Spelling suggestions: "subject:"textile reinforced concrete"" "subject:"sextile reinforced concrete""
121 |
Entwicklung einer robotergestützten Technologie zur Herstellung von biologisch inspirierten, lastangepassten 3D-TextilbewehrungsstrukturenFriese, Danny 16 October 2024 (has links)
Die Erforschung innovativer, materialminimierender Konstruktionsstrategien und ressourcenschonender Fertigungstechnologien für den ressourcenintensiven Bausektor ist eine dringende Notwendigkeit, um dem globalen Klimawandel wirksam zu begegnen. Eine materialeffiziente und ressourcenschonende Bauweise ermöglicht das Bauen mit Textilbeton. Im Vergleich zu Stahlbewehrungen sind textile Bewehrungsstrukturen korrosionsunempfindlich, wodurch die notwendige Betondeckung drastisch reduziert werden kann. Ein weiterer, wesentlicher Vorteil von Textilbewehrungsstrukturen besteht in der freiförmigen, lastangepassten Gestaltungsfreiheit der Textilbewehrung während des Fertigungsprozesses, wodurch auch komplex verzweigte Bewehrungstopologien realisierbar sind. Im Rahmen dieser Arbeit erfolgt die Entwicklung einer neuartigen, robotergestützten Fertigungstechnologie zur Herstellung von biologisch inspirierten, lastangepassten 3D-Textilbewehrungsstrukturen. Ein Schwerpunkt besteht dabei in der Entwicklung eines einstufigen, robotergestützten Garndirektablageverfahrens, sodass auf zusätzlich erforderliche Verarbeitungsprozesse verzichtet werden kann. Für die Realisierung dieser flexibel einsetzbaren Technologie werden anforderungsgerechte Funktionsmodule zur Tränkung, Führung und Fixierung von Carbonfaserrovings im Raum elaboriert und validiert. Die Basis für die technologische Entwicklung bilden die grundlagenorientierten, numerischen und experimentellen Untersuchungen zu den Einflussfaktoren der Fadenfixierung sowie der Fadenführung und -tränkung, wie bspw. das topologieabhängige Abstreifverhalten des Fadens vom Wickelkörper, die strukturmechanischen Fragestellungen oder die Prozessparameter im Tränkungsprozess. Für die robotergestützte Herstellung der 3D-Textilbewehrungsstrukturen werden Algorithmen für die automatisierte Generierung von kollisionsfreien Roboterpfaden erforscht und entwickelt. Anschließend wurde ein zweistufiger, regelbasierter Prozessablauf konzipiert und mithilfe von MATLAB® implementiert, sodass das 3D-Modell der zu fertigenden Textilbewehrungsstruktur anhand definierter Anforderungen automatisiert in verwertbare Maschinensteuerungsdatensätze übersetzt wird. Die entwickelte, robotergestützte Fertigungstechnologie schafft die Grundlage, biologisch inspirierte, lastangepasste 3D-Textilbewehrungsstrukturen mit einem hohen Lastabtragungsvermögen herzustellen. Diese Technologie leistet somit einen bedeutenden Beitrag bei der Herstellung materialminimierter, ressourcenschonender Carbonbetonstrukturen.
|
122 |
Parametric study of tensile response of TRC specimens reinforced with epoxy-penetrated multi-filament yarnsChudoba, Rostislav, Konrad, Martin, Schleser, Markus, Meskouris, Konstantin, Reisgen, Uwe 03 June 2009 (has links) (PDF)
The paper presents a meso-scopic modeling framework for the simulation of three-phase composite consisting of a brittle cementitious matrix and reinforcing AR-glass yarns impregnated with epoxy resin. The construction of the model is closely related to the experimental program covering both the meso-scale test (yarn tensile test and double sided pull-out test) and the macro-scale test in the form of tensile test on the textile reinforced concrete specimen. The predictions obtained using the model are validated using a-posteriori performed experiments.
