Spelling suggestions: "subject:"emporal love epilepsy"" "subject:"emporal lose epilepsy""
161 |
Interaktion zwischen Sauerstoffspannung und epileptiformer Aktivität und deren Einfluss auf Zellschäden in juvenilen organotypischen hippokampalen Schnittkulturen der RattePomper, Jörn K. 25 January 2006 (has links)
In der Pathogenese der Temporallappenepilepsie wird kindlichen hippokampalen Schädigungen eine wesentliche Rolle zugeschrieben. Epileptische Krämpfe und perinatale Asphyxie sind zwei häufige Ursachen dieser Schädigungen. Anhaltende epileptiforme Aktivität im Niedrig-Mg2+-Modell als einer experimentellen Form epileptischer Krämpfe führt in organotypischen hippokampalen Schnittkulturen (OHSK) der Ratte, die als Ersatzsystem des kindlichen Hippokampus verwendet werden, zu Zellschäden. Während dieser Untersuchungen ergab sich der Verdacht auf eine zusätzlich schädigende Wirkung erhöhter Sauerstoffspannungen. In meiner ersten Versuchsreihe konnte ich nachweisen, dass erhöhte Sauerstoffspannungen (60 %, 95 %) verglichen mit 20%-Sauerstoffspannung zu reversiblen und irreversiblen Zellschäden in OHSK führen. Die Zellschäden wurden über Veränderungen reizinduzierter Feldpotentiale, d.h. Abnahme der Amplitude, Zunahme der Latenz und Zunahme des Doppelpulsindex, sowie über die Propidium Jodid (PJ)-Fluoreszenzintensität bestimmt. In der zweiten Versuchsreihe konnte gezeigt werden, dass erhöhte Sauerstoffspannungen auch nach einer Hypoxie im Sinne einer hyperoxischen Reoxygenierung verglichen mit normoxischer Reoxygenierung vermehrt Zellschäden in OHSK zur Folge haben. In der dritten Versuchsreihe konnte ich ausschließen, dass erhöhte Sauerstoffspannungen eine notwendige Bedingung für Zellschäden infolge anhaltender epileptiformer Aktivität sind. Um die zellschädigende Rolle von Spreading Depressions (SDs), die während epileptiformer Aktivität auftreten, zu bestimmen, wurde in der vierten Versuchsreihe eine Methode etabliert, SD-ähnliche Ereignisse isoliert und zuverlässig in normoxischen OHSK auszulösen. Auf diese Weise wiederholt ausgelöste SD-ähnliche Ereignisse führten zu Zellschäden, bestimmt über die Veränderung elektrophysiologischer Eigenschaften von SD-ähnlichen Ereignissen, Abnahme der Feldpotentialamplitude und PJ-Fluoreszenzintensität. / Hippocampal damage during infancy is thought to play an important role in the pathogenesis of temporal lobe epilepsy. Epileptic seizures and perinatal asphyxia are two frequent causes of these damages. Sustained epileptiform activity induced in the low Mg2+-model of epileptic seizures leads to cell damage in organotypic hippocampal slice cultures (OHSC) of the rat, which are used as a surrogate for the infantile hippocampus. During a previous study utilising this model the suspicion arose that increased oxygen tension could have an additional damaging effect. My first series of experiments proved that increased oxygen tension (60 %, 95 %) lead to reversible and irreversible cell damage in OHSC compared to 20%-oxygen tension. Cell damage was determined by alterations of evoked field potentials, i.e. decrement of amplitude, increment of latency and paired pulse index, as well as by propidium iodide fluorescence. The second series of experiments showed that increased oxygen tension applied after an hypoxic period (hyperoxic reoxygenation) result in augmented cell damage compared to normoxic reoxygenation. With the third series of experiments it could be excluded that increased oxygen tension is an essential condition for the occurrence of cell damage due to sustained epileptiform activity. In order to elucidate the damaging role of spreading depressions (SD), which emerge during epileptiform activity, a method was established in the fourth series of experiments that allowed the reliable induction of SD-like events in normoxic OHSC. Repetitive SD-like events induced by this method led to cell damage, assessed by alterations of electrophysiological characteristics of SD-like events, decrement of evoked field potential amplitude and propidium iodide fluorescence.
