• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 391
  • 337
  • 86
  • 52
  • 37
  • 21
  • 18
  • 14
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • Tagged with
  • 1175
  • 507
  • 236
  • 225
  • 224
  • 181
  • 176
  • 157
  • 153
  • 120
  • 109
  • 101
  • 98
  • 94
  • 94
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
641

Tensile Strength of Unsaturated Soils

Yin, Penghai 25 February 2021 (has links)
Desiccation-induced soil cracking is of significant interest in several engineering disciplines, which include geotechnical and geoenvironmental engineering, mining engineering, and agriculture engineering. The hydraulic, mechanical, thermal and other physico-chemical properties of unsaturated soils can be predominantly influenced due to cracks. Reliable information of these properties is required for the rational design and maintenance of earth structures taking account of the influence the soil-atmosphere interactions (e.g., for expansive soil slopes, earth dams, and embankments). In spite of significant research studies published in the literature on the desiccation-induced cracks during the past century, the fundamental mechanism of crack initiation and propagation of soils induced by drying and shrinkage is still elusive. For this reason, the focus of this thesis is directed towards understanding the tensile strength of unsaturated soils which is associated with soil crack initiation criterion (i.e. maximum tensile stress criterion). Tensile strength is the key property of soils for interpreting the initiation of soil cracking from a macroscopic point of view. A semi-empirical model is proposed for predicting the tensile strength of unsaturated cohesionless soils taking into account the effect of both the negative pore-water pressure in saturated pores and the air-water interfacial surface tension in unsaturated pores. The proposed model is calibrated and validated by providing comparisons between the model predictions and the experimental measurements on 10 cohesionless soils (i.e. five sandy soils and five silty soils) published in the literature. The proposed model is simple and requires only the information of Soil-Water Characteristic Curve (SWCC) and Grain Size Distribution curve (GSD), which can be obtained from conventional laboratory tests. To investigate the influence of microstructure, a practical and reliable estimation approach for predicting the evolution of the microstructural void ratio of compacted clayey soils subjected to wetting and drying paths is proposed. The microstructural evolution of 13 examined soils were investigated quantitatively using the mercury intrusion porosimetry (MIP) results. The investigated soils include four high-plasticity clays, eight low-plasticity clays and a glacial till which is a relatively coarse-grained soil with some fines. Based on this study, a novel criterion has been developed for identifying different pore populations of compacted clayey soils. The “as-compacted state line” (ACSL) was proposed to estimate the initial microstructural void ratio based on the compaction water ratio. A constitutive stress is derived to interpret and predict the volumetric deformation of compacted clay aggregates. The linear elastic constitutive model is used for predicting the microstructural void ratio of the examined compacted soils following monotonic wetting and drying paths. The developed approach (i.e. the ACSL and the linear elastic constitutive model) is validated by providing comparisons between the predicted and interpreted microstructural void ratios for all the examined soils. In addition to the matric suction and microstructure, the confining pressure also influences the tensile strength of unsaturated compacted clayey soils. The tensile strength tests on a compacted clayey soil by both the direct method (i.e. triaxial tensile test) and the indirect method (i.e. Brazilian split test) were performed. It is found that the tensile strength increases as the compaction water content decreases for the range investigated in this study, which could be explained by the variation of the inter-aggregated capillary bonding force and the change in microstructure. The increase in the confining pressure has been found to induce the change in failure mode (i.e. from pure tensile failure mode to combined tensile-shear failure mode). In spite of limitations associated with the Brazilian split test, tensile strength is widely determined using this test due to the simple procedure of specimen preparation and wide availability of test equipment in conventional laboratories. However, the Brazilian tensile strength is found to overestimate the tensile strength of compacted specimens with water content greater than the plastic limit. This is due to the considerable plastic deformation associated with the ductile failure instead of brittle failure. In summary, this thesis is devoted to providing insight into the fundamental mechanisms associated with the desiccation-induced crack initiation by quantitatively investigating the various factors that influence the tensile strength of unsaturated soils, which include the matric suction, the microstructure, and the confining pressure from theoretical studies and laboratory investigations.
642

Stress-free titanium-based thin films for inner ear microphones : The last missing part of a technology for totally implantable hearing aid implants / Spänningsfri och tunn titanfilm till en hörapparat för innerörat

