• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 192
  • 107
  • 22
  • 15
  • 11
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 2
  • Tagged with
  • 426
  • 426
  • 169
  • 167
  • 84
  • 75
  • 64
  • 59
  • 52
  • 48
  • 48
  • 46
  • 46
  • 38
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Characteristics Analysis of High Mechanical Strength Gymnastic Leather and Its Producing Process Optimization

Song, Jinzhi, Lu, Wenhui, Wang, Ke, Cheng, Baozhen, Cao, Shan, Li, Yanchun 25 June 2019 (has links)
Content: With the development of China sports, researches related to sports leather should be paid attention because they usually required higher strength than commonly used leather. In this paper, we focus on the production of gymnastics leather. In gymnastics, the athlete's hand will have high intensity contact with the balance bar, so the gymnastics leather is required to have high intensity performance. At the same time, in order to comply with the ornamental function, gymnastics leather is required to be light color. In this research, glutaraldehyde was used as the main tanning agent, while acrylic polymer and synthetic were used for retanning, in order to obtain high strength, environmentally friendly white gym leather. The shrinkage temperature and mechanical properties of tanned leather were determined and analyzed to determine the suitable tanning agent. Besides, other properties including softness, gas permeability, water permeability, flexing resistance and yellowing-resistance were also measured for selecting proper production process. Therefore, gymnastics leather with ideal performance can be prepared by this method, and the leather conforms to the practical application standard. In addition, the research has guiding significance and application prospect for high strength chrome-free tanned leather. Take-Away: Aldehyde tanning agents and retanning agents, which can be used for gymnastics leather making, were evaluated and selected to achieve ideal effect of finish leather. This research is meaningful to produce not only gymnastics leather but also other sporty leather which require high strength.
242

Leather properties as a function of cattle breed

Stenzel, Sandra, Schröpfer, M., Prade, I., Meyer, Michael 28 June 2019 (has links)
Content: Since hundreds of years, tanners share the opinion that hides from different cattle breeds lead to varying leather qualities. Especially European hides from the alpine region (e. g. Simmentaler or brown origin) are preferred by tanners. These leathers feature a higher thickness, a maximum utilisation induced by a minor thickness difference over the whole area and a lower tensile strength in contrast to leathers from other breeds. However, are these alpine hides better because of their breed affiliation or because they are kept in special regional conditions? It is known that, besides the breed, also other factors can influence the rawhide and leather quality like age, gender, nutrition and climate conditions. In addition, present dairy and beef cattle are high-performance cattle by breeding, which leads to more crossbreeds than 100 years ago. Our intention was to find out, whether leather quality nowadays is still a function of breed or not. For that purpose, 40 rawhides from four different cattle breeds (Angus, Charolais, Simmentaler, Limousin) were collected from the Saxon region. From each breed, five male and five female rawhides were collected. The age of each individual was restricted to two years. All 40 rawhides were tanned with the same technology for furniture leather. Leather quality was characterized by determining chemical and physical parameters. Chemical parameters included collagen content, fat content and ignition lost (DIN 181218). The physical parameters were tensile strength (DIN EN ISO 3376), elongation at break (DIN EN ISO 3376) and stitch tear resistance (DIN EN ISO 23910). The analyses revealed that the chemical parameters were identical for all examined breeds. For this reason, the chemical composition of a cattle skin is irrespective of breed origin. The tensile strength of the leathers showed only a small significant difference between Angus and Limousin (p= 0.05). Leathers from Limousin hides showed significantly different elongations at break compared to Angus, Charolais and Simmentaler. The stitch tear resistance varied in nearly all breeds. Significant differences were detected between all breeds except between Angus and Charolais as well as Angus and Simmentaler. Plotting the measured physical values against gender or age of the individuals showed no correlation. In summary, only minor differences between the cattle breeds were found. But this tendency must be confirmed by a larger quantity of test individuals. For this purpose, an analysis is planed with 100 individuals from different breeds and crossbreeds. Take-Away: Many tanners share the opinion that hides from different attle breeds lead to varying leather qualities. We found only minor differences of the physical parameters between the cattle breeds with a random sample of 10 individuals per breed. To confirm this tendency, an analysis is planed with 100 individuals from different breeds and crossbreeds.
243

Závislost mezi pevností v tahu a tvrdostí hliníkových slitin / Relationship between tensile strength and hardness of aluminium alloys