|
162 |
Détection et modélisation biomathématique d'évènements transitoires dans les signaux EEG intracérébraux : application au suivi de l'épileptogenèse dans un modèle murin / Detection and computational modeling of transient events from intracranial EEG : application to the monitoring of epileptogenesis in a mouse modelHuneau, Clément 11 June 2013 (has links)
Les épilepsies acquises se déclarent après un processus graduel appelé épileptogenèse. Bien que cliniquement silencieux, ce processus implique des modifications fonctionnelles observables notamment par électroencéphalographie. Cette thèse vise i) à identifier des marqueurs électrophysiologiques apparaissant au cours de l’épileptogenèse, et ii) à comprendre les modifications physiopathologiques sous-jacentes responsables de ces marqueurs et de leur évolution temporelle. Dans un premier temps, nous avons, dans un modèle d’épilepsie partielle chez la souris, monitoré des signaux électrophysiologiques intracérébraux pendant la mise en place de la maladie. Nous avons observé dans ces signaux expérimentaux, l’émergence d’événements transitoires pathologiques appelés pointes épileptiques. Nous avons développé des méthodes de traitement du signal pour détecter et caractériser automatiquement ces événements. Ainsi, nous avons pu mettre en évidence certains changements dans la forme des pointes épileptiques au cours de l’épileptogenèse ; en particulier l’apparition et l’augmentation d’une onde qui suit la pointe épileptique. Une hypothèse défendue dans ces travaux est que ces changements morphologiques peuvent constituer des marqueurs de l’épileptogenèse dans ce modèle animal. Dans un second temps, afin d’interpréter ces modifications électrophysiologiques en termes de processus neurophysiologiques sous-jacents, nous avons implémenté un modèle biomathématique, physiologiquement argumenté, capable de simuler des pointes épileptiques. Formellement, ce modèle est un système dynamique non linéaire qui reproduit les interactions synaptiques (excitatrices et inhibitrices) dans une population de neurones. Une analyse de sensibilité de ce modèle a permis de mettre en évidence le rôle critique de certains paramètres de connectivité dans la morphologie des pointes. Nos résultats montrent en effet, qu’une diminution de l’inhibition GABAergique entraîne un accroissement de l’onde dans les pointes épileptiques. À partir du modèle théorique, nous avons pu ainsi émettre des hypothèses sur les modifications opérant au cours du processus d’épileptogenèse. Ces hypothèses ont pu être en partie vérifiées expérimentalement en bloquant artificiellement l’inhibition GABAergique, dans le modèle in vivo chez la souris, et dans un modèle in vitro chez le rat. En conclusion, ce travail de thèse fournit, dans un modèle animal, un biomarqueur électrophysiologique de l’épileptogenèse et tente d’expliquer, grâce à une modélisation biomathématique, les processus neurophysiologiques sous-jacents qu’il reflète. / Acquired epilepsies occur after a process called epileptogenesis. Although clinically silent, this process involves some functional modifications which can be observed by electroencephalography. The objectives of this thesis are i) to identify electrophysiological markers occurring during epileptogenesis, and ii) to understand which underlying pathophysiological modifications are responsible for these markers and their evolution. Firstly, using an in vivo experimental mouse model of partial epilepsy, we have monitored intracranial electrophysiological signals during epileptogenesis. We observed the emergence of pathological transient events called epileptic spikes. We have developed signal processing methods in order to automatically detect and characterize these events. Hence, we observed and quantified morphological changes of epileptic spikes during epileptogenesis. In particular, we noticed the emergence and the increase of a wave which directly follows the spike component. In this work, we defend the hypothesis that these morphological modifications can constitute markers of the epileptogenesis process in this animal model of epilepsy. Secondly, in order to interpret these electrophysiological modifications in terms of underlying pathophysiological processes, we have implemented a computational model able to simulate epileptic spikes. This neural mass model is a neurophysiologically-plausible mesoscopic representation of synaptic interactions (excitation and inhibition) in the hippocampus. Based on a sensitivity analysis of model parameters, we were able to determine some connectivity parameters that play a key role in the morphology of simulated epileptic spikes. In particular, our results show that a diminution of GABAergic inhibition leads to an increase of the aforementioned wave. Thus, using this theoretical model, we defined some hypotheses about pathophysiological modifications occurring during the epileptogenesis process. One of these hypotheses has been confirmed in blocking GABAa receptors in the in vivo mouse model, as well as in an in vitro model (rat, organotypic slices). In summary, based on the shape features of epileptic spikes, we devised an electrophysiological biomarker of epileptogenesis observed in a mouse model but useful in Human studies as well. Moreover, a computational modeling approach has permitted to suggest which pathophysiological processes might underlie this biomarker.
