• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contribution to the requalification of alkali silica reaction (ASR) damaged structures : assessment of the ASR advancement in aggregates by alkali silica reaction / Contribution à la requalification des structures endommagées par l’alcali réaction : evaluation de l’avancement de l’alcali réaction dans les granulats

Gao, Xiao Xiao 16 December 2010 (has links)
Afin de répondre aux questions des propriétaires de structures atteintes de réaction alcali-silice (RAS), ce travail se concentre sur une partie d'une méthodologie globale, proposée initialement par le LMDC et EDF, et dont le but est l'étude du comportement mécanique des constructions endommagées par la RAS. Pour atteindre cet objectif, l'avancement chimique de la RAS des granulats récupérés dans les structures affectées doit être évalué. Ainsi, ce travail est consacré à la quantification de la silice potentiellement réactive des granulats, par l'utilisation de deux approches : une approche indirecte par un test d'expansion et une approche directe par des méthodes chimiques. La présentation du manuscrit s'articule autour des points suivants :• Un test d'expansion pertinent et rapide sur mortiers pour relier la quantité de silice réactive à l'expansion mesurée. Les conditions expérimentales suivantes ont été choisies pour tester différentes tailles et natures de granulats, ainsi que différentes tailles d'éprouvettes : solution de NaOH à 1 mol/l et température de conservation de 60°C.• Une méthode chimique rapide de dissolution sélective pour mesurer directement la quantité de silice réactive disponible pour la RAS. La méthode HF / HF+HCl a été trouvé comme étant la plus efficace.• Un modèle chemo-mécanique pour analyser les effets de la taille des granulats et des éprouvettes, et évaluer l'avancement chimique de la réaction.Finalement, une méthodologie est proposée pour calculer la constante cinétique de la réaction dans le cadre de la requalification des structures atteintes de RAS. / In order to answer the questions of the ASR-affected structures owners, this work focused on a part of a global methodology, which is proposed originally by the LMDC and EDF, aiming to reassess the mechanical behavior of ASR-damaged constructions. To achieve this purpose, the chemical advancement of ASR in the aggregates recovered from the structure should be evaluated. Thus, this work focuses on the assessment of the potentially reactive silica content with two main methods: indirectly by expansion test and directly by chemical methods. The presentation of this manuscript is around the following points: • A relevant and rapid expansion test on mortars to link the reactive silica content to measured expansion. The experimental condition: 1 mol/l NaOH solution conserved at 60°C is chosen to test different aggregate sizes, specimen sizes and natures of aggregate. • A fast chemical method of selective dissolution to measure directly the silica available for ASR. Acid/basic methods are tested and compared; HF / HF+HCl method is found to be the most effective. • A chemo-mechanical model to analyze the effect of aggregate size and specimen size, and evaluate the chemical advancement of ASR. Finally, a methodology is proposed to calculate the kinetics constant in the framework of structural requalification. Key words: alkali-silica reaction (ASR), chemical advancement, reactive silica, expansion test, chemical test, chemo-mechanical model, kinetic constant, selective dissolution
2

Numerical and semi analytical models for electromagnetic ring expansion test / Les modèles numériques et semi-analytiques du test d’expansion d’anneau électromagnétique

