Spelling suggestions: "subject:"terminaison"" "subject:"terminaisons""
21 |
Sen1-mediated RNAPIII transcription termination controls the positioning of condensin on mitotic chromosomes / L'hélicase Sen1 contrôle le positionnement de condensine sur les chromosomes en régulant la terminaison de la transcription par l'ARN polymérase IIIRivosecchi, Julieta 24 September 2019 (has links)
Le complexe condensine est le moteur de la condensation mitotique des chromosomes, un processus essentiel à la stabilité du génome au cours de la division cellulaire. De nombreuses données publiées indiquent qu’il existe des liens fonctionnels étroits entre le processus de transcription des gènes et le processus d’organisation des chromosomes par condensine. Ces données sont toutefois souvent contradictoires et aucun modèle ne fait actuellement consensus pour expliquer les liens entre transcription et condensine. Au cours de cette thèse, nous avons montré chez la levure Schizosaccharomyces pombe qu’en l’absence de l’hélicase à ADN/ARN Sen1, condensine s’accumule spécifiquement à proximité des gènes transcrits par l’ARN Polymérase III. Nous avons utilisé ces observations pour mieux comprendre les liens entre transcription par l’ARN polymérase III et le positionnement de condensine. Nos données montrent que Sen1 est un cofacteur de l’ARN Polymérase III impliqué dans la terminaison de la transcription. Ce résultat est important car il démontre que les modèles existants qui affirment que l’ARN polymérase III termine de transcrire de façon autonome sont erronés. Nous avons ensuite démontré que les défauts de terminaison de l’ARN polymérase III observés en l’absence de Sen1 suffisent entièrement à expliquer l’accumulation de condensine en ces sites. Cette observation importante démontre que le contrôle de qualité de la transcription est directement impliqué dans le positionnement de condensine sur les chromosomes en mitose. Nos résultats nous permettent de proposer qu’au-delà d’un certain seuil, la densité en ARN polymérases est un obstacle à la translocation de condensine sur les chromosomes. / The condensin complex is a key driver of chromosome condensation in mitosis. The condensin-dependent assembly of highly compacted chromosomes is essential for the faithful transmission of the genome during cell division. Many independent studies have established that gene transcription impacts the association of condensin with chromosomes, but the molecular mechanisms involved are still unclear. This is especially true as a number of sometimes contradictory mechanisms have been proposed so far. Here, we show in Schizosaccharomyces pombe that condensin accumulates specifically in the vicinity of a subset of RNA polymerase III-transcribed genes in the absence of the conserved DNA/RNA helicase Sen1. We demonstrate that Sen1 is a cofactor of RNA polymerase III (RNAPIII) required for efficient transcription termination. These results are important because they fundamentally challenge the pre-existing view that RNAPIII terminates transcription autonomously. Strikingly, we show that the RNAPIII transcription termination defects are directly responsible for the accumulation of condensin in the absence of Sen1. This indicates that the quality control of transcription impacts the distribution of condensin on mitotic chromosomes. We propose that above a certain density threshold, the accumulation of RNAPIII constitutes a barrier for the translocation of condensin on chromosomes.
|
22 |
Terminaison des systèmes de réécriture d'ordre supérieur basée sur la notion de clôture de calculabilitéBlanqui, Frédéric 13 July 2012 (has links) (PDF)
Dans ce document, nous montrons comment la notion de calculabilité introduite par W. W. Tait et étendue par Girard aux types polymorphes peut être utilisée et facilement étendue pour montrer la terminaison de différents types de relations de réécriture, y compris avec filtrage sur des symboles définis, filtrage d'ordre supérieur ou réécriture de classe modulo certaines théories équationnelles. Nous montrons également que la notion de clôture de calculabilité donne lieu a une relation bien fondée incluant l'extension à l'ordre supérieur par J.-P. Jouannaud et A. Rubio de l'ordre récursif sur les chemins de N. Dershowitz.