|
163 |
Revisitando o eletrocorticograma intra-operat?rio na epilepsia mesial do lobo temporal: relev?ncia das oscila??es de alta frequ?nciaSilva, Anderson Brito da 13 December 2013 (has links)
Made available in DSpace on 2014-12-17T15:28:53Z (GMT). No. of bitstreams: 1
AndersonBS_DISSERT.pdf: 4240084 bytes, checksum: 0331343a1aab5e54d0d9cb6baeccb72d (MD5)
Previous issue date: 2013-12-13 / Epilepsies are neurological disorders characterized by recurrent and spontaneous seizures
due to an abnormal electric activity in a brain network. The mesial temporal lobe epilepsy
(MTLE) is the most prevalent type of epilepsy in adulthood, and it occurs frequently
in association with hippocampal sclerosis. Unfortunately, not all patients benefit from
pharmacological treatment (drug-resistant patients), and therefore become candidates for
surgery, a procedure of high complexity and cost. Nowadays, the most common surgery is
the anterior temporal lobectomy with selective amygdalohippocampectomy, a procedure
standardized by anatomical markers. However, part of patients still present seizure after the
procedure. Then, to increase the efficiency of this kind of procedure, it is fundamental to
know the epileptic human brain in order to create new tools for auxiliary an individualized
surgery procedure.
The aim of this work was to identify and quantify the occurrence of epilepticform activity -such as interictal spikes (IS) and high frequency oscillations (HFO) - in electrocorticographic
(ECoG) signals acutely recorded during the surgery procedure in drug-resistant patients
with MTLE.
The ECoG recording (32 channels at sample rate of 1 kHz) was performed in the surface
of temporal lobe in three moments: without any cortical resection, after anterior temporal
lobectomy and after amygdalohippocampectomy (mean duration of each record: 10 min; N
= 17 patients; ethic approval #1038/03 in Research Ethic Committee of Federal University
of S?o Paulo). The occurrence of IS and HFO was quantified automatically by MATLAB
routines and validated manually. The events rate (number of events/channels) in each
recording time was correlated with seizure control outcome.
In 8 hours and 40 minutes of record, we identified 36,858 IS and 1.756 HFO. We observed
that seizure-free outcome patients had more HFO rate before the resection than non-seizure
free, however do not differentiate in relation of frequency, morphology and distribution of
IS. The HFO rate in the first record was better than IS rate on prediction of seizure-free
patients (IS: AUC = 57%, Sens = 70%, Spec = 71% vs HFO: AUC = 77%, Sens = 100%,
Spec = 70%). We observed the same for the difference of the rate of pre and post-resection
(IS: AUC = 54%, Sens = 60%, Spec = 71%; vs HFO: AUC = 84%, Sens = 100%, Spec =
80%). In this case, the algorithm identifies all seizure-free patients (N = 7) with two false
positives.
To conclude, we observed that the IS and HFO can be found in intra-operative ECoG
record, despite the anesthesia and the short time of record. The possibility to classify the
patients before any cortical resection suggest that ECoG can be important to decide the
use of adjuvant pharmacological treatment or to change for tailored resection procedure.
The mechanism responsible for this effect is still unknown, thus more studies are necessary
to clarify the processes related to it / As epilepsias s?o dist?rbios neurol?gicos caracterizados por crises espont?neas e recorrentes,
resultantes de uma atividade el?trica anormal de uma rede neural. Dentre os diferentes
tipos de epilepsia, a epilepsia mesial do lobo temporal (EMLT) ? a mais observada em
adultos, sendo frequentemente associada ? esclerose hipocampal. Infelizmente, nem todos
os pacientes s?o beneficiados pelo tratamento farmacol?gico (pacientes f?rmaco-resistentes).
Para estes sujeitos, uma alternativa ? a realiza??o de cirurgia, um procedimento de alta
complexidade e elevado custo. Atualmente, o procedimento mais realizado ? a lobectomia
temporal anterior com amigdalo-hipocampectomia seletiva, uma cirurgia padronizada por
marcos anat?micos. Entretanto, uma parcela dos pacientes continua a apresentar crises
incapacitantes ap?s o tratamento cir?rgico. Desta forma, para aumentar a efici?ncia deste
tipo de tratamento, ? fundamental a compreens?o do enc?falo humano epil?ptico com
vistas a se criar ferramentas que auxiliem na realiza??o de procedimentos individualizados.
O objetivo do presente trabalho foi identificar e quantificar a ocorr?ncia de atividade
epileptiforme - esp?culas interictais (EI) e oscila??es de alta frequ?ncia (OAF) - em registros
eletrocorticogr?ficos (ECoG) realizados durante procedimento cir?rgico em pacientes com
EMLT refrat?ria ao tratamento farmacol?gico.
Registros ECoG (32 canais a uma taxa de amostragem de 1 kHz) foram realizados na
superf?cie do lobo temporal em 3 momentos cir?rgicos: no c?rtex intacto, ap?s lobectomia
temporal anterior e ap?s amigdalo-hipocampectomia (dura??o m?dia de cada um desses
registros: 10 min; N=17 pacientes). A ocorr?ncia de EI e OAF foi quantificada automatica-mente, por meio de rotinas em MATLAB, e validadas manualmente. A taxa de ocorr?ncia
em cada um dos tempos cir?rgicos foi correlacionada com o resultado cir?rgico quanto ao
controle das crises, num seguimento de 2 anos.
