Spelling suggestions: "subject:"deoria : domínios"" "subject:"deoria : odomínios""
1 |
Estudo dos espaços coerentes do ponto de vista da teoria dos topos / A study of coherent spaces from the point of view of the theory of toposCosta, Simone Andre da January 2001 (has links)
Este trabalho propõe o estudo dos espaços coerentes do ponto de vista da teoria dos topos, ou seja, consiste em uma análise, em termos de topos, das principais categorias de espaços coerentes. Os espaços coerentes constituem um tipo de domínio que apresenta algumas particularidades que o distinguem dos demais, por exemplo, considera admissíveis no conjunto de funções somente aquelas que, além de contínuas no sentido de Scott - preservam supremos de conjuntos dirigidos, também são estáveis e lineares. Um topos e uma categoria Cartesiana fechada com classificador de subobjetos. Isso faz com que todo topos se comporte como Set (conjuntos como objetos e funções como morfismos), ou seja, uma categoria na qual as interpretações de suas construções básicas seguem a Teoria dos Conjuntos. Entre as categorias de Espaços Coerentes, tem-se a categoria STAB, cujos objetos são os espaços coerentes e os morfismos são funções estáveis entre esses espaços, que é uma categoria cartesiana fechada. Isto significa que STAB é uma categoria especial no sentido computacional: além de possuir o produto binário para todos os seus objetos, STAB apresenta objeto exponencial e morfismo de avaliação, garantindo significado para processos computacionais. A subcategoria LIN da categoria STAB, cujos morfismos são as funções lineares, não é uma categoria cartesiana fechada. Entretanto, LIN é uma categoria monoidal simétrica que e fechada. Este, condição e suficiente para que em LIN também se tenha a garantia de se obter significado para processos computacionais. Apresenta-se então, uma interpretação computacional da estrutura destas categorias e uma análise das mesmas do ponto de vista de topos, isto é, da existência ou não de classificador de subobjetos. / This work proposes the study of coherent spaces from the point of view of the Topos Theory, that is, it consists of an analysis of the main categories of coherent spaces in terms of topos. The coherent spaces make up a kind of domain which presents some peculiarities that separate it from the rest, for example, in the complex whole of the functions it only considers permissible, those which, apart from being continuous in the sense of Scott - preserving supremo of directed sets, it is also stable and linear. A topos is a Cartesian closed with subobject classifier. This makes topos behaves like Set (sets as objects and functions as morphisms), that is, a category in which the interpretations of its basic constructions follow the Theory of Sets. Among the categories of Coherent Spaces, there is the STAB category, a closed Cartesian category, the objects of which are the coherent spaces, having morphisms as stable functions among these spaces. This means that STAB is a special category in the computational sense: apart from having a binary product for all its objects, STAB presents an exponential object and a morphism of evaluation, ensuring meaning for computational processes. The subcategory LIN of the STAB category, the morphisms of which are linear functions, is not a closed Cartesian category. However, LIN is a symmetrical monoidal category which is closed. This condition is sufficient to also have in LIN the guarantee of obtaining meaning for computational processes. Thus, a computational interpretation of the structure of these categories will be presented, as well as an analysis of them from the point of view of the Topos Theory, that is, if subobject classifier exists or not.
|
2 |
Estudo dos espaços coerentes do ponto de vista da teoria dos topos / A study of coherent spaces from the point of view of the theory of toposCosta, Simone Andre da January 2001 (has links)
Este trabalho propõe o estudo dos espaços coerentes do ponto de vista da teoria dos topos, ou seja, consiste em uma análise, em termos de topos, das principais categorias de espaços coerentes. Os espaços coerentes constituem um tipo de domínio que apresenta algumas particularidades que o distinguem dos demais, por exemplo, considera admissíveis no conjunto de funções somente aquelas que, além de contínuas no sentido de Scott - preservam supremos de conjuntos dirigidos, também são estáveis e lineares. Um topos e uma categoria Cartesiana fechada com classificador de subobjetos. Isso faz com que todo topos se comporte como Set (conjuntos como objetos e funções como morfismos), ou seja, uma categoria na qual as interpretações de suas construções básicas seguem a Teoria dos Conjuntos. Entre as categorias de Espaços Coerentes, tem-se a categoria STAB, cujos objetos são os espaços coerentes e os morfismos são funções estáveis entre esses espaços, que é uma categoria cartesiana fechada. Isto significa que STAB é uma categoria especial no sentido computacional: além de possuir o produto binário para todos os seus objetos, STAB apresenta objeto exponencial e morfismo de avaliação, garantindo significado para processos computacionais. A subcategoria LIN da categoria STAB, cujos morfismos são as funções lineares, não é uma categoria cartesiana fechada. Entretanto, LIN é uma categoria monoidal simétrica que e fechada. Este, condição e suficiente para que em LIN também se tenha a garantia de se obter significado para processos computacionais. Apresenta-se então, uma interpretação computacional da estrutura destas categorias e uma análise das mesmas do ponto de vista de topos, isto é, da existência ou não de classificador de subobjetos. / This work proposes the study of coherent spaces from the point of view of the Topos Theory, that is, it consists of an analysis of the main categories of coherent spaces in terms of topos. The coherent spaces make up a kind of domain which presents some peculiarities that separate it from the rest, for example, in the complex whole of the functions it only considers permissible, those which, apart from being continuous in the sense of Scott - preserving supremo of directed sets, it is also stable and linear. A topos is a Cartesian closed with subobject classifier. This makes topos behaves like Set (sets as objects and functions as morphisms), that is, a category in which the interpretations of its basic constructions follow the Theory of Sets. Among the categories of Coherent Spaces, there is the STAB category, a closed Cartesian category, the objects of which are the coherent spaces, having morphisms as stable functions among these spaces. This means that STAB is a special category in the computational sense: apart from having a binary product for all its objects, STAB presents an exponential object and a morphism of evaluation, ensuring meaning for computational processes. The subcategory LIN of the STAB category, the morphisms of which are linear functions, is not a closed Cartesian category. However, LIN is a symmetrical monoidal category which is closed. This condition is sufficient to also have in LIN the guarantee of obtaining meaning for computational processes. Thus, a computational interpretation of the structure of these categories will be presented, as well as an analysis of them from the point of view of the Topos Theory, that is, if subobject classifier exists or not.