Ehsan, Dina January 2020 (has links)
An implantable hearing aid device is being developed by a project group which is part of an EU initiative. This device contains a diaphragm consisting of a submicron thick freestanding titanium film, which should be free of internal stresses. Stress is the force exerted per unit cross-sectional area of the film and it can impair the functionality and performance of the device. The stress that evolves in a thin film during deposition at a substrate is compressive or/and tensile and affects the bending that occurs of the substrate due to the lateral force applied to the substrate by the stressed film. The goal of this diploma work was to contribute to the understanding of in situ stress evolution in a micron thick titanium film and thereby by tuning different physical parameters to obtain minimal residual stress in the films after growth. Titanium films were deposited on silicon sistrates using DC magnetron sputtering. The stress in the material varied, by tuning different physical parameters such as working pressure, power, distance between magnetron and the sample and substrate bias. For this thesis, firstly two different series were done; one where the changing parameter was the distance between the sample and the magnetron and one where it was the working pressure. Later a last series were done to see what effect the bias has on the stress. A multi-beam optical sensor system (MOS) was used to measure the stress in real-time during deposition. X-ray diffraction (XRD) was later used to make post-deposition stress measurements to verify the stress obtained from the MOS. However, the MOS shows the stress evolution in real time and XRD shows a ’final’ average value that can be compared with the stress obtained from MOS-data when the deposition is finished. The results showed that the stress goes from compressive to tensile as the working pressure and the distance between the magnetron and the sample increases. There are other factors, such as the temperature/heating in the main chamber, base pressure of the main chamber, cleaning of the sample and also where the argon gas is let in to the process chamber (in this project called the main chamber (MC)), that influences the results. This will in turn influence the repeatability of the data/measurements, since these effects can affect the process of nucleation and coalescence. The stress evolution can change if a bias is applied during the initial stage of the deposition process when the film has still not grown thick. This is could be due to the bias not having much of an impact on the stress evolution when the film is thicker and thereby more porous.
643

The Influence of Varying Fiber Stacking Sequence on the Tensile, Impact, and Water Absorption Properties of Unidirectional Flax/E-Glass Fiber Reinforced Epoxy Composite

Al-Edhari, Mohammed F. 01 December 2017 (has links)
This thesis includes the study of the mechanical performance of two different types of fibers reinforced hybrid composites. Two kinds of fibers, natural fiber (flax) and synthetic fiber (E-glass), are used to reinforce epoxy resin. To evaluate the effective properties of the hybrid composites, a micromechanical analysis of the structure genome (SG) of a unidirectional fiber hybrid composites is performed using nite element analysis (FEA). Both fibers are assumed to be circular and packed in a hexagonal pattern. The effects of varying volume fractions and fiber locations, of the two fibers, on the elastic properties of the hybrid composites are studied using FEA. Rule of hybrid mixtures (RoHM) and Halpin-Tsai equations, which are analytical equations, are used as a preliminary prediction of the elastic constants of the hybrid composites. Then, the comparison is made between FEA and analytical results. The predicted elastic constants through numerical homogenization are in good a agreement with analytical results. The effect of changing fiber locations on the tensile strength of hybrid composite is investigated using tensile tests. Impact strength of single fiber composites and ax/glass fiber hybrid composites, in which various stacking sequences of ax and glass fibers are used, are obtained using Charpy impact tests. Moisture absorption test was performed by immersing single fiber composites and various stacking sequences of hybrid composites in deionized water at room temperature for a week. To investigate the effect of water absorption on the tensile properties of composite, tensile test was done on various stacking sequences of the hybrid composite. FEA and analytical equations showed that Young's and shear moduli increased and the axial Poison's ratio decreased linearly with the glass fiber content. Also, FEA showed that changing fiber locations have no effect on the effective properties of the hybrid composite. However, changing fiber stacking sequences showed a significant effect on tensile strength, impact strength, and water absorption properties of the hybrid composites. It was concluded that better design of the hybrid composite was achieved when glass fibers placed on the extreme positions and flax fibers in the middle. Positive hybrid effect is achieved from hybridization of E-glass fiber with flax fiber.
644

RC Trough Bridges: A Parametric Study using FEM and an Analysis of their Current State