De um total de 8 h e 40 min de registro, identificamos 36.858 EI e 1.756 OAF. Observamos
que os pacientes que ficaram livres de crises no p?s-operat?rio apresentaram maior quanti-dade de OAF antes da cirurgia do que aqueles que continuaram a ter crises; por?m, n?o
diferiram quanto a frequ?ncia, morfologia e distribui??o de EI. A ocorr?ncia de OAF no
registro basal apresentou melhor desempenho que as EI na previs?o do controle total das
crises no p?s-operat?rio (EI: AUC = 57%, S = 71% , E = 70% vs OAF: AUC = 77%, S =
100%, E=70%). O mesmo foi observado com a varia??o da ocorr?ncia entre os momentos
pr?- e p?s-ressec??o (EI: AUC = 54%, S = 71%, E = 60% vs OAF: AUC = 84%, S =
100%, E = 80%). Nesse caso, o classificador foi capaz de identificar todos os pacientes
livres de crises (N = 7) , apresentando apenas dois falsos positivos.
Desta forma, podemos concluir que as OAF, juntamente com as EI, podem ser encontradas
no registro ECoG intra-operat?rio, mesmo na presen?a de anest?sicos e em uma curta
sess?o de registro. Al?m disso, a observa??o de que a ocorr?ncia desses eventos no in?cio
da cirurgia permite classificar o paciente quanto ao progn?stico cir?rgico abre caminho
para aplicar o ECoG intra-operat?rio, por exemplo, na decis?o sobre o uso de tratamento
farmacol?gico adjuvante ou da convers?o para ressec??es individualizadas. No entanto,
o mecanismo respons?vel por esse efeito ainda ? desconhecido, logo novos estudos s?o
necess?rios para melhor esclarec?-lo
|
164 |
Involvement of Collapsin Response Mediator Protein 2 in Posttraumatic Sprouting in Acquired EpilepsyWilson, Sarah Marie January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Posttraumatic epilepsy, the development of temporal lobe epilepsy (TLE) following traumatic brain injury, accounts for 20% of symptomatic epilepsy. Reorganization of mossy fibers within the hippocampus is a common pathological finding of TLE. Normal mossy fibers project into the CA3 region of the hippocampus where they form synapses with pyramidal cells. During TLE, mossy fibers are observed to innervate the inner molecular layer where they synapse onto the dendrites of other dentate granule cells, leading to the formation of recurrent excitatory circuits. To date, the molecular mechanisms contributing to mossy fiber sprouting are relatively unknown.
Recent focus has centered on the involvement of tropomycin-related kinase receptor B (TrkB), which culminates in glycogen synthase kinase 3β (GSK3β) inactivation. As the neurite outgrowth promoting collapsin response mediator protein 2 (CRMP2) is rendered inactive by GSK3β phosphorylation, events leading to inactivation of GSK3β should therefore increase CRMP2 activity. To determine the involvement of CRMP2 in mossy fiber sprouting, I developed a novel tool ((S)-LCM) for selectively targeting the ability of CRMP2 to enhance tubulin polymerization. Using (S)-LCM, it was demonstrated that increased neurite outgrowth following GSK3β inactivation is CRMP2 dependent. Importantly, TBI led to a decrease in GSK3β-phosphorylated CRMP2 within 24 hours which was secondary to the inactivation of GSK3β. The loss of GSK3β-phosphorylated CRMP2 was maintained even at 4 weeks post-injury, despite the transience of GSK3β-inactivation.
Based on previous work, it was hypothesized that activity-dependent mechanisms may be responsible for the sustained loss of CRMP2 phosphorylation. Activity-dependent regulation of GSK3β-phosphorylated CRMP2 levels was observed that was attributed to a loss of priming by cyclin dependent kinase 5 (CDK5), which is required for subsequent phosphorylation by GSK3β. It was confirmed that the loss of GSK3β-phosphorylated CRMP2 at 4 weeks post-injury was likely due to decreased phosphorylation by CDK5. As TBI resulted in a sustained increase in CRMP2 activity, I attempted to prevent mossy fiber sprouting by targeting CRMP2 in vivo following TBI. While (S)-LCM treatment dramatically reduced mossy fiber sprouting following TBI, it did not differ significantly from vehicle-treated animals. Therefore, the necessity of CRMP2 in mossy fiber sprouting following TBI remains unknown.
|
Page generated in 0.0938 seconds