|
3 |
Estudo dos espaços coerentes do ponto de vista da teoria dos topos / A study of coherent spaces from the point of view of the theory of toposCosta, Simone Andre da January 2001 (has links)
Este trabalho propõe o estudo dos espaços coerentes do ponto de vista da teoria dos topos, ou seja, consiste em uma análise, em termos de topos, das principais categorias de espaços coerentes. Os espaços coerentes constituem um tipo de domínio que apresenta algumas particularidades que o distinguem dos demais, por exemplo, considera admissíveis no conjunto de funções somente aquelas que, além de contínuas no sentido de Scott - preservam supremos de conjuntos dirigidos, também são estáveis e lineares. Um topos e uma categoria Cartesiana fechada com classificador de subobjetos. Isso faz com que todo topos se comporte como Set (conjuntos como objetos e funções como morfismos), ou seja, uma categoria na qual as interpretações de suas construções básicas seguem a Teoria dos Conjuntos. Entre as categorias de Espaços Coerentes, tem-se a categoria STAB, cujos objetos são os espaços coerentes e os morfismos são funções estáveis entre esses espaços, que é uma categoria cartesiana fechada. Isto significa que STAB é uma categoria especial no sentido computacional: além de possuir o produto binário para todos os seus objetos, STAB apresenta objeto exponencial e morfismo de avaliação, garantindo significado para processos computacionais. A subcategoria LIN da categoria STAB, cujos morfismos são as funções lineares, não é uma categoria cartesiana fechada. Entretanto, LIN é uma categoria monoidal simétrica que e fechada. Este, condição e suficiente para que em LIN também se tenha a garantia de se obter significado para processos computacionais. Apresenta-se então, uma interpretação computacional da estrutura destas categorias e uma análise das mesmas do ponto de vista de topos, isto é, da existência ou não de classificador de subobjetos. / This work proposes the study of coherent spaces from the point of view of the Topos Theory, that is, it consists of an analysis of the main categories of coherent spaces in terms of topos. The coherent spaces make up a kind of domain which presents some peculiarities that separate it from the rest, for example, in the complex whole of the functions it only considers permissible, those which, apart from being continuous in the sense of Scott - preserving supremo of directed sets, it is also stable and linear. A topos is a Cartesian closed with subobject classifier. This makes topos behaves like Set (sets as objects and functions as morphisms), that is, a category in which the interpretations of its basic constructions follow the Theory of Sets. Among the categories of Coherent Spaces, there is the STAB category, a closed Cartesian category, the objects of which are the coherent spaces, having morphisms as stable functions among these spaces. This means that STAB is a special category in the computational sense: apart from having a binary product for all its objects, STAB presents an exponential object and a morphism of evaluation, ensuring meaning for computational processes. The subcategory LIN of the STAB category, the morphisms of which are linear functions, is not a closed Cartesian category. However, LIN is a symmetrical monoidal category which is closed. This condition is sufficient to also have in LIN the guarantee of obtaining meaning for computational processes. Thus, a computational interpretation of the structure of these categories will be presented, as well as an analysis of them from the point of view of the Topos Theory, that is, if subobject classifier exists or not.
|
4 |
A Máquina geométrica : modelo computacional para concorrência e não-determinismo usando como estrutura espaços coerentes / The geometric machine : a model for concurrence and non-determinism based on coherence spacesReiser, Renata Hax Sander January 2002 (has links)
O trabalho constitui-se numa investigação teórica da estrutura ordenada e intuitiva dos espaços coerentes, introduzidos por Girard [GIR 86], na definição do modelo de máquina geométrica para construção e interpretação de estados e processos computacionais rotulados por posições de um espaço geométrico. Esta interpretação poderá ser aplicada às construções determinísticas, incluindo dois tipos especiais de paralelismo - o espacial, com memória e processos infinitos definidos por estruturas matriciais, que operam sobre dimensões independentes, de forma sincronizada; e o temporal, na versão genérica do modelo, com memória global transfinita e processos distribuídos num conjunto enumerável de máquinas geométricas, sincronizadas no tempo. O modelo contempla interpretação para computações não-determinísticas e prevê a aplicação de operadores exponenciais na interpretação do espaço funcional. A noção mais intuitiva deste trabalho está na definição da relação de coerência, que define o grafo sobre o qual se constrói este domínio semántico. Sobre o conjunto de pontos compatíveis de tais grafos, a coerência estrita interpreta a condição implícita para modelar o paralelismo - a concorrência entre posições de memória. Na construção dual, justificada pela presença da negação involutiva no grafo complementar, a incoerência interpreta a condição para o não-determinismo - o conflito de acesso à memória. Para os demais construtores, o produto sequencial e a soma determinística, consideram-se os endofunctores produto e soma direta da categoria CospLin dos espaços coerentes e funções lineares. A estrutura ordenada deste modelo é formalizada pelo espaço coerente D∞ de todos os processos, construído em níveis a partir do espaço coerente D∞ dos processos elementares, seguindo a metodologia proposta por Scott [SCO 76]. Neste sentido, cada nível da construção está identificado por um subespaço Dn que reconstrói todos os objetos do nível anterior, preservando suas propriedades e relações, além de construir os novos objetos. Compatível com a abordagem algébrica, o relacionamento entre os níveis é expresso por funções lineares denominadas imersões e projeções, interpretanto os construtores de processos e seus destrutores, respectivamente. Pelo procedimento de completação, assegura-se a existência do menor ponto fixo para equações recursivas definidas pela composição infinita destes morfismos. Além disso, as interpretações para processos infinitos, construídos por prefixação, apresentadas em D→∞ comprovam que este modelo é compatível com a diversidade dos construtores. O espa¸co coerente D∞2 dos processos transfinitos generaliza a construção e define a estrutura ordenada do modelo de máquina geométrica distribuída. Seus objetos são subconjuntos coerentes de tokens rotulados por posições do espaço geométrico e indexados por subconjuntos isomorfos aos ordinais transfinitos. O espaço coerente S S dos traços lineares de funções definidas sobre o espaço coerente S dos estados computacionais constitui-se no modelo semântico para análise do comportamento associado a cada processo