Åkergren, David January 2021 (has links)
There are approximately 4000 railway bridges in Sweden managed by the Swedish Administration of Transport (Trafikverket), of which a common construction type is the reinforced concrete (RC) trough bridge, which is a structure that consists of a slab carried by two longitudinal main beams which transfer loads towards the supports. A substantial amount of the RC trough bridge population is approaching the end of their service lives which consequently implies that the replacement of some of these bridges can be expected in the near future. Extending their service lives can yield positive effects from a financial- as well as an environmental perspective, and therefore it is highly beneficial to evaluate their capacities as realistically as possible. One factor that may help improve accuracy during the determination of their capacities is an evaluation of how it is affected by the location of the railway track on the bridge.  In current design codes defined by Trafikverket, consideration is taken to horizontal track displacement for a minimum displacement of 0.1 m if there doesn’t exist data suggesting that a larger displacement is prevalent on the bridge. However, Trafikverket has received data which suggest that a considerable number of bridges could experience load eccentricities which exceed the standard minimum value. This raises the question whether or not 0.1m is the most optimal limit value for load eccentricity on railway bridges. For RC trough bridges, a larger load eccentricity may result in one main beam carrying a larger portion of the load which will decrease the axle load which the bridge can carry. It is therefore important to evaluate the influence of larger horizontal displacements than what is currently is considered as a preventive action.   In addition, several studies on Swedish concrete bridges constructed during the 20th century have pointed to a significant increase in concrete compressive- and tensile strength over time. This suggests that it is possible that a considerable amount of RC trough bridges have a higher capacity than what was originally intended, and further research is required in order to understand the behaviour of these bridges when key material parameters are altered.        There are three main tasks which this master thesis seeks to complete. The first part is a detailed analysis of a database named BaTMan (Bridge and Tunnel Management) that belongs to Trafikverket. In this analysis parameters such as span length, age, material type and damages for every identified railway bridge is extracted and further processed in Microsoft Excel in order to gain a clear overview of the RC trough bridge population. The second task regards the development of a non-linear finite element model of a typical RC trough bridge named Lautajokki. The model is analysed using ATENA Science and its behaviour is verified against test results obtained during a full-scale test of the bridge performed by Paulsson et al. (1996). The last task is to use the devolved model to perform a parametric study where the effects of changes in load eccentricity, compressive strength as well as tensile strength is studied.
645

Zpevnění polymerních kompozitů uhlíkovými nanotrubkami / Hardenning of polymeric composites by nanotubes

Kuběna, Martin January 2013 (has links)
This diploma thesis focuses on the influence of carbon nanotubes (CNTs) on the mechanical properties of a composite material with polyurethane (PU) matrix. The material was supplied in the form of thin films with thickness from 0.2 mm to 1.2 mm. The theoretical part of this thesis describes the production technology, properties and applications of composite materials PU/CNTs, and also deals with preparation technology and properties of both components of this composite material separately. The theoretical part also describes the principle of tensile testing of polymer materials. The experimental part of the thesis was primarily focused on comparing the tensile properties of a composite material PU/CNTs with tensile properties of pure PU. At first, tensile properties of pure PU were investigated, while the influence of various factors like strain rate, specimen thickness, heat treatment and aging was examined. In adition, stress relaxation tests and tests with strain rate jumps were performed on pure PU specimens. Then composite PU/CNTs was tested in tension and the results were compared with the results of tensile tests of pure PU. Composite material PU/CNTs was prepared with various concentrations, so it was possible to determine the effect of CNTs content on the tensile properties of the composite. The last part of this thesis deals with tensile tests of PU composite material with functionalized carbon nanotubes (PU/FCNTs), where the influence of surface modification (functionalization) of CNTs on the tensile properties composites was investigated. It was shown that the effect of both CNT and FCNT on mechanical properties of the composite is not significant. This conclusion was discussed on basis of the works of other authors, which do not unambiguously proved the positive effect of CNT or FCNT on mechanical properties of composites with polymer matrix.
646

Protlačovací zkouška konstrukčních ocelí za snížených teplot / Small-punch test of structural steels at low temperatures

Němčíková, Eva January 2013 (has links)
Diploma thesis is focused on comparison of small punch test results and tensile test results. For experiments were chosen steel P91, 10Ch2MFA, 20CrNi2MoV, 11 416 and 42 2707. These steel are used in nuclear power engineering, or they were developed for this purpose. Basic mechanical characteristics, namely ultimate tensile stress and yield stress, were evaluated from small punch test records of observed materials. This is done via convenient correlation relationships. Obtained values were compared with values obtained by conventional tensile tests. There are mentioned own suggested correlation relationships and comparison of temperature curves gained from small punch test and tensile test in the thesis. Assessment of microstructure of observed materials and analysis of fracture surfaces was provided as well. It was found out, that for assessing basic mechanical characteristics (ultimate tensile stress and yield stress) is the best to suggest own correlation relationships, instead of using universal relationships from literature. The fracture mechanism of all types of assessed steel was ductile in entire temperature range (up to -40 °C).
647

