier expérimentalement les deux modules, avec une électronique de lecture et un système d'acquisition de données dédiés. Nous avons entrepris un étalonnage précis du dispositif et effectué de nombreuses mesures avec différentes sources radioactives. En outre, nous avons réalisé une simulation numérique détaillée de l'expérience avec le logiciel GEANT4 et effectué une étude paramétrique extensive pour modéliser au mieux la propagation des photons ultraviolet de scintillation et les propriétés optiques des surfaces à l'intérieur du détecteur. Nous avons alors développé une méthode originale de reconstruction de la position d’impact en 3D, en utilisant un réseau de neurones artificiels entrainé avec des données simulées. Nous présentons dans ce travail tous les résultats expérimentaux obtenus avec les deux modules, les résultats de la simulation GEANT4, ainsi que l'algorithme basé sur le réseau de neurones. En plus, nous donnons les premiers résultats sur l'imagerie Compton obtenus avec le prototype de télescope et les comparons avec des performances simulées. Enfin, nous concluons en donnant un aperçu des perspectives d'avenir pour l'imagerie gamma Compton et considérons une application possible en discutant d’un concept de télescope spatial semblable à notre prototype. / The thesis aims to develop a small prototype of a Compton telescope for future space instrumentation for gamma-ray astronomy. Telescope’s main target is the MeV range (0.1-100MeV). We studied novel detector modules intended for Compton imaging. We assembled and tested 2 modules, one with a cerium-doped lanthanum(III) bromide (LaBr₃:Ce) crystal and the other with cerium(III) bromide (CeBr₃). Both modules are coupled to and read out by 64-channel multi-anode PMTs. Our goals are to obtain the best possible energy resolution and position resolution in 3D on the first impact of an incident gamma-ray within the detector. Both information are vital for successful reconstruction of a Compton image with the telescope prototype. We developed a test bench to experimentally study both modules and have utilized a customized readout electronics and data acquisition system. We conducted a precise calibration of the system and performed experimental runs utilizing different radioactive sources. Furthermore, we have written a detailed GEANT4 simulation of the experiment and performed an extensive parametric study on defining the surfaces and types of scintillation propagation within the scintillator. We utilized simulated data to train an Artificial Neural Network (ANN) algorithm to create a simplified 3D impact position reconstruction method and in addition developed an approximation routine to estimate the standard deviations for the method. We show all experimental results obtained by both modules, results from the GEANT4 simulation runs and from the ANN algorithm. In addition, we give the first results on Compton imaging with the telescope prototype and compare them with simulated performance. We analyzed and discussed the performance of the modules, specifically spectral and position reconstruction capabilities. We conclude by giving an overview of the future prospects for gamma-ray imaging and consider possible applications showing a concept of a space telescope based on our prototype.
|
239 |
Improved Methods for Phased Array Feed Beamforming in Single Dish Radio AstronomyElmer, Michael James 09 July 2012 (has links) (PDF)
Among the research topics needing to be addressed to further the development of phased array feeds (PAFs) for radio astronomical use are challenges associated with calibration, beamforming, and imaging for single dish observations. This dissertation addresses these concerns by providing analysis and solutions that provide a clearer understanding of the effort required to implement PAFs for complex scientific research. It is shown that calibration data are relatively stable over a period of five days and may still be adequate after 70 days. A calibration update system is presented with the potential to refresh old calibrators. Direction-dependent variations have a much greater affect on calibration stability than temporal variations. There is an inherent trade-off in beamformer design between achieving high sensitivity and maintaining beam pattern stability. A hybrid beamformer design is introduced which uses a numerical optimizer to balance the trade-off between these two conflicting goals to provide the greatest sensitivity for a desired amount of pattern control. Relative beam variations that occur when electronically steering beams in the field of view must be reduced in order for a PAF to be useful for source detection and imaging. A dual constraint beamformer is presented that has the ability to simultaneously achieve a uniform main beam gain and specified noise response across all beams. This alone does not reduce the beam variations but it eliminates one aspect of the problem. Incorporating spillover noise control through the use of rim calibrators is shown to reduce the variations between beams. Combining the dual constraint and rim constraint beamformers offers a beamforming option that provides both of these benefits.
|
240 |
Image Degradation Due To Surface Scattering In The Presence Of AberrationsChoi, Narak 01 January 2012 (has links)
This dissertation focuses on the scattering phenomena by well-polished optical mirror surfaces. Specifically, predicting image degradation by surface scatter from rough mirror surfaces for a two-mirror telescope operating at extremely short wavelengths (9nm~30nm) is performed. To evaluate image quality, surface scatter is predicted from the surface metrology data and the point spread function in the presence of both surface scatter and aberrations is calculated. For predicting the scattering intensity distribution, both numerical and analytic methods are considered. Among the numerous analytic methods, the small perturbation method (classical Rayleigh-Rice surface scatter theory), the Kirchhoff approximation method (classical BeckmanKirchhoff surface scatter theory), and the generalized Harvey-Shack surface scatter theory are adopted. As a numerical method, the integral equation method (method of moments) known as a rigorous solution is discussed. Since the numerical method is computationally too intensive to obtain the scattering prediction directly for the two mirror telescope, it is used for validating the three analytic approximate methods in special cases. In our numerical comparison work, among the three approximate methods, the generalized Harvey-Shack model shows excellent agreement to the rigorous solution and it is used to predict surface scattering from the mirror surfaces. Regarding image degradation due to surface scatter in the presence of aberrations, it is shown that the composite point spread function is obtained in explicit form in terms of convolutions of the geometrical point spread function and scaled bidirectional scattering distribution functions of the individual surfaces of the imaging system. The approximations and assumptions in this iv formulation are discussed. The result is compared to the irradiance distribution obtained using commercial non-sequential ray tracing software for the case of a two-mirror telescope operating at the extreme ultra-violet wavelengths and the two results are virtually identical. Finally, the image degradation due to the surface scatter from the mirror surfaces and the aberration of the telescope is evaluated in terms of the fractional ensquared energy (for different wavelengths and field angles) which is commonly used as an image quality requirement on many NASA astronomy programs.
|
Page generated in 0.0532 seconds