interpretado em D∞. A definição da função de representação introduz um domínio de expressões que formaliza uma linguagem capaz de expressar, de forma mais operacional, as interpretações obtidas neste modelo de m´aquina. Cada uma das expressões válidas na linguagem é compatível com uma expressão gráfica. / This work presents a theoretical investigation of the constructive, intuitive and ordered structure of the coherence spaces, introduced by Girard, in order to define the geometric machine model for interpretation of computational states and processes labelled by positions of a geometric space. This interpretation can be applied to deterministic process constructions, including two special types of parallelism - the temporal parallelism, with infinite memory and infinite processes defined over array structures, that operate over independent dimensions in a synchronized way; and the spatial parallelism, in a generic version of the model, with a transfinite global memory shared by transfinite processes distributed in a enumerable set of geometric machines, synchronized in the time. The work also provides interpretation to the non-deterministic computations and applies the exponential operators in the interpretation of the functional space. The most basic notion of this work is the definition of the coherence relation as the admissibility of parallelism between basic operations (elementary processes). That relation defines the web over which the coherence space of the whole set of deterministic and non-deterministic processes is step-wise and systematically build. Over the set of the compatible points of such graph, the strict coherence interprets the implicity condition to model parallelism - the true concurrence. In the dual construction, justified by the presence of involutive negation in the complementary graph, the incoherence interprets the condition that models non-determinism - the conflict of memory accesses. The other constructors, the sequential product and the deterministic sum, are defined by the endofunctors in the CospLin category of the coherence spaces and linear functions. The ordered structure of this model is formalized by the coherence space D∞ of all processes, constructed by levels from the coherence space D0 of the elementary processes, following the Scott’s methodology [SCO 76]. In this sense, each level is identified by a subspace Dn, which reconstructs all the objects from the level before, preserving their properties and relations, and drives the construction of the new objects. Compatible with the algebraic-theoretic approach to computational processes, the relationship between the levels is expressed by linear functions called embedding and projection-functions, which interpret constructors and destructors of processes, respectively. The completion procedure guarantees the existence of the least fixed point to the recursive equations, defined by infinite composition of these morphisms. In addition, the interpretation for infinite processes constructed by prefix is presented in D→∞ , confirms that the ordered structure of these model is compatible with the diversity of constructors. The coherence space D∞2 of transfinite processes generalizes the construction and defines the ordered structure of the distributed geometric machine model. Its objects are coherent subsets of tokens labelled by the positions of a geometric space and indexed by isomorphic subsets related to the transfinite ordinal numbers. In order to analyze the behavior related to the interpretations in D∞, the coherence space S S of the linear traces of functions, defined over the coherence space S of the computational states, is introduced. The definition of the representation-function induces the construction of the domain Ω of valid expressions and formalizes a (graphic) language which is able to express, in an more operational way, the interpretations obtained in the geometric machine model.
|
5 |
A Máquina geométrica : modelo computacional para concorrência e não-determinismo usando como estrutura espaços coerentes / The geometric machine : a model for concurrence and non-determinism based on coherence spacesReiser, Renata Hax Sander January 2002 (has links)
O trabalho constitui-se numa investigação teórica da estrutura ordenada e intuitiva dos espaços coerentes, introduzidos por Girard [GIR 86], na definição do modelo de máquina geométrica para construção e interpretação de estados e processos computacionais rotulados por posições de um espaço geométrico. Esta interpretação poderá ser aplicada às construções determinísticas, incluindo dois tipos especiais de paralelismo - o espacial, com memória e processos infinitos definidos por estruturas matriciais, que operam sobre dimensões independentes, de forma sincronizada; e o temporal, na versão genérica do modelo, com memória global transfinita e processos distribuídos num conjunto enumerável de máquinas geométricas, sincronizadas no tempo. O modelo contempla interpretação para computações não-determinísticas e prevê a aplicação de operadores exponenciais na interpretação do espaço funcional. A noção mais intuitiva deste trabalho está na definição da relação de coerência, que define o grafo sobre o qual se constrói este domínio semántico. Sobre o conjunto de pontos compatíveis de tais grafos, a coerência estrita interpreta a condição implícita para modelar o paralelismo - a concorrência entre posições de memória. Na construção dual, justificada pela presença da negação involutiva no grafo complementar, a incoerência interpreta a condição para o não-determinismo - o conflito de acesso à memória. Para os demais construtores, o produto sequencial e a soma determinística, consideram-se os endofunctores produto e soma direta da categoria CospLin dos espaços coerentes e funções lineares. A estrutura ordenada deste modelo é formalizada pelo espaço coerente D∞ de todos os processos, construído em níveis a partir do espaço coerente D∞ dos processos elementares, seguindo a metodologia proposta por Scott [SCO 76]. Neste sentido, cada nível da construção está identificado por um subespaço Dn que reconstrói todos os objetos do nível anterior, preservando suas propriedades e relações, além de construir os novos objetos. Compatível com a abordagem algébrica, o relacionamento entre os níveis é expresso por funções lineares denominadas imersões e projeções, interpretanto os construtores de processos e seus destrutores, respectivamente. Pelo procedimento de completação, assegura-se a existência do menor ponto fixo para equações recursivas definidas pela composição infinita destes morfismos. Além disso, as interpretações para processos infinitos, construídos por prefixação, apresentadas em D→∞ comprovam que este modelo é compatível com a diversidade dos construtores. O espa¸co coerente D∞2 dos processos transfinitos generaliza a construção e define a estrutura ordenada do modelo de máquina geométrica distribuída. Seus objetos são subconjuntos coerentes de tokens rotulados por