|
23 |
Etude des mécanismes de reconnaissance du transcrit dans la terminaison de la transcription Rho-dépendante / Study of transcript recognition mechanisms in Rho-dependent termination of transcriptionNadiras, Cédric 07 December 2018 (has links)
Terminaison de la transcription. Rho se fixe aux transcrits naissants au niveau d’un site Rut (Rhoutilization) libre à partir duquel il transloque le long de l’ARN (5’→3’) de façon ATP-dépendante pour rattraper le complexe d’élongation de la transcription et induire la dissociation de celui-ci. Il est généralement admis que les sites de fixation de Rho présentent une richesse en Cytosines et une pauvreté en Guanines, ainsi qu’une relative pauvreté en structures secondaires. Les études génomiques ou transcriptomiques n’ont pas dégagé d’éléments consensus ou de règles permettant de prédire les sites de terminaison Rho-dépendants. En combinant approches biochimiques et bioinformatiques, j’ai tenté de comprendre les mécanismes par lesquels Rho reconnait les transcrits.J’ai identifié un ensemble de déterminants de séquence qui, pris ensemble, possèdent un bon pouvoir prédictif et que j’ai utilisé pour construire le premier modèle computationnel capable de prédire la terminaison Rho-dépendante à l’échelle des génomes d’E. coli et Salmonella. J’ai caractérisé in vitro certains de ces terminateurs, en particulier dans les régions 5’UTR, avec l’espoir qu’ils soient impliqués dans des mécanismes de régulation conditionnelle. J’ai identifié des candidats dont l’activité pourrait être sous le contrôle de facteurs comme des petits ARN non codants (sRNA) ou latempérature. J’ai également développé une méthode fluorogénique pour détecter facilement la terminaison Rho-dépendante in vitro et ai commencé à adapter l’approche CLIP-seq à l’étude du transcriptome Rho-dépendant chez Salmonella. Collectivement, mes travaux offrent de nouveaux outils d’analyse et de prédiction de la terminaison Rho-dépendante, une meilleure cartographie des sites d’action de Rho chez E. coli et Salmonella, ainsi que de nouvelles pistes d’étude du rôle de Rhodans l’expression conditionnelle du génome. / Transcripts at a free Rut (Rho-utilization) site from which Rho moves along the RNA in an ATP dependentfashion to catch up with and dissociate the transcription elongation complex. It is generally believed that the Rut sites are, respectively, rich and poor in Cytosines and Guanines as well as relatively poor in secondary structures. Studies at the genomic or transcriptomic scale have notrevealed any stronger consensus features or rules for predicting potential Rho-dependent termination sites. By combining biochemical and bioinformatics approaches, I have explored the mechanisms by which Rho recognizes transcripts to induce transcription termination. I have identified a complex set of sequence determinants which, taken together, have good predictive power and which I used to build the first computational model able to predict Rho-dependent termination at the scale of Escherichiacoli and Salmonella genomes. I have characterized in vitro some of these terminators, particularly in 5'UTRs, with the hope that they will be involved in conditional regulatory mechanisms. I have identified several candidates whose activity may be under the control of factors such as small non-coding RNAs(sRNA) or temperature. I have also developed a fluorogenic method to easily detect Rho-dependent termination in vitro and have begun to adapt the CLIP-seq approach to the study of the Rhodependent transcriptome in Salmonella. Collectively, my work offers new tools for the analysis and prediction of Rho-dependent termination, a better mapping of the sites of probable Rho action in E.coli and Salmonella, as well as several lines of investigation of the role of Rho in the conditional expression of bacterial genomes.
|
24 |
Etude de l'impact des facteurs eRF3 et Upf1 dans la traduction des ARN messagers porteurs d'uORF / Involvement of translation termination factor eRF3 and nonsense-mediated mRNA decay factor Upf1 in the translational control of uORFs carrying mRNAsAliouat, Affaf 12 July 2017 (has links)
La traduction est considérée comme une étape clé de l'expression des gènes permettant à la cellule de s'adapter aux variations de son environnement en réponse aux signaux internes ou externes. Des études bioinformatiques ont montrés que la moitié des ARN messagers chez l'homme portent, en amont de leur phase codante, des éléments régulateurs appelés uORF. Le laboratoire a montré qu'un défaut de terminaison de la traduction par déplétion du facteur de terminaison eRF3 modifie l'expression de gènes dont l'ARNm contient des uORF comme le gène ATF4. Cette modification se fait soit par un mécanisme de réinitiation après traduction de l'uORF soit par une augmentation de la stabilité de l'ARNm résultant d'un défaut de sa dégradation par la voie du "Nonsense-mediated mRNA Decay" (NMD). A travers leur association dans le même complexe et leur implication dans la terminaison de la traduction et la NMD, eRF3 et Upf1 contribuent à la régulation fine de l'expression des gènes. Cependant, on ne sait pas dans quelle mesure ces deux facteurs affectent la traduction et la stabilité des ARNm. Nous avons évalué la traduction par ribosome profiling et le taux de transcrits par RNA-seq dans les cellules humaines déplétées en eRF3 ou en Upf1. Ces analyses nous ont permis de dresser une carte des uORF traduites dans le transcriptome des cellules humaines HCT116. Nous avons également observé que peu de gènes cibles sont communs entre la déplétion en eRF3 ou en Upf1. Nos résultats appuient fortement l'hypothèse qu'il y a au moins deux classes de transcrits portant des uORF, l'une dont la régulation implique la terminaison de la traduction et l'autre dont la régulation implique la NMD. / Regulation of gene expression at the translational level is increasingly being recognized as a key mechanism by which cells can rapidly change their gene expression pattern in response to internal or external stimuli. Bioinformatic studies revealed that half of human transcripts present at least one expression regulatory element uORF in the 5’ leader sequence preceding the main ORF. We have previously shown that translation termination disruption caused by eRF3a depletion induces upregulation of the transcriptional activator ATF4 and its targeted genes partly by a translational control at uORFs, and partly in relation to a defect in Nonsense-mediated mRNA Decay activation, increasing ATF4 mRNA stability. Through their physical association and their involvement in translation termination and NMD, eRF3 and Upf1 are regulating the protein and mRNA levels of a significant number of genes and thus contribute to the fine-tuning of their expression. It is not known yet, in what extent both of these factors affect translational control and what is the subset of genes that are regulated by these factors. In this study, we evaluated translation by ribosome profiling and mRNA level by RNA-seq in human cells subjected to either eRF3a or Upf1 depletion. These analyses allowed us to draw a transcriptome-wide map of uORFs and obtained a list of functional uORFs in our reference HCT116 transcriptome. We also observe that only a small fraction of these are common targets for both eRF3a and Upf1. Our results provide strong support for the notion that different classes of transcripts bearing uORFs are regulated either by translational processes involving translation termination or by NMD.