|
123 |
Nachträglich textilverstärkte Stahlbetontragwerke — Strukturanalyse mit unscharfen DatenSteinigen, Frank, Graf, Wolfgang, Hoffmann, Andreas, Kaliske, Michael 03 June 2009 (has links) (PDF)
Mit der Fuzzy-Stochastischen Finite-Elemente-Methode (FSFEM) kann die nachgewiesene stochastische und nichtstochastische Datenunschärfe des stahlbewehrten Altbetons und des Textilbeton bei der Strukturanalyse berücksichtigt werden. Die für die deterministische Analyse textilverstärkter Tragwerke auf der Basis des Multi-Referenzebenen-Modells (MRM) entwickelten finiten MRM-Elemente wurden zu FSMRM-Elementen weiterentwickelt. Das Stoffmodell des mit AR-Glas bewehrten Feinbetons wurde für textile Gelege aus Carbon erweitert. Die entwickelten Modelle und Algorithmen werden zur fuzzystochastischen Tragwerksanalyse textilverstärkter Tragwerke eingesetzt.
|
124 |
Grundlagen für die Nutzwertanalyse für Verstärkungen aus textilbewehrtem BetonSchach, Rainer, Hentschel, Manuel 03 June 2009 (has links) (PDF)
Im Rahmen des Transferprojektes sollen baubetriebliche Rahmenbedingungen und Kennwerte, die zur Beurteilung der wirtschaftlichen Anwendung des Verfahrens geeignet sind, erarbeitet werden. Untersucht werden soll die Applikation von textilbewehrtem Beton im Bereich der Sanierung und Verstärkung von großflächigen Betonbauteilen. Generell können Bauaufgaben in sehr vielen Fällen durch verschiedene Bauverfahren realisiert werden, die sich regelmäßig hinsichtlich der Kosten, der benötigten Bauzeit aber auch hinsichtlich der gelieferten Qualität und des Einflusses auf die Umwelt unterscheiden. Aus baubetrieblicher Sicht wird traditionell über den kalkulatorischen Verfahrensvergleich jenes Verfahren ermittelt, mit dem die Realisierung am wirtschaftlichsten ausgeführt werden kann. Falls qualitative Kriterien beim Verfahrensvergleich mit berücksichtigt werden sollen, stehen verschiedene Methoden zur Auswahl. Der Begriff Nutzwertanalyse wird häufig als Synonym für diese nichtmonetären Bewertungsverfahren verwendet. In diesem Sinne ist auch der Titel des Beitrages zu verstehen. Die Grundlage bilden die baubetrieblichen Rahmenbedingungen, welche im Rahmen dieses Forschungsprojektes bestimmt werden. Hierzu zählen unter anderem die Entwicklung einer Trockenmischung des zu verwendenden Betons aus der bisher verwendeten Standardrezeptur der TU Dresden und geeigneter Maschinen für die Applikation des textilbewehrten Betons.
|
125 |
SFB 528: Textile Bewehrungen zur Bautechnischen Verstärkung und Instandsetzung / CRC 528: Textile Reinforcements for Structural Strengthening and Repair. Report for the period II/1999-I/2002Curbach, Manfred 04 September 2005 (has links) (PDF)
Durch die beanspruchungsgerechte Anordnung von Fasermaterialien wie Glas oder Carbon mit hervorragenden Trageigenschaften entstehen technische Textilien, die in eine Betonmatrix eingebracht werden können, so daß ein neuer, innovativer Verbundwerkstoff entsteht, der sowohl bei der Herstellung neuer Betonbauteile verwendet werden kann als auch für den Einsatz in der Instandsetzung und Verstärkung bestehender Bauwerke geeignet ist. Da die verwendeten Materialien im Gegensatz zum Stahl nicht korrosionsempfindlich sind und gleichzeitig hohe Festigkeiten aufweisen, können Verstärkungen aus textilbewehrtem Beton mit sehr geringen Abmessungen ausgeführt werden. Bei Holzkonstruktionen können textile Verstärkungen die durch die Anisotropie bedingten Festigkeits- und Steifigkeitsunterschiede kompensieren und die Dauerhaftigkeit erhöhen. Bei Verzicht auf Knotenbleche aus Stahl und durch Applikation von textilen Strukturen können beachtliche Steigerungen der Tragfähigkeit und der Duktilität von Verbindungen erreicht werden. In den fünf Projektbereichen werden in theoretischen und experimentellen Untersuchungen die Grundlagen für die Werkstoffe, die mechanische Beschreibung, die konstruktive