posições do espaço geométrico e indexados por subconjuntos isomorfos aos ordinais transfinitos. O espaço coerente S S dos traços lineares de funções definidas sobre o espaço coerente S dos estados computacionais constitui-se no modelo semântico para análise do comportamento associado a cada processo interpretado em D∞. A definição da função de representação introduz um domínio de expressões que formaliza uma linguagem capaz de expressar, de forma mais operacional, as interpretações obtidas neste modelo de m´aquina. Cada uma das expressões válidas na linguagem é compatível com uma expressão gráfica. / This work presents a theoretical investigation of the constructive, intuitive and ordered structure of the coherence spaces, introduced by Girard, in order to define the geometric machine model for interpretation of computational states and processes labelled by positions of a geometric space. This interpretation can be applied to deterministic process constructions, including two special types of parallelism - the temporal parallelism, with infinite memory and infinite processes defined over array structures, that operate over independent dimensions in a synchronized way; and the spatial parallelism, in a generic version of the model, with a transfinite global memory shared by transfinite processes distributed in a enumerable set of geometric machines, synchronized in the time. The work also provides interpretation to the non-deterministic computations and applies the exponential operators in the interpretation of the functional space. The most basic notion of this work is the definition of the coherence relation as the admissibility of parallelism between basic operations (elementary processes). That relation defines the web over which the coherence space of the whole set of deterministic and non-deterministic processes is step-wise and systematically build. Over the set of the compatible points of such graph, the strict coherence interprets the implicity condition to model parallelism - the true concurrence. In the dual construction, justified by the presence of involutive negation in the complementary graph, the incoherence interprets the condition that models non-determinism - the conflict of memory accesses. The other constructors, the sequential product and the deterministic sum, are defined by the endofunctors in the CospLin category of the coherence spaces and linear functions. The ordered structure of this model is formalized by the coherence space D∞ of all processes, constructed by levels from the coherence space D0 of the elementary processes, following the Scott’s methodology [SCO 76]. In this sense, each level is identified by a subspace Dn, which reconstructs all the objects from the level before, preserving their properties and relations, and drives the construction of the new objects. Compatible with the algebraic-theoretic approach to computational processes, the relationship between the levels is expressed by linear functions called embedding and projection-functions, which interpret constructors and destructors of processes, respectively. The completion procedure guarantees the existence of the least fixed point to the recursive equations, defined by infinite composition of these morphisms. In addition, the interpretation for infinite processes constructed by prefix is presented in D→∞ , confirms that the ordered structure of these model is compatible with the diversity of constructors. The coherence space D∞2 of transfinite processes generalizes the construction and defines the ordered structure of the distributed geometric machine model. Its objects are coherent subsets of tokens labelled by the positions of a geometric space and indexed by isomorphic subsets related to the transfinite ordinal numbers. In order to analyze the behavior related to the interpretations in D∞, the coherence space S S of the linear traces of functions, defined over the coherence space S of the computational states, is introduced. The definition of the representation-function induces the construction of the domain Ω of valid expressions and formalizes a (graphic) language which is able to express, in an more operational way, the interpretations obtained in the geometric machine model.
|
6 |
A Máquina geométrica : modelo computacional para concorrência e não-determinismo usando como estrutura espaços coerentes / The geometric machine : a model for concurrence and non-determinism based on coherence spacesReiser, Renata Hax Sander January 2002 (has links)
O trabalho constitui-se numa investigação teórica da estrutura ordenada e intuitiva dos espaços coerentes, introduzidos por Girard [GIR 86], na definição do modelo de máquina geométrica para construção e interpretação de estados e processos computacionais rotulados por posições de um espaço geométrico. Esta interpretação poderá ser aplicada às construções determinísticas, incluindo dois tipos especiais de paralelismo - o espacial, com memória e processos infinitos definidos por estruturas matriciais, que operam sobre dimensões independentes, de forma sincronizada; e o temporal, na versão genérica do modelo, com memória global transfinita e processos distribuídos num conjunto enumerável de máquinas geométricas, sincronizadas no tempo. O modelo contempla interpretação para computações não-determinísticas e prevê a aplicação de operadores exponenciais na interpretação do espaço funcional. A noção mais intuitiva deste trabalho está na definição da relação de coerência, que define o grafo sobre o qual se constrói este domínio semántico. Sobre o conjunto de pontos compatíveis de tais grafos, a coerência estrita interpreta a condição implícita para modelar o paralelismo - a concorrência entre posições de memória. Na construção dual, justificada pela presença da negação involutiva no grafo complementar, a incoerência interpreta a condição para o não-determinismo - o conflito de acesso à memória. Para os demais construtores, o produto sequencial e a soma determinística, consideram-se os endofunctores produto e soma direta da categoria CospLin dos espaços coerentes e funções lineares. A estrutura ordenada deste modelo é formalizada pelo espaço coerente D∞ de todos os processos, construído em níveis a partir do espaço coerente D∞ dos processos elementares, seguindo a metodologia proposta por Scott [SCO 76]. Neste sentido, cada nível da construção está identificado por um subespaço Dn que reconstrói todos os objetos do nível anterior, preservando suas propriedades e relações, além de construir os novos objetos. Compatível com a abordagem algébrica, o relacionamento entre os níveis é expresso por funções lineares denominadas imersões e projeções, interpretanto os construtores de processos e seus destrutores, respectivamente. Pelo procedimento de completação, assegura-se a existência do menor ponto fixo para equações recursivas definidas pela composição infinita destes morfismos. Além disso, as interpretações para processos infinitos, construídos por prefixação, apresentadas