MECHANICAL CHARACTERIZATION – MONOTONIC MICRO-TENSILE, STRESS RELAXATION, AND STRAIN-CONTROLLED CYCLIC STRESS-STRAIN RESPONSES OF SINGLE ELECTROSPUN PVDF NANOFIBERS

Falola, Adekunle Samuel 29 August 2019 (has links)
No description available.
648

Nähen als Montageverfahren textiler Preforms und Wirkungen der Nähte auf lokale mechanische Eigenschaften thermoplastischer Faserverbundwerkstoffe

Zhao, Nuoping 10 December 2007 (has links)
Faserverbundwerkstoffe werden häufiger für Leichbauanwendungen eingesetzt. Thermoplastische Matrixmaterialien gewinnen in der letzten Zeit immer mehr an Bedeutung wegen höherer Produktivität, niedriger Kosten und besserer Umweltfreundlichkeit sowie Recyclingsfähigkeit. Im Rahmen des Projektes SFB 639 werden Spacer-Strukturen aus GF (Glas)- und PP (Polypropylen)-Filamenten verstärkten Textilien hergestellt. Die vorliegende Arbeit beschäftigt sich mit der Montage von textilen Preformen mittels Nähtechnik und den mechanischen Eigenschaften genähter thermoplastischer Faserverbundwerkstoffe. Das Ziel ist, durch Untersuchungen der Festigkeitseigenschaften von genähten thermoplastischen Faserverbundwerkstoffen die Möglichkeiten gezielter Verbesserung der mechanischen Eigenschaften herauszufinden. Als Versuchsmaterial werden Twintex®-Gewebe und Mehrlagengestrick (hergestellt im ITB) aus GF- und PP-Filamenten verwendet. Durch Zug-, Schub-, Biege- und interlaminare Scherfestigkeitsuntersuchungen ist festzustellen, dass das Nähen an mehrschichtigen thermoplastischen faserverstärkten Verbundwerkstoffe positiv wirken kann. Durch Verwenden thermoplastischer Nähfäden wie beispielsweise Polyester-Nähfäden kann die Zugfestigkeit des Verbundes sogar erhöht werden. Ohne Verminderung der Zugfestigkeit kann das Nähen die Schlagzähigkeit thermoplastischer Faserverbundwerkstoffe wesentlich erhöhen. Bei der Schlagbelastung erzeugen die Nähte neue Arten des Bruchs, so dass mehr Energie aufgenommen wird. Durch das Nähen lässt sich die Schlagzähigkeit besonders bei Faserverbundwerkstoffen mit thermoplastischer Matrix bei niedrigen Temperaturen erhöhen. Die Zugfestigkeitsuntersuchungen von genähten überlappenden Faserverbunden zeigen, dass das Nähen die Zugfestigkeit überlappender Bauteile leicht erhöhen kann. Die Erfahrungen mit der Wirkung von Überlappungen der Verstärkungstextilien in Faserverbundbauteilen mit duromerer Matrix sind nicht auf thermoplastische Matrices zu übertragen. Der Konsolidierungsprozess mit thermoplastischer Matrix mittels Presstechnologie erzwingt eine konstante Wandstärke, so dass lokal im Überlappungsbereich ein erhöhter Faservolumenanteil theoretisch zu erwarten und praktisch nachgewiesen ist. Zur Vorbereitung der Montage von Faserverbundbauteilen kann das Einbringen von Löchern zur Aufnahme von Bolzen oder Schrauben erforderlich sein. Ein Konzept für ein maschinelles Verfahren zur Lochverstärkung wird in dieser Arbeit vorgeschlagen. Der Konstrukteur von Faserverbundbauteilen muss außerdem berücksichtigen, dass ein Gewinn an Schlagzähigkeit mit Verlusten bei den In-Plane-Eigenschaften verbunden ist. Durch eine optimale Wahl der Nahtparameter lassen sich gewünschte Eigenschaften des Faserverbundwerkstoffes einstellen. Trotz vielfältiger, auch berechtigter Kritik besitzt das Nähen als Montageverfahren für Preformen eine Perspektive, wenn die Nähte zielführend positioniert und schonende Nähprozessbedingungen gewährleistet werden.
649