Růžička, Martin January 2020 (has links)
This thesis deals with relationship between tensile strength and hardness of aluminium alloys. The introduction provides an overview of aluminum aloys and their properties. In the following section there is an analysis of the processing of aluminum alloys. A large part is devoted to the course of precipitation hardening. The second part of the thesis contains a practical part, which describes the methodology of measuring hardness and tensile strength. The measurement process is described below. At the end, the measured data are processed into various graphs and their results are evaluated.
244

Lepení FDM 3D tištěných dílů z PLA / Gluing of FDM 3d printed parts from PLA

Šlimar, Filip January 2021 (has links)
The thesis deals with the theory of 3D printing, materials for printing and bonding. It focuses on FDM printing and PLA material. It also compares gluing with other methods and deals with the distribution of adhesives, the gluing procedure and tests of glued joints. The work, based on literature studies, proposes an experiment to evaluate selected adhesives. The practical part contains a description, results and evaluation of the experiment. The evaluation of adhesives is based on tensile and shear strength.
245

Fenton Pre-treatment of a Birch Kraft Pulp for MFC preparation

Hellström, Pia January 2015 (has links)
The potential to use acidic hydrogen peroxide in the presence of ferrous ions (Fenton’s reagent) as a pre-treatment when producing microfibrillar cellulose (MFC) from a fully bleached birch (Betula verucosa) kraft pulp was investigated and the properties of the produced MFC was compared to the properties of a MFC produced with enzymatic pre-treatment with a monocomponent endoglucanase (FiberCare® R). The mechanical treatment to MFC was performed in a laboratory colloid mill or in a pilot high-pressure homogeniser and the pre-treated pulps as well as the produced MFCs were chemically and morphologically characterised. Additionally, the MFCs produced in the colloid mill were evaluated as strength enhancers in test sheets representing the middle ply of paperboard. From the chemical characterisation, it was concluded that the Fenton pre-treatment caused a decrease in the degree of polymerisation (DP) and an increase in both carboxyl- and carbonyl groups. The increase in carbonyl groups could not be explained by the formation of new reducing end groups due to depolymerisation which indicates that carbonyl groups are introduced along the cellulose chain. The enzymatic pre-treatment as performed in this study caused less impact on the cellulosic material, i.e. resulted in a pulp with a higher DP and a much lower amount of carbonyl- and carboxylic groups compared with the Fenton pre-treated pulps. In the subsequent mechanical treatment in a colloid mill, the Fenton pre-treated pulps were easier to process mechanically i.e. reached a higher specific surface area and a higher surface charge at a given mechanical treatment time compared to enzymatic pre-treated pulps and pulps not subjected to any pre-treatment. These findings were confirmed when MFCs were produced by homogenisation at high pressure in multiple passes; the birch kraft pulp was either pre-treated with Fenton’s reagent or the combined mechanic and enzymatic pre-treatment methodology used at the Centre Technique du Papier (CTP, France). By size fractionation, rheological measurements and scanning electron microscopy, it was revealed that Fenton pre-treatment resulted in MFC suspension containing a significantly higher proportion of small sized material (< 0.2 mm). When the MFCs were evaluated as strength enhancers in test sheets produced from a furnish consisting of a spruce (Picea abies) chemithermomechanical pulp, MFC and a retention system containing cationic starch and an anionic silica sol, Fenton pre-treated MFCs increased the strength properties more than the enzymatic pre-treated MFCs. Addition of 5 wt% Fenton pre-treated MFC resulted in an increase in z-directional strength of about 50%, an increase in tensile stiffness index of about 25% and an increase in tensile index of 35% compared to test sheets prepared without MFC addition. / The potential to use acidic hydrogen peroxide in the presence of ferrous ions (Fenton’s reagent) as a pre-treatment when producing microfibrillar cellulose (MFC) from a bleached birch kraft pulp was investigated and the properties of the produced MFC was compared to the properties of a MFC produced with enzymatic pre-treatment. Additionally, the MFCs evaluated as strength enhancers in test sheets representing the middle ply of paperboard. From the chemical characterisation, it was concluded that the Fenton pre-treatment caused a decrease in the degree of polymerisation (DP) and an increase in both carboxyl- and carbonyl groups. In the subsequent mechanical treatment in a colloid mill, the Fenton pre-treated pulps were easier to process mechanically indicating a potential to lower the energy consumption. When the MFCs were evaluated as strength enhancers in test sheets, Fenton pre-treated MFCs increased the strength properties more than the enzymatic pre-treated MFCs at a given mechanical treatment time. Addition of 5 wt% Fenton pre-treated MFC resulted in an increase in z-directional strength of about 50%, an increase in tensile stiffness index of about 25% and an increase in tensile index of 35% compared to test sheets prepared without MFC addition.
246