Durchbildung und die Bemessung, die technologische Aufbringung, bautechnische Umsetzung und die Langzeiteigenschaften und damit für die Sicherheit und die Lebensdauer bei der Verwendung textiler Bewehrungen für die Instandsetzung und Verstärkung geschaffen. / The stress-oriented arrangement of fibre materials, such as glass or carbon, which have an excellent load-bearing capacity, leads to technical textiles that may be incorporated into a concrete matrix. So a new, innovative composite material is produced, which can be used for the production of new concrete members and also for the restoration and strengthening of existing structures. As the materials used are noncorrosive compared to steel and as they show great strength at the same time, textile-reinforced concrete can be used for strengthening tasks of small dimensions. With regard to timber structures, textile reinforcement can compensate the strength and stiffness differences caused by anisotropy and can increase durability. If textile structures are used instead of steel gussets this may lead to a considerable increase in the ultimate strength and the ductility of joints. The five fields of the project are designed that theoretical and experimental investigations are carried out to provide the fundamentals of the materials. Additionally information will be obtained about the mechanical description, the detailing and the dimensioning, the techniques of applying, the realisation on the site and the long-term behaviour. All leading to a safety concept and also a service life concept for the use of textile reinforcements for restoration and strengthening.
|
126 |
Entwicklung eines Berechnungsmodells für das Langzeitverhalten von Stahlbeton und textilbewehrtem Beton bei überwiegender BiegebeanspruchungSeidel, André 29 August 2009 (has links) (PDF)
Tragwerke aus Stahlbeton weisen infolge des Kriechens und Schwindens des Betons ein zeitveränderliches Materialverhalten auf. Die Folge sind Umlagerungen der im Querschnittsinneren wirkende Kräfte und im Zeitverlauf zunehmende Verformungen. Zur Beurteilung dieses Langzeitverhaltens sind geeignete Berechnungsmodelle erforderlich, die im Planungsstadium eine zuverlässige Prognose ermöglichen. Dabei spielen nicht nur reine Stahlbetonkonstruktionen eine Rolle, sondern im Zuge von Ertüchtigungsmaßnahmen werden zur Erhöhung der Tragfähigkeit zunehmend auch textile Bewehrungen aus Carbon- und AR-Glasfasern eingesetzt. Durch die beanspruchungsgerecht aufzubringenden Bewehrungsstrukturen und einen speziellen Feinbeton können sehr geringe Betonschichtdicken realisiert werden. Es entsteht ein Verbundquerschnitt mit unterschiedlichen Betonrezepturen, gleichfalls unterschiedlichem Betonalter und mit mehreren verschiedenen Bewehrungskomponenten. Um Aussagen zum Langzeitverhalten derartiger Konstruktionen treffen zu können, ist eine ganzheitliche Betrachtung über alle diese im Verbund liegenden Komponenten mit ihren jeweiligen Materialeigenschaften erforderlich.
Im Rahmen der vorliegenden Arbeit sind in einem ersten Schritt die Stoffgesetze für die beteiligten Materialien Beton, Stahl- und Textilfaserbewehrung zu formulieren. Im Mittelpunkt steht dabei das viskoelastische Verhalten des Betons, für dessen baumechanische Beschreibung ein geeignetes rheologisches Modell in Form einer Feder-Dämpfer-Kombination dargestellt und die zugehörige Spannungs-Dehnungs-Zeit-Beziehung hergeleitet wird. Ferner wird aufgezeigt, wie die erforderlichen Materialparameter mit Hilfe üblicher Berechnungsansätze für Kriechen und Schwinden (z.B. nach EUROCODE 2) kalibriert werden können. Die betrachteten Textilfasern werden zunächst mit linear-elastischem Verhalten in Rechnung gestellt. Auf alternative Ansätze, die auch hier viskoelastische Eigenschaften berücksichtigen, wird hingewiesen, und das Berechnungsmodell ist dahingehend erweiterbar gestaltet.