|
25 |
Fidélité de la terminaison de la traduction chez les eucaryotes / Translation termination accuracy in eukaryotesBlanchet, Sandra 18 September 2014 (has links)
La terminaison de la traduction se produit lorsqu’un codon stop entre au site A du ribosome où il est reconnu par le facteur de terminaison eRF1 accompagné du facteur eRF3. Cette étape de la traduction est encore mal comprise chez les eucaryotes. Au cours de ma thèse je me suis intéressée à l’étude de la fidélité de la terminaison de la traduction afin de mieux comprendre et caractériser les mécanismes moléculaires mis en jeu lors du décodage du codon stop.L’un de mes projets consistait à mieux caractériser une région du domaine N-terminal d’eRF1, la cavité P1, identifiée comme étant impliquée dans l’efficacité de terminaison. Grâce à une quantification de l’efficacité de translecture de mutants de la cavité P1, j’ai pu mettre en évidence le rôle de résidus clés comme les serines 33 et 70, impliquées dans le décodage spécifique du codon UGA probablement via une interaction directe entre les deux résidus, ou encore l’arginine 65 et la lysine 109, essentielles pour une terminaison efficace sur les trois codons stop. L’analyse par RMN de ces mutants a également permis de montrer que ces résidus étaient importants pour la conformation correcte de la cavité et potentiellement impliqués dans une interaction directe avec l’ARNm. La combinaison des données génétiques et structurales nous a permis de proposer un modèle d’interaction entre l’ARNm et le facteur de terminaison eRF1 dans lequel le codon stop serait reconnu en partie par l’intermédiaire de la cavité P1. Dans la cellule, la terminaison est toujours en compétition avec la translecture, qui correspond à l’incorporation d’un ARNt proche-cognat au niveau du codon stop. Afin d’identifier les acides aminés incorporés par translecture au niveau du codon stop, j’ai mis au point un système basé sur l’expression et la purification de protéines issues de la translecture qui sont ensuite analysées par spectrométrie de masse. J’ai pu mettre en évidence que la glutamine, la tyrosine et la lysine s’incorporent au niveau des codons UAA et UAG, alors que le tryptophane, la cystéine et l’arginine sont retrouvés au niveau du codon UGA. J’ai également pu montrer que le contexte en 5’ n’influençait pas l’incorporation des acides aminés au codon stop mais qu’en revanche, la présence de la paromomycine avait un impact sur la sélection des ARNt suppresseurs naturels. Ce projet permet d’apporter de nouvelles informations sur les règles de décodage grâce à l’analyse des appariements entre codons stop et anticodons des ARNt naturels suppresseurs. Il permet également d’envisager des perspectives thérapeutiques dans le cadre des maladies liées à la présence d’un codon stop prématuré et pour lesquelles le traitement repose sur l’utilisation de la translecture afin de ré-exprimer des protéines entières. / Translation termination occurs when a stop codon enters the A site of the ribosome where it is recognized by eRF1 (eukaryotic release factor 1), associated with eRF3. This step of translation is not yet understood in eukaryotes. During my PhD, I was interested in studying translation termination accuracy to better understand and characterize the molecular mechanisms involved in stop codon decoding.One of my project consisted in characterizing a region in eRF1 N-terminal domain, pocket P1, identified to be involved in termination efficiency. Through a quantification of readthrough efficiency of pocket P1 mutants, I have highlighted the role of key residues, like serine 33 and serine 70, implicated in specific recognition of UGA stop codon, probably through a direct interaction between the two amino acids, and also arginine 65 and lysine 109, essential for efficient termination on the three stop codons. The analysis of the mutants by NMR revealed that these residues are also important for proper conformation of the cavity and potentially involved in a direct interaction with mRNA. The combination of our genetic data and structural analysis allowed us to propose a model of interaction between termination factor eRF1 and the mRNA, in which the stop codon would be recognized partially through pocket P1.In cells, termination always competes with readthrough which corresponds to the incorporation of near-cognate tRNAs at the stop codon. To identify the amino acids inserted by readthrough at the stop codon, I have developed a reporter system based on the expression and purification