em D→∞ comprovam que este modelo é compatível com a diversidade dos construtores. O espa¸co coerente D∞2 dos processos transfinitos generaliza a construção e define a estrutura ordenada do modelo de máquina geométrica distribuída. Seus objetos são subconjuntos coerentes de tokens rotulados por posições do espaço geométrico e indexados por subconjuntos isomorfos aos ordinais transfinitos. O espaço coerente S S dos traços lineares de funções definidas sobre o espaço coerente S dos estados computacionais constitui-se no modelo semântico para análise do comportamento associado a cada processo interpretado em D∞. A definição da função de representação introduz um domínio de expressões que formaliza uma linguagem capaz de expressar, de forma mais operacional, as interpretações obtidas neste modelo de m´aquina. Cada uma das expressões válidas na linguagem é compatível com uma expressão gráfica. / This work presents a theoretical investigation of the constructive, intuitive and ordered structure of the coherence spaces, introduced by Girard, in order to define the geometric machine model for interpretation of computational states and processes labelled by positions of a geometric space. This interpretation can be applied to deterministic process constructions, including two special types of parallelism - the temporal parallelism, with infinite memory and infinite processes defined over array structures, that operate over independent dimensions in a synchronized way; and the spatial parallelism, in a generic version of the model, with a transfinite global memory shared by transfinite processes distributed in a enumerable set of geometric machines, synchronized in the time. The work also provides interpretation to the non-deterministic computations and applies the exponential operators in the interpretation of the functional space. The most basic notion of this work is the definition of the coherence relation as the admissibility of parallelism between basic operations (elementary processes). That relation defines the web over which the coherence space of the whole set of deterministic and non-deterministic processes is step-wise and systematically build. Over the set of the compatible points of such graph, the strict coherence interprets the implicity condition to model parallelism - the true concurrence. In the dual construction, justified by the presence of involutive negation in the complementary graph, the incoherence interprets the condition that models non-determinism - the conflict of memory accesses. The other constructors, the sequential product and the deterministic sum, are defined by the endofunctors in the CospLin category of the coherence spaces and linear functions. The ordered structure of this model is formalized by the coherence space D∞ of all processes, constructed by levels from the coherence space D0 of the elementary processes, following the Scott’s methodology [SCO 76]. In this sense, each level is identified by a subspace Dn, which reconstructs all the objects from the level before, preserving their properties and relations, and drives the construction of the new objects. Compatible with the algebraic-theoretic approach to computational processes, the relationship between the levels is expressed by linear functions called embedding and projection-functions, which interpret constructors and destructors of processes, respectively. The completion procedure guarantees the existence of the least fixed point to the recursive equations, defined by infinite composition of these morphisms. In addition, the interpretation for infinite processes constructed by prefix is presented in D→∞ , confirms that the ordered structure of these model is compatible with the diversity of constructors. The coherence space D∞2 of transfinite processes generalizes the construction and defines the ordered structure of the distributed geometric machine model. Its objects are coherent subsets of tokens labelled by the positions of a geometric space and indexed by isomorphic subsets related to the transfinite ordinal numbers. In order to analyze the behavior related to the interpretations in D∞, the coherence space S S of the linear traces of functions, defined over the coherence space S of the computational states, is introduced. The definition of the representation-function induces the construction of the domain Ω of valid expressions and formalizes a (graphic) language which is able to express, in an more operational way, the interpretations obtained in the geometric machine model.
|
7 |
A categoria computável dos espaços coerentes gerados por conjuntos básicos com aplicação em análise real / The computable category of the coherence spaces generated by basic sets with an application in real analysisReiser, Renata Hax Sander January 1997 (has links)
Neste trabalho desenvolve-se um estudo sobre os Espaços Coerentes Gerados por Conjuntos Básicos, dotados de uma estrutura adicional. Por estrutura adicional entende-se uma estrutura algébrica, de ordem pontual, de medidas, topológica e lógica. Estes espaços, denotados por , constituem uma subcategoria dos Espaços Coerentes, cujos objetos, ordenados pela inclusão, são conjuntos coerentes constituídos por subconjuntos do conjunto básico, os quais estão relacionados pela relação de coerência induzida, que estrutura a teia deste espaço. Os morfismos desta categoria são as funções de objetos geradas por funções básicas. As propriedades algébricas e relacionais destas funções básicas, externas ao processo de construção, ao se propagarem, passam a influenciar na verificação das propriedades internas das funções de objetos. Contudo, este trabalho não é um estudo categórico. A metodologia adotada utiliza a linguagem simples e intuitiva da Teoria dos Conjuntos, que possibilita a visualização e a análise dos relacionamentos existentes, não apenas entre os morfismos que envolvem os objetos totais ou parciais desta categoria, mas também das estruturas ou pré-estruturas externas que os formam, representados pelas funções de tokens e funções básicas. Mostra-se que as funções de objetos são totais e bem definidas, alem de serem monótonas e continuas neste espaço. Entretanto a análise da estabilidade, e consequentemente da linearidade esta associada a injetividade das funções básicas. Uma das características mais importantes da construção proposta e o desenvolvimento de um sistema de representação linear para funções localmente lineares, com a definição do espaço coerente A* gerado pelo produto de subteias. Neste espaço, as funções de objetos são lineares e coincidem com os morfismo da categoria dos espaços coerentes. Além disso, mostra-se que A* e isomorfo ao espaço coerente gerado pelo produto direto dos sub-espaços, ПĄ. Desta forma, toda transformação definida para um tipo de dado estruturado a partir de um conjunto básico enumerável tem uma representação linear, constituída pelos morfismos da categoria dos espaços coerentes. A existência da representação linear para as funções