In einem zweiten Schritt werden die Materialmodelle der Einzelkomponenten nach den mechanischen Grundprinzipien von Gleichgewicht und Verträglichkeit und unter der BERNOULLIschen Annahme eines eben bleibenden Querschnittes miteinander in Beziehung gesetzt. Hierfür ist eine inkrementelle Vorgehensweise erforderlich, die mit dem Zeitpunkt der ersten Lastaufbringung beginnt und schrittweise den darauffolgenden Zustand berechnet. Im Ergebnis entsteht ein Algorithmus, der die am Querschnitt stattfindenden Veränderungen im Spannungs- und Dehnungsverhalten unter Einbeziehung der Stahlbewehrung sowie einer ggf. vorhandenen Textilbetonschicht wirklichkeitsnah erfaßt. Für statisch bestimmte Systeme mit bekanntem Schnittkraftverlauf wird gezeigt, wie sich so zu jeder Zeit an jeder Stelle der vorliegende Dehnungszustand und aus diesem über die Krümmung die Durchbiegung berechnen läßt.
Der dritte und für viele praktische Anwendungen wichtigste Schritt besteht darin, die am Querschnitt hergeleiteten Beziehungen in ein finites Balkenelement zu überführen und dieses in ein FE-Programm zu implementieren. Auch das gelingt auf inkrementellem Wege, wobei für jedes Zeitinkrement die Spannungs- und Verformungszuwächse aller Elemente mit Hilfe des NEWTON-RAPHSON-Verfahrens über die Iteration des Gleichgewichtszustandes am gesamten System bestimmt werden. Hierzu werden einige Beispiele vorgestellt, und es werden die Auswirkungen des Kriechens und Schwindens mit den sich daraus ergebenden Folgen für das jeweilige Tragwerk erläutert. Ferner wird gezeigt, wie textilbewehrte Verstärkungsmaßnahmen gezielt eingesetzt werden können, um das Trag- und Verformungsverhalten bestehender Bauwerke unter Beachtung des zeitveränderlichen Materialverhaltens kontrolliert und bedarfsgerecht zu beeinflussen. / Structures of reinforced concrete show a time-varying material behaviour due to creeping and shrinking of the concrete. This results in the rearrangement of the stresses in the cross-section and time-depending increase of the deformations. Qualified calculation models enabling a reliable prediction during the design process are necessary for the assessment of the long-term behavior. Not only pure reinforced concrete structures play an important role, but within retrofitting actions textile reinforcements of carbon and AR-glass fibres are applied in order to enhance the load-bearing capacity. A small concrete-layer-thickness can be achieved by the load-compatible application of reinforced textile configurations and the usage of a special certain fine-grained concrete. It leads to a composite section of different concrete recipes, different concrete ages and also several components of reinforcement. To give statements for the long-term behaviour of such constructions, a holistic examination considering all this influencing modules with their particular material properties is necessary.
Within this dissertation in a first step the material laws of the participated components, as concrete, steel and textile reinforcement, are defined. The focus is layed on the visco-elastic behaviour of the concrete. For its mechanical specification a reliable rheological model in terms of a spring-dashpot-combination is developed and the appropriate stress-strain-time-relation is derived. Furthermore the calibration of the required material parameters considering creep and shrinkage by means of common calculation approaches (e.g. EUROCODE 2) is demonstrated. For the textile fibres a linear-elastic behaviour is assumed within the calculation model. It is also refered to alternative approaches considering a visco-elastic characteristic and the calculation model is configured extendable to that effect.
In a second step the material models of the single components are correlated taking into account the mechanical basic principles of equilibrium and compatibility as well as the BERNOULLIan theorem of the plane cross-section. Therefore an incremental calculation procedure is required, which starts at the moment of the first load-application and calculates the subsequent configuration step by step. In the result an algorithm is derived, that realistically captures the occuring changings of stress and strain in the cross-section by considering the steel reinforcement as well as a possibly existing layer of textile concrete. For statically determined systems with known section force status it is demonstrated how to calculate the existing condition of strain and following the deflection via the curvaturve at every time and at each position.