of readthrough proteins that are analyzed by mass spectrometry. I found that glutamine, tyrosine and lysine are inserted at UAA and UAG stop codons, whereas tryptophan, cysteine and arginine are inserted at UGA stop codon. I also showed that the 5’ nucleotide context does not influence the incorporation of amino acids at the stop codons by readthrough, but that, in contrast, the presence of paromomycin impacted the selection of natural suppressors tRNAs incorporated by readthrough. This project gives us new insights into the decoding rules by analyzing the base pairings between stop codon and near-cognates anticodons. It also allows us to consider therapeutic prospects for the treatment of premature stop codon diseases which uses readthrough as a tool to re-express full-length proteins from mRNAs that are interrupted by the presence of a premature stop codon.
|
26 |
Etude du contrôle de la transcription envahissante par la terminaison de la transcription / Study of the pervasive transcription control by transcription terminationBriand, Jean-Baptiste 03 June 2015 (has links)
La terminaison de la transcription est essentielle, aussi bien pour assurer la formation de l’extrémité 3’ de transcrits fonctionnels que pour éviter les phénomènes d’interférence transcriptionnelle entre des régions transcrites adjacentes. Ceci est particulièrement important dans un génome compact comme celui de S. cerevisiae. La terminaison est aussi l’une des stratégies principales que la cellule emploie pour contrôler et limiter la transcription dite envahissante ou cachée. Chez S. cerevisiae, l’ARN polymérase II est responsable de la transcription des ARNm et de nombreuses classes d’ARN non codants tels que les sn(o)ARN et les CUT (Cryptic Unstable Transcripts). Ces derniers représentent une fraction importante des transcrits issus de la transcription cachée. Il existe deux voies canoniques de terminaison de la transcription par cette polymérase. Elles font intervenir le complexe de clivage et de polyadénylation, CPF-CF, notamment pour la terminaison des ARNm ou le complexe NNS pour la terminaison des sn(o)ARN et des CUT. Au cours de ma thèse j’ai étudié deux aspects de la terminaison de la transcription : 1) l’étude des motifs de recrutement du complexe NNS et 2) l’identification et la caractérisation d’une nouvelle voie de terminaison par le facteur Rap1. Les complexes CPF-CF et NNS agissent tous les deux en liant le transcrit naissant et l’ARN pol II. Le complexe NNS lie l’ARN naissant grâce à ses sous-unités Nrd1 et Nab3 qui reconnaissent des motifs spécifiques. Cependant, bien que la séquence de ces motifs soit maintenant connue, leur présence ne permet pas de définir de façon certaine un terminateur. En effet, le nombre de ces motifs varie beaucoup d’un terminateur à l’autre. Afin de mieux comprendre la structure des terminateurs ciblés par le complexe NNS et l’organisation des motifs liés par Nrd1 et Nab3, j’ai recherché les séquences impliquées dans la terminaison d’un CUT modèle en réalisant une mutagenèse aléatoire et j’ai identifié par SELEX des motifs de fixation optimale du dimère Nrd1-Nab3. Un second volet de ma thèse porte sur la caractérisation d’une nouvelle voie de terminaison de la transcription dépendante du facteur Rap1. Rap1 est important pour la structure des télomères et c’est aussi un facteur de transcription ciblant des centaines de promoteurs. Il active ou réprime l’initiation de la transcription notamment en recrutant des complexes de remodelage de la chromatine sur les promoteurs ciblés. De façon surprenante, le motif de fixation de ce facteur a été identifié dans des séquences capables de terminer la transcription isolées au laboratoire. Mes travaux ont permis de caractériser le mécanisme de terminaison par Rap1 et de distinguer cette voie des voies de terminaison canoniques. Ce facteur, lié à l’ADN, agit comme une barrière en bloquant la progression de l’ARN polymérase II par un mécanisme de « road-block ». Les polymérases ainsi arrêtées sont ciblées par une voie qui permet leur élimination lorsqu’elles sont bloquées par des dégâts sur l’ADN, impliquant leur ubiquitination et vraisemblablement leur dégradation par le protéasome. Les ARN libérés sont polyadénylés par la poly(A)-polymérase Trf4 et dégradés par l’exosome nucléaire. Ce mécanisme de terminaison est utilisé dans un contexte naturel puisque j’ai identifié des transcrits endogènes de S. cerevisiae terminés par cette voie. Nous proposons que la terminaison par Rap1 contribue au contrôle de la