elementares garante a existência da representação linear para outras funções derivadas destas. Apresenta-se ainda uma especificação desta construção, introduzindo-se o Espaço Coerente de Intervalos Racionais, IIQ. Na busca de uma aplicação compatível com uma abordagem computacional, em especial para Análise Real, mostra-se que, em IIQ, cada função real elementar esta identificada com uma função de objetos linear, definida a partir da correspondente função elementar racional. Dentre as funções que foram analisadas destacam-se: a exponencial, a logarítmica, a potência, a potência estendida, a raiz n-ésima, as funções trigonométricas como seno, cosseno e tangente e suas correspondentes funções inversas, como também a função polinomial. Verificou-se que todas estas funções de objetos são totais, bem definidas, ou pertencem ou possuem uma representação linear na categoria COSP-LIN dos espaços coerentes, alem de serem fechadas para os objetos totais e quasi-totais deste espaço, sendo possível estabelecer o correspondente par-projeção para cada uma delas. / In this work the Coherence Spaces Generated by Basic Sets with additional structure are studied. By additional structure one means an algebraic, topological and logical structure with a punctual order and a measure system. These spaces, indicated by A, are a subcategory of the category of Coherence Spaces, whose objects, ordered by inclusion, are coherent sets formed by the induced web coherence relation. The morphisms of this category are the functions of objects generated by basic functions. The algebraic and relational properties of these basic functions - external to the construction process - are propagated and cause important influences in the verification of the internal properties of the functions of objects However, this research is not a categorical study. The methodology uses the simple and intuitive language of the Set Theory, which allows the visualization and the analysis of the existing relationships, not only among, the morphisms of the total and partial objects of this category, but also among their structures or pre-structures, represented by the functions of tokens and basic functions. It is shown that the functions of objects are total and well defined. They are also monotone and continuous. However the stability and the linearity of the functions of objects depend on the fact if the basic functions are injective or not. One of the most important features of this construction is the development of a linear representation system for the local linear functions, by the definition of a coherence space A*, which is generated by the subweb product. In this space the functions of objects are linear and therefore they are the morphisms of the category of Coherence Spaces. Moreover, it is proved that A* is isomorphic to the coherence space generated by the directed product of the subspaces, denoted by ПĄ . Then, for each transformation defined for a structured data type considering a denumerable basic set there exists its related linear representation. The existence of a linear representation for elementary functions guarantees the existence of a linear representation for others derived functions. As an application of this construction, the Coherence Space of Rational Intervals, denoted by IIQ, is introduced. In order to show an application which is compatible to a computational approach, specially for the real analysis, each elementary real function is identified with a linear function of objects, defined considering the related elementary rational function. Some of the analyzed functions are the exponential, the logarithmic, the power , the extended power, the root, the trigonometric (sine, cosine and tangent and their relates inverses), and the polynomial functions. It is proved that all of these functions of objects are total and well defined. Moreover, either they belong to the category COPS-LIN of the coherence spaces or they have a linear representation in the same category. It is also possible to define a related projection pair for each one of them.
|
8 |
A categoria computável dos espaços coerentes gerados por conjuntos básicos com aplicação em análise real / The computable category of the coherence spaces generated by basic sets with an application in real analysisReiser, Renata Hax Sander January 1997 (has links)
Neste trabalho desenvolve-se um estudo sobre os Espaços Coerentes Gerados por Conjuntos Básicos, dotados de uma estrutura adicional. Por estrutura adicional entende-se uma estrutura algébrica, de ordem pontual, de medidas, topológica e lógica. Estes espaços, denotados por , constituem uma subcategoria dos Espaços Coerentes, cujos objetos, ordenados pela inclusão, são conjuntos coerentes constituídos por subconjuntos do conjunto básico, os quais estão relacionados pela relação de coerência induzida, que estrutura a teia deste espaço. Os morfismos desta categoria são as funções de objetos geradas por funções básicas. As propriedades algébricas e relacionais destas funções básicas, externas ao processo de construção, ao se propagarem, passam a influenciar na verificação das propriedades internas das funções de objetos. Contudo, este trabalho não é um estudo categórico. A metodologia adotada utiliza a linguagem simples e intuitiva da Teoria dos Conjuntos, que possibilita a visualização e a análise dos relacionamentos existentes, não apenas entre os morfismos que envolvem os objetos totais ou parciais desta categoria, mas também das estruturas ou pré-estruturas externas que os formam, representados pelas funções de tokens e funções básicas. Mostra-se que as funções de objetos são totais e bem definidas, alem de serem monótonas e continuas neste espaço. Entretanto a análise da estabilidade, e consequentemente da linearidade esta associada a injetividade das funções básicas. Uma das características mais importantes da construção proposta e o desenvolvimento de um sistema de representação linear para funções localmente lineares, com a definição do espaço coerente A* gerado pelo produto de subteias. Neste espaço, as funções de objetos são lineares e coincidem com os morfismo da categoria dos espaços coerentes. Além disso, mostra-se que A* e isomorfo ao espaço coerente gerado pelo produto direto dos sub-espaços, ПĄ. Desta forma, toda transformação definida para um tipo de dado estruturado a partir de um conjunto básico enumerável tem uma representação linear, constituída pelos morfismos da categoria dos espaços coerentes. A existência da representação linear para as funções elementares garante a existência da representação linear para outras funções derivadas destas. Apresenta-se ainda uma especificação desta construção, introduzindo-se o Espaço Coerente de Intervalos Racionais, IIQ. Na busca de uma aplicação compatível com uma abordagem computacional, em especial para Análise Real, mostra-se que, em IIQ, cada função real elementar esta identificada com uma função de objetos linear, definida a partir da correspondente função elementar