The third step - for many practical applications the most important one - is the transformation of the derived relations at the cross-section into a finite beam-element and the implementation of this in a FE-routine. This also takes place in an incremental way, whereat for each time-increment the increase of stress and strain for all elements is identified by using the NEWTON-RAPHSON-method within the iteration process for the equilibrium condition of the whole system. Meaningful numerical examples are presented and the effects of creep and shrinkage are explained by depicting the consequences for the particular bearing structure. Moreover it is shown how the purposeful use of textile reinforcement strengthening methodes can influence and enhance the load-bearing and deflection characteristics of existing building constructions by considering the time-varying material behaviour.
|
127 |
Mechanisms of the interaction between continuous and short fibres in textile-reinforced concrete (TRC) / Mechanismen der Wechselwirkungen zwischen Endlos- und Kurzfasern in textilbewehrtem BetonBarhum, Rabea 12 September 2014 (has links) (PDF)
This thesis reports on experimental investigations of the mechanisms inherent in the joint action of short and continuous fibres in high-performance, cement-based composites. Experiments on different levels of observation (macro- meso- and micro-levels) were performed to provide detailed insights into the various effects of adding different types of short fibres (dispersed AR glass, integral AR glass and dispersed carbon fibres) on the strength, deformation, and failure behaviour of textile-reinforced concrete (TRC) subjected to tensile loading. Moreover, visual inspections of the specimens' surfaces and microscopic investigation of the fracture surfaces and the interface zone between fibre and matrix were performed and evaluated. Subsequently, the mathematical descriptions for TRC with short fibres under deformation controlled tensile loading conditions were derived based on a multi-scale rheological-statistical modelling approach.
Based on a literature review, the state of the art is presented and discussed to identify key questions that are yet to be answered satisfactorily. This provides the starting point for the investigations presented in this thesis.
The experimental program on the macro-level included uniaxial tension tests performed on thin, narrow plates reinforced by: a) only textile reinforcement, b) only short fibres, and c) hybrid reinforcement (both textile reinforcement with the addition of short fibres). Special attention was directed toward the course of the stress-strain relationship, crack pattern development, and fibre failure behaviour.
The stress-strain curves resulting from uniaxial tension testing demonstrated clearly the positive influence of all types of short fibre on the mechanical performance of TRC. While the first-crack stress in TRC specimens increased significantly due to the addition of short fibres, an expansion of the strain region, where multiple cracks form, was observed for the stress-strain curves for TRC with added short fibres. The visual inspection of the specimens\' surfaces showed a higher number of cracks and finer crack patterns for given strain levels in the cases when short fibres were added to TRC. Moreover, depending on fibre type, the positive effects of the addition of short fibres on both tensile strength and work-to-fracture of the composite were found to vary significantly.
The findings at the micro- and meso-levels of observation provided to a great extent a core of understanding of some particular mechanical behavioural properties of TRC with short fibres at the macro-level of observation. Thus, in addition to the experimental testing performed on composite materials with different parameter combinations, investigations of the action of individual material components, i.e., multifilament-yarns and single short fibres, embedded into cement-based matrices were carried out.
It was found that short fibres indeed improve the bond between multifilament-yarns and the surrounding matrix. By their random positioning on the yarn\'s surface, short fibres built new adhesive cross-links which provided extra connecting points to the surrounding matrix. Furthermore, the water-to-binder ratio of the matrix influenced bond quality between fibre and matrix, i.e., various degrees of matrix-fibre bond were observed. As a result, the mechanical behaviour of the composite varied with w/b: While the good bond of the fibre embedded in a matrix with a low water-to-binder ratio leads to increase in stiffness and strength of the composite, fibres with weak bonding can be considered as defects with respect to stiffness as they lead to a decrease in the value.
The thesis further derives the mathematical relationships for TRC with the addition of short fibres under deformation-controlled tensile loading. A physically based rheological model consisting of simple rheological elements was developed based on the experimental results on the micro-scale, using single-fibre pullout tests. Special attention was paid to the gradual de-bonding process and the resulting force-displacement branch. The model adequately reproduced both relevant fibre failure scenarios: fibre fracture and fibre pullout.