Abaca in the Philippines, an overview of a potential important resource for the country : Relating the tensile strength of the single fiber to the microfibrilar angle

Waller, Victor, Wilsby, Astrid January 2019 (has links)
Due to environmental concerns and to the limited amount of fossil fuel in the world theinterest in using renewable material has been and will continue to be on the rise. With theincreasing demand for renewable materials such as bio-based fibers, the research aroundnatural fibers is intensifying. Abaca (Musa Texitilis Nee) is a plant endemic to the Philippineswhich is claimed to contain the strongest natural fiber in the world 1. However, no thoroughresearch on performing tensile strength test on single abaca fibers/cells has been found. Byperforming tensile strength test on the single abaca fibers and relate this will provide freshdata about the single abaca fiber strength that can be compared with other natural fibers.This can later be a reference tool in order to find the optimal fiber for the product to be made. The purpose of this study is to develop a methodology for performing tensile strength testson single abaca fibers with the major objective to relate the tensile strength and E-modulusof the fibers with their microfibrillar angle (MFA). The research was done by using Abaca(grade S2) from Camarines Sur (Philippines) that was chemically disintegrated in order toobtain single fibers. The single fibers were mounted to a custom made paper frame for thetensile strength test performed by an Instron 5944. The MFA of each fiber was also retrievedusing an optical microscope with a polarized filter. The research showed an indication of aninversely proportional relation between MFA and tensile strength of the fibers. According tothe results, the E-modulus of the single abaca fiber was almost constant, independently onthe MFA of the fiber. / The purpose of this study is to do a broad map out of the abaca industry in the Philippines. Furthermore, the study aims to provide an overview of the abaca industry as a tool for finding ways to optimize the fiber production and to find suggestions on how to make a bigger share of the profit from the abaca products to stay by the farmers in the Philippines. The objectives are therefore also focused on describing the way the abaca plant is cultivated, harvested, processed, and further distributed from the farms. Also, the objectives are to describe the abaca supply and demand situation along with identifying challenges for abaca production. Today the outmoded abaca production in the Philippines is experiencing a productivity loss which makes the farmers' incomes unnecessarily low. Important factors that, by this study, have been identified affecting the low productivity and profit are lack of proper farming management, distribution and unoptimized usage of the fibers. A big share of the abaca fibers produced is also being exported. This means that the raw fibers are being made into high-value products abroad and hence the profit to be made is dislocated further from the farmers with low means of improving their standard of living. The study has been performed by doing a literature study complemented with interviews and visits to abaca farmers and other stakeholders within the abaca industry.
650

Analysis of Resin Impregnated Non-woven : In collaboration with Hitachi Energy

Abdulkareem Najm Al-Saedi, Ahmed, Hedenfeldt, Anders, García, Andrea, Kron, Anna-Karin, Bergström, Cornelia, Källkvist, Lova January 2022 (has links)
High voltage bushings are the most critical components of power transformers. A common material used in bushings is resin impregnated paper (RIP). Hitachi Energy is investigating whether this can be replaced with a new material, resin impregnated non-woven (RIN). One of the main reasons is that non-woven is less prone to absorb moisture compared to paper. Thus, for design purposes the mechanical, thermal and absorption properties of RIN have been studied and compared to RIP. The mechanical properties were tested by tensile and bending tests at room temperature and 80 ℃, showing that RIN has a lower elastic modulus and tensile strength than RIP at both temperatures. However, it was demonstrated that RIN does not retain its elongation at break and elasticity properties at elevated temperatures. The bending test showed no significant differences in flexural properties for RIN between room and high temperature. The thermal properties were studied with the transient plane source method (TPS) showing that both RIN and RIP had a higher specific heat capacity than pure epoxy. The thermal conductivity of the materials will be measured and included later. Lastly, the water absorption test was performed in order to provide information about the suitability of the materials used in bushings. For this different methods were used; water immersion andwater vapor testing. The immersion test showed that non-woven is more water resistant than paper and that the composites only absorb a small amount of water. No useful information was achieved from the water vapor test due to limited testing time. The results demonstrate the promising potential of RIN in bushings.

Page generated in 0.0389 seconds