racional. Dentre as funções que foram analisadas destacam-se: a exponencial, a logarítmica, a potência, a potência estendida, a raiz n-ésima, as funções trigonométricas como seno, cosseno e tangente e suas correspondentes funções inversas, como também a função polinomial. Verificou-se que todas estas funções de objetos são totais, bem definidas, ou pertencem ou possuem uma representação linear na categoria COSP-LIN dos espaços coerentes, alem de serem fechadas para os objetos totais e quasi-totais deste espaço, sendo possível estabelecer o correspondente par-projeção para cada uma delas. / In this work the Coherence Spaces Generated by Basic Sets with additional structure are studied. By additional structure one means an algebraic, topological and logical structure with a punctual order and a measure system. These spaces, indicated by A, are a subcategory of the category of Coherence Spaces, whose objects, ordered by inclusion, are coherent sets formed by the induced web coherence relation. The morphisms of this category are the functions of objects generated by basic functions. The algebraic and relational properties of these basic functions - external to the construction process - are propagated and cause important influences in the verification of the internal properties of the functions of objects However, this research is not a categorical study. The methodology uses the simple and intuitive language of the Set Theory, which allows the visualization and the analysis of the existing relationships, not only among, the morphisms of the total and partial objects of this category, but also among their structures or pre-structures, represented by the functions of tokens and basic functions. It is shown that the functions of objects are total and well defined. They are also monotone and continuous. However the stability and the linearity of the functions of objects depend on the fact if the basic functions are injective or not. One of the most important features of this construction is the development of a linear representation system for the local linear functions, by the definition of a coherence space A*, which is generated by the subweb product. In this space the functions of objects are linear and therefore they are the morphisms of the category of Coherence Spaces. Moreover, it is proved that A* is isomorphic to the coherence space generated by the directed product of the subspaces, denoted by ПĄ . Then, for each transformation defined for a structured data type considering a denumerable basic set there exists its related linear representation. The existence of a linear representation for elementary functions guarantees the existence of a linear representation for others derived functions. As an application of this construction, the Coherence Space of Rational Intervals, denoted by IIQ, is introduced. In order to show an application which is compatible to a computational approach, specially for the real analysis, each elementary real function is identified with a linear function of objects, defined considering the related elementary rational function. Some of the analyzed functions are the exponential, the logarithmic, the power , the extended power, the root, the trigonometric (sine, cosine and tangent and their relates inverses), and the polynomial functions. It is proved that all of these functions of objects are total and well defined. Moreover, either they belong to the category COPS-LIN of the coherence spaces or they have a linear representation in the same category. It is also possible to define a related projection pair for each one of them.
|
9 |
A categoria computável dos espaços coerentes gerados por conjuntos básicos com aplicação em análise real / The computable category of the coherence spaces generated by basic sets with an application in real analysisReiser, Renata Hax Sander January 1997 (has links)
Neste trabalho desenvolve-se um estudo sobre os Espaços Coerentes Gerados por Conjuntos Básicos, dotados de uma estrutura adicional. Por estrutura adicional entende-se uma estrutura algébrica, de ordem pontual, de medidas, topológica e lógica. Estes espaços, denotados por , constituem uma subcategoria dos Espaços Coerentes, cujos objetos, ordenados pela inclusão, são conjuntos coerentes constituídos por subconjuntos do conjunto básico, os quais estão relacionados pela relação de coerência induzida, que estrutura a teia deste espaço. Os morfismos desta categoria são as funções de objetos geradas por funções básicas. As propriedades algébricas e relacionais destas funções básicas, externas ao processo de construção, ao se propagarem, passam a influenciar na verificação das propriedades internas das funções de objetos. Contudo, este trabalho não é um estudo categórico. A metodologia adotada utiliza a linguagem simples e intuitiva da Teoria dos Conjuntos, que possibilita a visualização e a análise dos relacionamentos existentes, não apenas entre os morfismos que envolvem os objetos totais ou parciais desta categoria, mas também das estruturas ou pré-estruturas externas que os formam, representados pelas funções de tokens e funções básicas. Mostra-se que as funções de objetos são totais e bem definidas, alem de serem monótonas e continuas neste espaço. Entretanto a análise da estabilidade, e consequentemente da linearidade esta associada a injetividade das funções básicas. Uma das características mais importantes da construção proposta e o desenvolvimento de um sistema de representação linear para funções localmente lineares, com a definição do espaço coerente A* gerado pelo produto de subteias. Neste espaço, as funções de objetos são lineares e coincidem com os morfismo da categoria dos espaços coerentes. Além disso, mostra-se que A* e isomorfo ao espaço coerente gerado pelo produto direto dos sub-espaços, ПĄ. Desta forma, toda transformação definida para um tipo de dado estruturado a partir de um conjunto básico enumerável tem uma representação linear, constituída pelos morfismos da categoria dos espaços coerentes. A existência da representação linear para as funções elementares garante a existência da representação linear para outras funções derivadas destas. Apresenta-se ainda uma especificação desta construção, introduzindo-se o Espaço Coerente de Intervalos Racionais, IIQ. Na busca de uma aplicação compatível com uma abordagem computacional, em especial para Análise Real, mostra-se que, em IIQ, cada função real elementar esta identificada com uma função de objetos linear, definida a partir da correspondente função elementar racional. Dentre as funções que foram analisadas destacam-se: a exponencial, a logarítmica, a potência, a potência estendida, a raiz n-ésima, as funções trigonométricas como seno, cosseno e tangente e suas correspondentes funções inversas, como também a função polinomial. Verificou-se que todas estas funções de objetos são totais, bem definidas, ou pertencem ou possuem uma representação linear na categoria COSP-LIN dos espaços coerentes, alem de serem fechadas para