Shear Capacity of Steel Fibre Reinforced Concrete Beams without Conventional Shear Reinforcement

Mondo, Eleonora January 2011 (has links)
While the increase in shear strength of Steel Fibre Reinforced Concrete (SFRC) is well recognized, it has yet to be found common application of this material in building structures and there is no existing national standard that treats SFRC in a systematic manner. The aim of the diploma work is to investigate the shear strength of fibre reinforced concrete beams and the available test data and analyse the latter against the mostpromising equations available in the literature. The equations investigated are:Narayanan and Darwish’s formula, the German, the RILEM and the Italian guidelines. Thirty articles, selected among over one hundred articles taken from literature, have been used to create the database that contains almost 600 beams tested in shear. This large number of beams has been decreased to 371 excluding all those beams and test that do not fall within the limitation stated for this thesis. Narayanan and Darwish’s formula can be utilized every time that the fibre percentage, the type of fibres, the beam dimensions, the flexural reinforcement and the concrete strength class have been defined. On the opposite, the parameters introduced in the German, the RILEM and the Italian guidelines always require a further characterization of the concrete (with bending test) in order to describe the post‐cracking behaviour. The parameters involved in the guidelines are the residual flexural tensile strengths according to the different test set‐ups. A method for predicting the residual flexural tensile strength from the knowledge of the fibre properties, the cylindrical compressive strength of the concrete and the amount of fibres percentage is suggested. The predictions of the shear strength, obtained using the proposed method for the residual flexural tensile strength, showed to be satisfactory when compared with the experimental results. A comparison among the aforementioned equations corroborate the validity of the empirical formulations proposed by Narayanan and Darwish nevertheless only the other equations provide a realistic assessments of the strength, toughness and ductility of structural elements subjected to shear loading. Over the three investigated equations, which work with the post‐cracking characterization of the material, the Italian guideline proposal is the one that, due to its wide domain of validity and the results obtained for the gathered database of beams, has been selected as the most reliable equation.
247

Preparation and properties of a composite made by barium sulfate-containing polytetrafluoroethylene granular powder

Yan, Luke, Huang, Rongrong, Xiao, Jian, Xia, Huiyun, Chao, Min, Wieβner, Sven 30 September 2019 (has links)
Barium sulfate (BaSO₄)-containing polytetrafluoroethylene (PTFE) granular powder was prepared through a two-phase emulsion dispersion granulation method. Because of its large bulk density, small average particle size, narrow particle size distribution, and superior powder flowability, the granular powder is suitable for use in automatic molding machines. The effects of granulation on the tensile strength of the BaSO₄/PTFE composite were investigated, and the composite’s microstructures were characterized and analyzed using scanning electron microscopy. All these indicated that the granulation could make BaSO₄ disperse more homogeneously in PTFE and reduce many defects in molded articles. So the properties of the BaSO4/PTFE composites made by the granular powder were superior to the composite obtained from the nongranular powder. The tensile strength and elongation of the composite obtained from the granular powder could be achieved to a level of 19.4 MPa and 420%, respectively.
248