transcription envahissante. Ce facteur assurerait ainsi au niveau des promoteurs qu’il lie une double fonction de facteur de transcription et de protection de ces promoteurs contre l’interférence transcriptionnelle. / Transcription termination is essential, both for the 3’ end formation of functional transcripts and to avoid transcriptional interference between adjacent transcription units. This is particularly important in a compact genome such as S. cerevisiae. Termination is also one of the main strategies used by the cell to control and limit the “pervasive” or “hidden” transcription. In S. cerevisiae, RNA pol II is responsible for the transcription of the mRNAs and numerous non-coding RNA families such as the sn(o)RNAs and the CUTs (Cryptic Unstable Transcripts). CUTs represent a large fraction of the “pervasive” or “hidden” transcription. There are two canonical transcription termination pathways for this RNA polymerase. They involve the cleavage and polyadenylation complex (CPF-CF), in particular for the mRNAs termination, or the NNS complex for sn(o)RNAs and CUTs termination. During my thesis I studied two aspects or the transcription termination: 1) the motifs involved in the NNS complex recruitment on RNA and 2) the identification and the characterization of a new termination pathway by Rap1. CPF-CF and NNS complex are both recruited on the nascent transcript and on the RNA pol II. The NNS complex binds the RNA through its subunits Nrd1 and Nab3 which recognize specific motifs. Nonetheless, even if these motif sequences are now known, their presence does not elicit the certain identification of NNS dependent terminators. To clarify the NNS dependent terminator structure and the organization of the motifs bound by Nrd1 and Nab3 I looked for the sequences involved in a specific CUT termination doing a random mutagenesis experiment and I identified by SELEX the Nrd1-Nab3 dimer optimal binding motifs. A second part of my thesis concerns the characterization of a new transcription termination pathway dependent on the Rap1 factor. Rap1 is important for the telomere structure and it is also a transcription factor that targets hundred of promoters. It activates or represses transcription initiation recruiting chromatin remodeling complexes on the targeted promoters. Surprisingly, the Rap1 binding motifs have been identified among sequences eliciting termination isolated in the laboratory. My work has led to the characterization of the termination mechanism by Rap1 and distinguished this pathway from the two canonical pathways. This factor, bound to DNA, acts as a barrier blocking the RNA pol II progression by a road-block mechanism. These arrested polymerases are targeted by a pathway responsible for the elimination of RNA pol II blocked by DNA damages, implying their ubiquitination and probably their degradation by the proteasome. The released RNAs are polyadenylated by the poly(A) polymerase Trf4 and degraded by the nuclear exosome. This termination mechanism is used in a natural context since I identified S. cerevisiae endogenous transcripts terminated by this pathway. We propose that the Rap1 termination contributes to the pervasive transcription control. This factor could elicit, on its bound promoters, a double function of both transcription factor and protection of these promoters against transcriptional interference.
|
27 |
Etude des facteurs impliqués dans la terminaison de la traduction et la dégradation des ARNm chez Saccaromyces cerevisiae / Study of the factors involved in translation termination and mRNA decay in S. cerevisiaeRispal, Delphine 16 September 2011 (has links)
Au cours de mon travail de thèse j’ai étudié la relation entre les facteurs participant à la terminaison de la traduction et ceux participant à la dégradation des ARNm chez S. cerevisiae.D’une part, je me suis intéressée au facteur Tpa1, caractérisé pour son rôle dans la terminaison de la traduction et la stabilité des ARNm chez S. cerevisiae et dont l’homologue chez S. pombe, Ofd1, participe au contrôle de la réponse hypoxique. Je me suis basée sur la structure de ce facteur, établie par nos collaborateurs pour comprendre plus précisément la fonction moléculaire de Tpa1 et rechercher des similitudes avec sa fonction chez S. pombe.Tpa1 est composée de deux domaines de type DSBH dont le premier, contenant le site catalytique, présente des homologies structurales avec la famille des prolyl-hydroxylases.Nous avons reproduit l’effet de la protéine Tpa1 sur la translecture in vivo et