By means of statistical procedures the combination of these models led to description of the stress-crack opening behaviour of an individual crack bridged by the given number of short fibres.
The stress-strain relation for TRC with short fibres subjected to tensile loading was then derived. The concept followed at the macro-level of observation was modelling separately the three main regions of the characteristic stress-strain curve. The regions of crack-free material and crack-widening were considered linear and described based on the corresponding characteristic values of each region. The behaviour of the multiple cracking region was derived by considering an increasing number of cracks in serial interconnection and the contribution of the uncracked matrix in between. The stress transfer, i.e., bridging stress, across the crack was determined based on the contribution of both short fibres and multifilament-yarns. Behaviour of individual cracks was adjusted by varying the number of bridging fibres in different cracks and by varying the yarn bridging stress according to range observed in the pullout experiments. / In der vorliegenden Arbeit wird über Untersuchungen zu den Mechanismen der Wechselwirkungen zwischen Kurz- und Endlosfasern in zement-basierenten Hochleistungskompositen berichtet. Hierzu wurden experimentelle Untersuchungen auf verschiedenen Betrachtungsebenen (Makro-, Meso- und Mikroebene) durchgeführt mit dem Ziel, detaillierte Erkenntnisse zu den Auswirkungen der Zugabe von verschiedenen Arten von Kurzfasern (disperse und integrale AR-Glasfasern, Kohlenstofffasern) hinsichtlich des Festigkeits-, Verformungs- und Bruchverhaltens von Textilbeton (engl.: textile-reinforced concrete = TRC) unter Zugbeanspruchung zu gewinnen. Die Bruchflächen sowie die Gestalt der Interphase zwischen der Bewehrung aus Textilien oder Kurzfasern und der umhüllenden zemengebundenen Matrix wurden mit optischen und elektronenmikroskopischen Verfahren hinsichtlich der Wechselwirkungsphänomene ausgewertet. Die Ergebnisse der experimentellen Arbeiten bildeten den Ausgangspunkt für die mathematischen Beschreibungen für TRC mit Kurzfasern unter verformungsgesteuerter Zugbelastung. Die Formulierungen erfolgten auf Grundlage multiskalarer rheologisch-statistischer Modellansätze.
In einer Literatursichtung wurde zunächst der Kenntnisstand zu den Materialien und zum Verhalten von TRC und Faserbeton unter Zugbeanspruchung dargestellt und diskutiert. Die noch zu erforschenden Fragen wurden präzisiert und die Grundlagen für deren Untersuchung geschaffen.
Bei den Experimenten auf der Makroebene wurden drei Bewehrungsvarianten betrachtet: a) textile Bewehrung, b) Kurzfaserbewehrung, und c) hybride Bewehrung (Textil und Kurzfasern). An Dehnkörpern wurde die Spannungs-Dehnungsbeziehung unter einachsiger Zugbelastung studiert und dabei das Rissbild und die Phänomene des Faserversagens detailliert beobachtet. Anhand der Spannungs-Dehnungsbeziehungen konnte gezeigt werden, dass die Zugabe von Kurzfasern bei allen untersuchten Kurzfaserarten zu einer erheblichen Verbesserung der Leistungsfähigkeit von Textilbeton führt. Dies zeigte sich unter anderem in einer ausgeprägten Anhebung der Erstrissspannung sowie der Entwicklung von zahlreicheren und damit feineren Rissen, die zu einer Verbesserung der Duktilität führten. Ebenso wurden Steigerungen der Zugfestigkeit und der Energiedissipation festgestellt. In welchem Maß diese Änderungen stattfinden, hängt von der Art der Kurzfasern ab.
Die Experimente auf der Mikro- und Mesoebene wurden so konzipiert, dass sie die Erkundung der Mechanismen, die den auf der Makroebene beobachteten Phänomenen zugrunde liegen, unterstützten. Auf der Mesoebene wurden Mulitifilamentgarnauszugversuche (mit und ohne Kurzfasern in der Matrix) und auf der Mikroebene Einzelfaserauszugsversuche für alle betrachteten Kurzfasertypen durchgeführt.