Tensile Strength of Unsaturated Soils

Yin, Penghai 25 February 2021 (has links)
Desiccation-induced soil cracking is of significant interest in several engineering disciplines, which include geotechnical and geoenvironmental engineering, mining engineering, and agriculture engineering. The hydraulic, mechanical, thermal and other physico-chemical properties of unsaturated soils can be predominantly influenced due to cracks. Reliable information of these properties is required for the rational design and maintenance of earth structures taking account of the influence the soil-atmosphere interactions (e.g., for expansive soil slopes, earth dams, and embankments). In spite of significant research studies published in the literature on the desiccation-induced cracks during the past century, the fundamental mechanism of crack initiation and propagation of soils induced by drying and shrinkage is still elusive. For this reason, the focus of this thesis is directed towards understanding the tensile strength of unsaturated soils which is associated with soil crack initiation criterion (i.e. maximum tensile stress criterion). Tensile strength is the key property of soils for interpreting the initiation of soil cracking from a macroscopic point of view. A semi-empirical model is proposed for predicting the tensile strength of unsaturated cohesionless soils taking into account the effect of both the negative pore-water pressure in saturated pores and the air-water interfacial surface tension in unsaturated pores. The proposed model is calibrated and validated by providing comparisons between the model predictions and the experimental measurements on 10 cohesionless soils (i.e. five sandy soils and five silty soils) published in the literature. The proposed model is simple and requires only the information of Soil-Water Characteristic Curve (SWCC) and Grain Size Distribution curve (GSD), which can be obtained from conventional laboratory tests. To investigate the influence of microstructure, a practical and reliable estimation approach for predicting the evolution of the microstructural void ratio of compacted clayey soils subjected to wetting and drying paths is proposed. The microstructural evolution of 13 examined soils were investigated quantitatively using the mercury intrusion porosimetry (MIP) results. The investigated soils include four high-plasticity clays, eight low-plasticity clays and a glacial till which is a relatively coarse-grained soil with some fines. Based on this study, a novel criterion has been developed for identifying different pore populations of compacted clayey soils. The “as-compacted state line” (ACSL) was proposed to estimate the initial microstructural void ratio based on the compaction water ratio. A constitutive stress is derived to interpret and predict the volumetric deformation of compacted clay aggregates. The linear elastic constitutive model is used for predicting the microstructural void ratio of the examined compacted soils following monotonic wetting and drying paths. The developed approach (i.e. the ACSL and the linear elastic constitutive model) is validated by providing comparisons between the predicted and interpreted microstructural void ratios for all the examined soils. In addition to the matric suction and microstructure, the confining pressure also influences the tensile strength of unsaturated compacted clayey soils. The tensile strength tests on a compacted clayey soil by both the direct method (i.e. triaxial tensile test) and the indirect method (i.e. Brazilian split test) were performed. It is found that the tensile strength increases as the compaction water content decreases for the range investigated in this study, which could be explained by the variation of the inter-aggregated capillary bonding force and the change in microstructure. The increase in the confining pressure has been found to induce the change in failure mode (i.e. from pure tensile failure mode to combined tensile-shear failure mode). In spite of limitations associated with the Brazilian split test, tensile strength is widely determined using this test due to the simple procedure of specimen preparation and wide availability of test equipment in conventional laboratories. However, the Brazilian tensile strength is found to overestimate the tensile strength of compacted specimens with water content greater than the plastic limit. This is due to the considerable plastic deformation associated with the ductile failure instead of brittle failure. In summary, this thesis is devoted to providing insight into the fundamental mechanisms associated with the desiccation-induced crack initiation by quantitatively investigating the various factors that influence the tensile strength of unsaturated soils, which include the matric suction, the microstructure, and the confining pressure from theoretical studies and laboratory investigations.
249

RC Trough Bridges: A Parametric Study using FEM and an Analysis of their Current State

Åkergren, David January 2021 (has links)
There are approximately 4000 railway bridges in Sweden managed by the Swedish Administration of Transport (Trafikverket), of which a common construction type is the reinforced concrete (RC) trough bridge, which is a structure that consists of a slab carried by two longitudinal main beams which transfer loads towards the supports. A substantial amount of the RC trough bridge population is approaching the end of their service lives which consequently implies that the replacement of some of these bridges can be expected in the near future. Extending their service lives can yield positive effects from a financial- as well as an environmental perspective, and therefore it is highly beneficial to evaluate their capacities as realistically as possible. One factor that may help improve accuracy during the determination of their capacities is an evaluation of how it is affected by the location of the railway track on the bridge.  In current design codes defined by Trafikverket, consideration is taken to horizontal track displacement for a minimum displacement of 0.1 m if there doesn’t exist data suggesting that a larger displacement is prevalent on the bridge. However, Trafikverket has received data which suggest that a considerable number of bridges could experience load eccentricities which exceed the standard minimum value. This raises the question whether or not 0.1m is the most optimal limit value for load eccentricity on railway bridges. For RC trough bridges, a larger load eccentricity may result in one main beam carrying a larger portion of the load which will decrease the axle load which the bridge can carry. It is therefore important to evaluate the influence of larger horizontal displacements than what is currently is considered as a preventive action.   In addition, several studies on Swedish concrete bridges constructed during the 20th century have pointed to a significant increase in concrete compressive- and tensile strength over time. This suggests that it is possible that a considerable amount of RC trough bridges have a higher capacity than what was originally intended, and further research is required in order to understand the behaviour of these bridges when key material parameters are altered.        There are three main tasks which this master thesis seeks to complete. The first part is a detailed analysis of a database named BaTMan (Bridge and Tunnel Management) that belongs to Trafikverket. In this analysis parameters such as span length, age, material type and damages for every identified railway bridge is extracted and further processed in Microsoft Excel in order to gain a clear overview of the RC trough bridge population. The second task regards the development of a non-linear finite element model of a typical RC trough bridge named Lautajokki. The model is analysed using ATENA Science and its behaviour is verified against test results obtained during a full-scale test of the bridge performed by Paulsson et al. (1996). The last task is to use the devolved model to perform a parametric study where the effects of changes in load eccentricity, compressive strength as well as tensile strength is studied.
250