montré que son site catalytique prédit, ainsi que la présence des deux domaines étaient nécessaires pour cette activité. Nous avons aussi observé que Tpa1 inhibait par un mécanisme inconnu le facteur de transcription Hap1, qui régule des gènes en fonction de la quantité d’oxygène. Basé sur l’existence d’un inhibiteur d’Ofd1 chez S. pombe, nous avons ensuite montré qu’Ett1 (l’homologue de cet inhibiteur chez S. cerevisiae) avait un rôle similaire à Tpa1 dans la translecture. Une étude structurale collaborative d’Ett1 a mis en évidence une région conservée, se liant à une molécule de sulfate et à un ligand inconnu. Cette région est importante pour la translecture. Cependant, le substrat de Tpa1 reste pour l’instant inconnu comme les rôles précis de Tpa1 et Ett1 dans la terminaison de la traduction et dans la réponse à l’hypoxie.D’autre part, j’ai étudié le processus de NMD, particulièrement en me focalisant sur le mécanisme de discrimination entre un codon stop précoce (PTC) et un codon stop normal, et en analysant également la modification post-traductionnelle d’un facteur central du NMD, Upf1. Nous avons mis en évidence, qu’en plus de la région aval, la région en amont du PTCparticipait à sa reconnaissance. Nous avons testé plusieurs hypothèses sur le rôle de cette région, qui ont confirmé son rôle sans permettre de démontrer un mécanisme définitif. En parallèle, l’étude de la protéine Upf1 s’est concentrée sur ses modifications posttraductionnelles, particulièrement par phosphorylation. En effet, une telle modification est importante chez son homologue humain. Nous avons pu confirmer l’existence d’une forme modifiée et démontrer que celle-ci était localisée entre les acides aminés 153 et 971. Cette modification s’est avérée être très labile ce qui n’a pas permis de confirmer qu’il s’agissait d’une phosphorylation, ni de la cartographier plus précisément. / During my PhD thesis, I analyzed the relation between factors that participate intranslation termination and those participating in mRNA decay in yeast S. cerevisiae.First, I focused on Tpa1, that had been proposed to participate in translationtermination and mRNA decay in S. cerevisiae, and whose homologue in S. pombe, Ofd1,participates to the control of hypoxic response. Based on the structure of Tpa1, established byour collaborators, I performed functional analysis to understand more precisely the molecularfunction of Tpa1 and similarities with its role in S. pombe. Tpa1 is composed of two DSBHdomains; the first, which contains the catalytic site, has structural homologies with the familyof prolyl-hydroxylase. We could reproduce the effect of Tpa1 on stop codon readthrough invivo and we showed that the predicted catalytic site and the presence of the two domains ofTpa1 were necessary for its activity. We also showed that Tpa1 inhibited one factor, Hap1,implicated in regulation of gene expression by oxygen. The existence of an inhibitor of Ofd1in S. pombe, allowed the identification of Ett1 (its homologue in S. cerevisiae). We showedthat Ett1 has a role similar to the one of Tpa1 in translational readthrough. A collaborativestructural and functional study of Ett1 revealed a conserved region, which binds a sulfate ion,and an unknown ligand. This region is important for the readthrough. However, thesubstrate(s) of Tpa1 remain(s) for the moment unknown, and the precise roles of Tpa1 andEtt1 in translation termination and in response to hypoxia remain to be deciphered.I also analyzed the NMD process by focusing more particularly on the mechanism thatallows the discrimination between a normal stop and a PTC (premature termination codon)and on the analysis of the post-translational modification of an important factor for the NMD,Upf1. This study revealed that, not only the region downstream of the PTC but also theupstream region participates to its recognition. We have tested several hypotheses on the roleof this upstream region, which confirmed its implication but did not reveal a definitivemechanism. In parallel, we started the study of the post-translational modifications of Upf1,and more particularly by phosphorylation. Indeed, the phosphorylation of Upf1 in human isvery important for the NMD process. We could confirm the presence of a modified form ofyeast Upf1 and we have demonstrated that it was localized between amino acids 153 and 971.This modification appeared to be highly labile. This prevented us to confirm definitively thatit was really a phosphorylation and to cartography precisely its location.