os objetos totais e quasi-totais deste espaço, sendo possível estabelecer o correspondente par-projeção para cada uma delas. / In this work the Coherence Spaces Generated by Basic Sets with additional structure are studied. By additional structure one means an algebraic, topological and logical structure with a punctual order and a measure system. These spaces, indicated by A, are a subcategory of the category of Coherence Spaces, whose objects, ordered by inclusion, are coherent sets formed by the induced web coherence relation. The morphisms of this category are the functions of objects generated by basic functions. The algebraic and relational properties of these basic functions - external to the construction process - are propagated and cause important influences in the verification of the internal properties of the functions of objects However, this research is not a categorical study. The methodology uses the simple and intuitive language of the Set Theory, which allows the visualization and the analysis of the existing relationships, not only among, the morphisms of the total and partial objects of this category, but also among their structures or pre-structures, represented by the functions of tokens and basic functions. It is shown that the functions of objects are total and well defined. They are also monotone and continuous. However the stability and the linearity of the functions of objects depend on the fact if the basic functions are injective or not. One of the most important features of this construction is the development of a linear representation system for the local linear functions, by the definition of a coherence space A*, which is generated by the subweb product. In this space the functions of objects are linear and therefore they are the morphisms of the category of Coherence Spaces. Moreover, it is proved that A* is isomorphic to the coherence space generated by the directed product of the subspaces, denoted by ПĄ . Then, for each transformation defined for a structured data type considering a denumerable basic set there exists its related linear representation. The existence of a linear representation for elementary functions guarantees the existence of a linear representation for others derived functions. As an application of this construction, the Coherence Space of Rational Intervals, denoted by IIQ, is introduced. In order to show an application which is compatible to a computational approach, specially for the real analysis, each elementary real function is identified with a linear function of objects, defined considering the related elementary rational function. Some of the analyzed functions are the exponential, the logarithmic, the power , the extended power, the root, the trigonometric (sine, cosine and tangent and their relates inverses), and the polynomial functions. It is proved that all of these functions of objects are total and well defined. Moreover, either they belong to the category COPS-LIN of the coherence spaces or they have a linear representation in the same category. It is also possible to define a related projection pair for each one of them.
|
10 |
Estratégias de computação seqüenciais e paralelas sobre espaços coerentes / Sequential and parallel computational strategies of coherence spacesSchneider Sellanes, Ruben Gerardo January 1996 (has links)
As estruturas de dados concretas (cds) são quaternas (C, V, E, l-) que contêm um conjunto C de células, um conjunto V de valores, um conjunto E de eventos e uma relação de habilitação l-. O conjunto de estados de uma cds é um domínio concreto que pode ser considerada a parte "abstrata" das cds. Da mesma maneira tem-se que os domínios de eventos (que são generalizações dos domínios concretos) são a parte abstrata das estruturas de eventos. Mostra-se a relação dos domínios concretos e domínios de eventos com os espaços coerentes, assim como também das teias de espaços coerentes com as cds e estruturas de eventos. Intuitivamente, uma cds é uma teia de um espaço coerente se toda célula c de C não é habilitada por nenhum evento (ou equivalentemente, é habilitada pelo conjunto vazio), isto é, V C E C, 0 F c. Outra forma de expressar isto é dizer que uma cds e uma teia de um espaço coerente se o conjunto de estados da cds é um espaço coerente. Definem-se os algoritmos lineares como sendo estados de uma cds no estilo dos algoritmos seqüenciais do Curien ([CUR 86]). Em particular as cds consideradas são teias de espaços coerentes. Mostra-se como obter a cds !A—>B, a partir de uma função estável f. A —> B. O algoritmo linear desta cds possui todas as estratégias de computação (seqüenciais e paralelas) que computam a função subjacente f, o que implica que os algoritmos lineares podem ser considerados meta-algoritmos. Mostra-se que para toda estratégia de computação seqüencial de um algoritmo linear, existe um algoritmo seqüencial de Curien que computa a mesma função, e vice-versa. A definição de estratégia de computação é dada de maneira tal que permite se dar semântica a segmentos de programas. Define-se uma operação de composição de estratégias, de forma tal que se pode obter uma estratégia de computação de um programa, a partir da composição das estratégias dos segmentos. / The concrete data structures, or cds, (C, V, E, l-) consists of a set C of cells, a set V of values. a set E of events and an enabling relation l-. The set of states of a cds is a concrete domain, that can be considered the "abstract" counterpart of the cds. In the same way we have that the events domains (that are more general that the concretes domains) are the abstract counterpart of the events structures. We show the relation between the concretes domains and events domains with the coherence spaces, as just as the relation between the cds and events structures with webs of coherence spaces. Intuitivelly, a cds is a web of a coherence space if any cell c is not enabled for any event, i.e. Vce C, 0 F c. We can say that a cds is a web of a coherence space if the set of states of the cds is a coherence space. We define the linear algorithms as states of a cds following the Curien's sequential algorithms ([CUR 86]). In particular the cds considered are webs of coherence spaces. We show how to obtain a cds !A—>B from a stable function f. A —> B. The linear algorithm of this cds contain all the computational strategies (sequentials and parallels) that compute the subjacent function f; this implies that the linear algorithms can be considered a kind of meta-algorithms. We show that for all sequential computational strategy of a linear al gorithm exists a Curien's sequential algorithm that compute the same function and conversely. We define the computational strategies in such a way that we can give semantic of segments of programs. We define a composition operation for strategies. This operation has the advantage that we can obtain the computational strategy of a program as the composition of the segments of it.
|
Page generated in 0.1717 seconds