Nähen als Montageverfahren textiler Preforms und Wirkungen der Nähte auf lokale mechanische Eigenschaften thermoplastischer Faserverbundwerkstoffe

Zhao, Nuoping 10 December 2007 (has links)
Faserverbundwerkstoffe werden häufiger für Leichbauanwendungen eingesetzt. Thermoplastische Matrixmaterialien gewinnen in der letzten Zeit immer mehr an Bedeutung wegen höherer Produktivität, niedriger Kosten und besserer Umweltfreundlichkeit sowie Recyclingsfähigkeit. Im Rahmen des Projektes SFB 639 werden Spacer-Strukturen aus GF (Glas)- und PP (Polypropylen)-Filamenten verstärkten Textilien hergestellt. Die vorliegende Arbeit beschäftigt sich mit der Montage von textilen Preformen mittels Nähtechnik und den mechanischen Eigenschaften genähter thermoplastischer Faserverbundwerkstoffe. Das Ziel ist, durch Untersuchungen der Festigkeitseigenschaften von genähten thermoplastischen Faserverbundwerkstoffen die Möglichkeiten gezielter Verbesserung der mechanischen Eigenschaften herauszufinden. Als Versuchsmaterial werden Twintex®-Gewebe und Mehrlagengestrick (hergestellt im ITB) aus GF- und PP-Filamenten verwendet. Durch Zug-, Schub-, Biege- und interlaminare Scherfestigkeitsuntersuchungen ist festzustellen, dass das Nähen an mehrschichtigen thermoplastischen faserverstärkten Verbundwerkstoffe positiv wirken kann. Durch Verwenden thermoplastischer Nähfäden wie beispielsweise Polyester-Nähfäden kann die Zugfestigkeit des Verbundes sogar erhöht werden. Ohne Verminderung der Zugfestigkeit kann das Nähen die Schlagzähigkeit thermoplastischer Faserverbundwerkstoffe wesentlich erhöhen. Bei der Schlagbelastung erzeugen die Nähte neue Arten des Bruchs, so dass mehr Energie aufgenommen wird. Durch das Nähen lässt sich die Schlagzähigkeit besonders bei Faserverbundwerkstoffen mit thermoplastischer Matrix bei niedrigen Temperaturen erhöhen. Die Zugfestigkeitsuntersuchungen von genähten überlappenden Faserverbunden zeigen, dass das Nähen die Zugfestigkeit überlappender Bauteile leicht erhöhen kann. Die Erfahrungen mit der Wirkung von Überlappungen der Verstärkungstextilien in Faserverbundbauteilen mit duromerer Matrix sind nicht auf thermoplastische Matrices zu übertragen. Der Konsolidierungsprozess mit thermoplastischer Matrix mittels Presstechnologie erzwingt eine konstante Wandstärke, so dass lokal im Überlappungsbereich ein erhöhter Faservolumenanteil theoretisch zu erwarten und praktisch nachgewiesen ist. Zur Vorbereitung der Montage von Faserverbundbauteilen kann das Einbringen von Löchern zur Aufnahme von Bolzen oder Schrauben erforderlich sein. Ein Konzept für ein maschinelles Verfahren zur Lochverstärkung wird in dieser Arbeit vorgeschlagen. Der Konstrukteur von Faserverbundbauteilen muss außerdem berücksichtigen, dass ein Gewinn an Schlagzähigkeit mit Verlusten bei den In-Plane-Eigenschaften verbunden ist. Durch eine optimale Wahl der Nahtparameter lassen sich gewünschte Eigenschaften des Faserverbundwerkstoffes einstellen. Trotz vielfältiger, auch berechtigter Kritik besitzt das Nähen als Montageverfahren für Preformen eine Perspektive, wenn die Nähte zielführend positioniert und schonende Nähprozessbedingungen gewährleistet werden.

Page generated in 0.3567 seconds