|
28 |
V2O3(0001)/Au(111) and /W(110): Growth, Electronic Structure and Adsorption PropertiesDupuis, Anne-Claire 17 October 2002 (has links) (PDF)
In this work, we firstly showed that it is possible to grow thin<br />V2O3(0001) films on Au(111) and W(110). The preparation process<br />consists of an evaporation of metallic vanadium in an oxygen<br />atmosphere, followed by an annealing at 700 K in 5.10-8 mbar<br />of oxygen. The low energy electron diffraction (LEED) patterns<br />obtained for both substrates exhibit sharp spots, indicating a<br />well-defined surface structure. The stoichiometry of the film has<br />been characterized by X-ray photoelectron spectroscopy (XPS) and<br />near edge X-ray absorption fine structure spectroscopy (NEXAFS).<br />The XP spectrum in the binding energy range 500-540 eV shows three<br />features corresponding to the V 2p3/2, V 2p1/2 and O 1s<br />lines, respectively. Relevant parameters for the determination of<br />the stoichiometry of the oxide are the distance between the O 1s<br />and V 2p signals, the Full Width at Half Maximum (FWHM) and the<br />shape of the spectra. Our spectra show good agreement with those<br />found in the literature for V2O3 single crystals. V L-edge NEXAFS<br />spectra present noticeable chemical shifts characteristic of the<br />different vanadium valencies and their shape depends implicitly on<br />the local symmetry of the vanadium cation. Each vanadium oxide<br />type therefore displays a typical spectrum. A comparison of our<br />spectrum to reference spectra permits the identification of our<br />vanadium oxide thin film to V2O3.<br /><br />We proved with infrared absorption spectroscopy (IRAS) the<br />existence of two possible terminations of the V2O3 (0001) surface.<br />These two terminations differ only by the presence or not of<br />oxygen atoms on the top of the surface, forming vanadyl groups<br />with the surface vanadium atoms. The first termination, called<br />-V=O termination, is obtained after the preparation process. The<br />second termination - the -V termination - is obtained by heating<br />the -V=O surface up to 600 K with electron bombardment.<br /><br />We studied with UV photoelectron spectroscopies (UPS), XPS and<br />NEXAFS the electronic structure of our V2O3 (0001) thin films. The<br />UP spectra of the -V=O terminated surface clearly show a gap for<br />the -V=O terminated surface. These data therefore evidence a metal<br />to insulator transition induced by the formation of the vanadyl<br />groups on the surface. This result is confirmed by our NEXAFS O K<br />edge and XPS results. The NEXAF O K edge spectra consist of two<br />features. The first one is attributed to the tansition to the<br />unoccupied V 3d egΠ and a1g (t2g) states with O 2p<br />character and the second one to the unoccupied V 3d egΣ states.<br />For the -V=O termination, both features of the spectrum exhibit a<br />shift towards higher energy relative to the spectrum for the -V<br />termination. This shift can be explained by the changes in the<br />electronic structure due to the metal to insulator transition. The<br />XP spectra exhibit enhanced satellite features in the case of the<br />-V=O termination, which can be attributed to poorly screened final<br />states. We also observed a shift of the O 2p band towards lower<br />binding energies for the -V=O terminated surface relative to the<br />-V terminated surface. We tried to explain this phenomenon with a<br />band bending model. Finally, we proposed two models for the<br />surface geometry of the -V=O terminated surface. In the first one,<br />the oxygen atoms sit on top of the vanadium atoms. In the second<br />one, the oxygen atoms sit on quasi regular bulk positions.<br /><br />We performed high resolution electron energy loss spectroscopy<br />(HREELS) measurements and presented a phonon spectrum for each<br />termination. Differences in phonon intensities observed between<br />both surface terminations can be interpreted as a screening effect<br />of electronic carriers. We compared our spectra with a spectrum of<br />the isomorphic Cr2O3(0001) and found out that the<br />metal-oxygen bond is not so strong in V2O3 as in Cr2O3.<br /><br />We studied the water adsorption properties of both surface<br />terminations. The experiment consists of the adsorption of water<br />at 90 K, yielding the formation of ice on the sample surface. The<br />sample then is heated up to 190 K. The species present on the<br />surface at this temperature are analyzed with UPS, XPS and HREELS.<br />The adsorption path seems to depend on both the termination and<br />the exposure. We observed molecularly adsorbed water on both<br />surface terminations for low exposures. The adsorbed water shows<br />only weak interaction with the substrate. For large exposures,<br />water dissociates and OH- groups were detected. When the OH-<br />desorb of the primary -V=O terminated surface, the surface left is<br />-V terminated. In the case of the -V=O terminated surface, the<br />water molecule is assumed to adsorb on the surface vanadium atom<br />through its oxygen atom. The oxygen double bonded to the vanadium<br />can interact with the hydrogen of the water molecule to form a OH<br />radical, breaking its double bond to the vanadium. This<br />dissociation mechanism may imply charge redistribution, explaining<br />why the V 3d emission in UPS increases upon water adsorption. This<br />model explains why the vanadyl oxygen atoms desorb with the OH<br />groups. For the -V terminated surface, we observed a charge<br />transfer from the V 3d substrate to the adsorbate, producing<br />OH- groups. Therefore, we proposed a model in which the<br />vanadium a1g or egΠ orbital forms a Σ bond with oxygen<br />lone-pair orbitals of OH-.<br /><br />We performed CO2 adsorption experiments with UPS, XPS, HREELS and<br />IRAS. The UP results for the -V=O surface exhibit small features<br />which we assigned to physisorbed CO2. The CO2 adsorption on the<br />-V terminated surface is more complex. The analyze of the IRAS<br />results leads us to the conclusion that CO2 adsorbs in a bent<br />configuration. With UPS and XPS, we could evidence the formation<br />of carbonates upon heating up to 200 K.<br /><br />The CO adsorption properties follow a similar trend as for CO2 :<br />only small quantities adsorb on the -V=O surface while the -V<br />surface seems to be much more reactive. On the -V=O surface, CO<br />adsorbs molecularly and we concluded from the angle resolved UPS<br />data that the CO molecule is strongly tilted on the surface. With<br />NEXAFS and IRAS, we showed the formation of CO2 on the -V<br />surface.<br /><br />To our knowledge, we are the first to report a surface effect<br />resulting in a metal to insulator transition. This very complex<br />phenomenon is very exciting for the surface scientist. Further<br />work on V2O3 (0001) should therefore involve theorists in order to<br />explain properly why the formation of vanadyl groups on the<br />surface induces a metal to insulator transition. A simulation of<br />the angle resolved UPS data could determine which model for the<br />surface geometry is correct. Further experimental work could be<br />thermal desorption spectroscopy (TDS) and IRAS with isotopes in<br />order to identify the formation path of CO2 by CO adsorption on<br />the -V terminated surface.