Yang, Kang 30 March 2017 (has links)
Le taux de déformation des matériaux est élevé pendant le soudage / formage à grande vitesse, le découpage, le sertissage, etc. Les propriétés des matériaux sous déformation à grande vitesse ne suivent pas la même loi que dans le cas de chargement quasi statiques. La caractérisation des matériaux à taux de déformation important est assez difficile et nécessite des équipements sophistiqués. Grâce au développement de la technologie de formage électromagnétique, le test d'expansion d'anneau électromagnétique présente un grand potentiel à utiliser pour caractériser les matériaux à haute vitesse de déformation. Pendant le test d’expansion de l’anneau électromagnétique, la pièce à usiner peut atteindre une vitesse d’expansion de l’ordre de 100m/s et une vitesse de déformation de 104 s-1. Par conséquent, ce test peut être utilisé pour prédire les paramètres du matériau, tels que la dureté et la ductilité à déformation à grande vitesse. Pour d’atteindre cet objectif, un modèle approprié décrivant le processus est nécessaire. Ce modèle doit contenir un couplage électromagnétique-mécanique-thermique pour bien décrire le problème multi-physique. Il existe deux méthodes principales de modélisation dans la littérature, viz. Les méthodes semi-analytiques et les méthodes des éléments finis (parfois combinées avec la méthode des éléments limitants). Les méthodes semi-analytiques nécessitent un temps de calcul court mais offrent une faible précision par rapport aux méthodes des éléments finis. Cependant, en raison de la complexité du couplage multi-physique, l’erreur de calcul est difficile à estimer. De plus, les déformations hétérogènes ainsi que les états de contrainte compliqués peuvent influencer l’identification. Dans ce sens, cette thèse s’est principalement concentrée sur les méthodes d’analyse et de modélisation du test d’expansion d’anneau électromagnétique, incluant les comportements locaux et les phénomènes dynamiques à l’aide des outils expérimentaux et numériques. Par ailleurs, cette thèse comprend aussi le développement d’un méthode semi-analytique permettant le couplage multi-physique, ce qui a été validé par un modèle numérique idéal et par des tests expérimentaux. Les résultats expérimentaux ont été obtenus à l’aide d’une caméra à grande vitesse et du vélocimétrie photovoltaïque Doppler (PDV) pour différents cas tests. Ils ont été utilisés pour déterminer les paramètres du processus et du matériau à l’aide des modèles numériques. Les modèles adaptés pour analyser les états de contrainte et de déformation durant le test d’expansion d’anneau montrent que ce dernier n’est pas un test de traction uniaxial pur comme revendiqué par les chercheurs. En outre, le phénomène de vibration qui se produise de la récupération élastique a été étudié par simulations multi-physiques et par systèmes PDV. Cette étude de récupération élastique permet de mieux comprendre les paramètres influençant du test, ce qui pourrait être utilisé pour contrôler le rebond dans d’autres processus électromagnétique. La méthode de modélisation semi-analytique pour le test d’expansion de l’anneau électromagnétique, qui comprend quatre parties de calcul (partie mécanique, thermique, force de Lorentz et courant de Foucault), a été analysée à l’aide de simulations numériques. Les résultats obtenus ressemblent étroitement aux résultats obtenus par un test idéal et un test expérimental. L’analyse d’erreur des différents aspects physiques permet d’améliorer la précision de calcul semi-analytique, ce qui pourrait être utilisé comme outil supplémentaire d’obtention rapide des paramètres de contrôle dans les tests. Il pourrait aussi être utilisé pour l’identification des paramètres des matériels à déformation à grande vitesse. / High stain rate material deformations are prevalent during high speed impacts, high speed forming/welding, cutting, crimping, blast etc. Characteristics of materials under high strain rate deformation do not follow the same as it occurs under the quasi-static loading conditions. However, characterization of materials under high strain rate deformation is always challenging and it requires sophisticated equipment. Thanks to the development in electromagnetic forming technology, the electromagnetic ring expansion test shows a great potential to be used to characterize materials under high strain rate conditions. During the electromagnetic ring expansion test, the workpiece can reach deformation velocities in the order of 100 m/s and a strain rate of up to 104 s-1. Consequently, this test can be used to predict the material parameters such as the strain rate hardening and ductility under extremely high strain rates (strain rates in the order of 103 – 104 s-1). In order to achieve this goal, an appropriate model is required to describe the process. The model should contain an electromagnetic-mechanical-thermal coupling to obtain the accurate multi-physics nature of the problem. There exist two main modeling methods in literature, viz., the semi-analytical methods and finite element methods (sometime combined with boundary element method). Normally, the semi-analytical methods require short calculation time while it provides lower accuracy in comparison with finite element methods. However, due to the complexity of multi-physics coupling, the calculation error is difficult to be analyzed. Moreover, errors in calculation and identification assumptions may also result from heterogeneous deformations or localized specific phenomena (such as local necking at multi points or electric current localization, skin effect, edge effect of Lorentz force etc.) that could influence identification work as well as stress and strain states. Therefore, this thesis mainly focused on the analysis and modeling methods of ring expansion test including local behaviors and dynamic phenomena with the help of experimental and numerical tools. Moreover, this thesis also includes a development of a semi-analytical method with multi-physics coupling capabilities, which has been validated using a theoretical model and experimental frameworks. Experimental measurements were obtained using high-speed cameras and photonic Doppler velocimetry (PDV) for various test cases are used together with numerical models to investigate the process and material parameters. The models used to analyze the stress and stain states during a ring expansion test show that the ring expansion test is not a pure uniaxial tensile test as claimed by researchers. Besides, another potential process behavior, the vibration phenomena that occurs during the elastic recovery was investigated using multi-physics simulations and PDV systems. This investigation of the elastic recovery helps to understand the potential influencing parameters of the test those are applicable and could be used to control the springback phenomenon during other electromagnetic forming processes. The semi-analytical modeling method for ring expansion test including four calculation parts (mechanical part, eddy current, Lorentz force calculation, thermal part) were analyzed with the help of numerical simulations. The results obtained from analytical work closely resemble with the numerical simulations for both theoretical model and an experimental case study. The error analysis of various physical aspects allows improving the accuracy of semi-analytical calculation that could be used as an additional platform to obtain rapid calculation of the test conditions. This semi-analytical method could be extended in the future to identify material parameters under high strain rate deformations.

Page generated in 0.0838 seconds