|
29 |
Athapascan-1 : interprétation distribuée du flot de données d'un programme parallèleGalilée, François 22 September 1999 (has links) (PDF)
Cette thèse est centrée sur la modélisation de l'exécution d'une application parallèle par un graphe de flot de données. Ce graphe, qui relie les tâches aux données partagées, est construit de manière dynamique. Cette construction, indépendante de l'ordonnancement des tâches effectué, permet de définir la sémantique des accès aux données et de controler la consommation mémoire de toute exécution. Nous étudions dans une première partie les algorithmes permettant la construction et la gestion d'un tel graphe de flot de données dans un environnement distribué. Un point crucial de ces algorithmes est la détection de terminaison des accès des tâches sur les données partagées. Nous proposons un algorithme réactif réalisant cette détection. L'implantation de cet algorithme est au centre de l'implantation distribuée de l'interface de programmation parallèle Athapascan-1. Cette interface permet la description du parallélisme d'une application par création de tâches asynchrones. La sémantique (de type lexicographique) de cette interface est également définie à partir du graphe de flot de données. Nous montrons dans une deuxième partie que la connaissance du flot de données d'une application permet de controler de manière théorique la durée et, surtout, la consommation mémoire de toute exécution. Ce controle est effectué à partir d'un ordonnancement séquentiel implicite des tâches. Nous proposons, implantons dans Athapascan-1 et évaluons deux algorithmes d'ordonnancement distribués permettant de limiter le volume de mémoire requis par toute exécution. Ces expérimentations permettent de valider les résultats théoriques obtenus.
|
30 |
Terminaison basée sur les types et filtrage dépendant pour le calcul des constructions inductivesSacchini, Jorge 29 June 2011 (has links) (PDF)
Les assistants de preuve basés sur des théories des types dépendants sont de plus en plus utilisé comme un outil pour développer programmes certifiés. Un exemple réussi est l'assistant de preuves Coq, fondé sur le Calcul des Constructions Inductives (CCI). Coq est un langage de programmation fonctionnel dont un expressif système de type qui permet de préciser et de démontrer des propriétés des programmes dans une logique d'ordre supérieur. Motivé par le succès de Coq et le désir d'améliorer sa facilité d'utilisation, dans cette thèse nous étudions certaines limitations des implémentations actuelles de Coq et sa théorie sous-jacente, CCI. Nous proposons deux extension de CCI que partiellement resourdre ces limitations et que on peut utiliser pour des futures implémentations de Coq. Nous étudions le problème de la terminaison des fonctions récursives. En Coq, la terminaison des fonctions récursives assure la cohérence de la logique sous-jacente. Les techniques actuelles assurant la terminaison de fonctions récursives sont fondées sur des critères syntaxiques et leurs limitations apparaissent souvent dans la pratique. Nous proposons une extension de CCI en utilisant un mécanisme basé sur les type pour assurer la terminaison des fonctions récursives. Notre principale contribution est une preuve de la normalisation forte et la cohérence logique de cette extension. Nous étudions les définitions par filtrage dans le CCI. Avec des types dépendants, il est possible d'écrire des définitions par filtrage plus précises, par rapport à des langages de programmation fonctionnels Haskell et ML. Basé sur le succès des langages de programmation avec types dépendants, comme Epigram et Agda, nous développons une extension du CCI avec des fonctions similaires.
|
Page generated in 0.0369 seconds