Es wurde festgestellt, dass die Kurzfasern den Verbund zwischen Matrix und Multifilamentgarn verbessern. Kurzfasern können bei zufälliger Positionierung an der Garnoberfläche zusätzliche Haftbrücken bzw. Verbindungsstellen zu umgebender Matrix bilden. Für die Verbundqualität zwischen Faser und Matrix ist der Wasser-Bindemittel-Wert (W/B-Wert) von entscheidender Bedeutung. Bei einer Matrix mit niedrigem W/B-Wert führt die gute Qualität des Verbunds der eingebetteten Fasern zu einer Erhöhung der Steifigkeit sowie der Festigkeit des Komposites. Bei hohem W/B-Wert haben die Fasern einen schlechten Verbund zur Matrix und müssen überwiegend als Fehl- bzw. Schwachstellen betrachtet werden. Festigkeit und Steifigkeit des Komposits nehmen daher ab.
Die Ableitung mathematischer Beziehungen für Textilbeton mit Zugabe von Kurzfasern unter verformungsgesteuerter Zugbelastung erfolgte aufbauend auf den Ergebnissen der experimentellen Untersuchungen auf der Mikroebene. Die Einzelfaserauszugsversuche wurden mit Hilfe eines physikalisch basierten Modelles nachgebildet, das aus einfachen rheologischen Elementen besteht. Phänomene wie die graduelle Ablösung der Faser, Faserbruch und Faserauszug wurden durch eine entsprechende Kombination und Parametrierung der rheologischen Elemente abgebildet. Im Ergebnis wurden zutreffende Kraft-Rissöffnungsbeziehungen modelliert.
Auf der Mesoebene wurde ein einzelner Riss modelliert, der sowohl durch Multifilamentgarne als auch Kurzfasern überbrückt werden kann. Der rissüberbrückenden Wirkung der zahlreichen Kurzfasern wurde mit Hilfe statistischer Methoden rechnung getragen, die unterschiedliche Faser-Risswinkel und Einbindelängen berücksichtigen. Die resultierende Spannungs-Rissöffnungskurve umfasst die rissüberbrückende Wirkung von Multifilamentgarnen und Kurzfasern.
Auf der Makroebene kann die charakteristische Spannungs-Dehnungsbeziehung von TRC unter Zugbelastung in 3 Bereiche (Zustände I, IIa, IIb) unterteilt werden. Die Kurvenverläufe im Zustand I (ungerissenen) sowie Zustand IIb (abgeschlossenes Rissbild) wurden als linear betrachtet und basierend auf den entsprechenden charakteristischen Werten des jeweiligen Zustands beschrieben. Das Verhalten im Zustand IIa (multiple Rissbildung) wurde durch die Reihenschaltung einer zunehmenden Anzahl von Rissen sowie den Beitrags der ungerissenen Matrix zwischen den Rissen modelliert.
|
128 |
Funktionsintegrative Leichtbaustrukturen für Tragwerke im Bauwesen / Function-integrated lightweight structures in architectureGelbrich, Sandra 17 January 2018 (has links) (PDF)
In den letzten Jahren gewinnt der Leichtbau im Bauwesen im Zuge der Ressourceneinsparung wieder stärker an Bedeutung, denn ohne eine deutliche Steigerung der Effizienz ist zukunfts-fähiges Bauen und Wohnen nur schwer zu bewerkstelligen. Optimiertes Bauen, im Sinne der Errichtung und Unterhaltung von Bauwerken mit geringem Einsatz an Material, Energie und Fläche über den gesamten Lebenszyklus eines Gebäudes hinweg, bedarf des Leichtbaus in punkto Material, Struktur und Technologie.
In der vorliegenden Arbeit wird ein wissenschaftlicher Überblick zum aktuellen Stand der eigenen Forschungen in Bezug auf funktionsintegrativen Leichtbau im Bauwesen gegeben sowie erweiterte Methoden und Ansätze abgeleitet, die eine Konzeption, Bemessung und Erprobung von neuartigen Hochleistungs-Tragstrukturen in Leichtbauweise gestatten. Dabei steht die Entwicklung leistungs-starker und zugleich multifunktionaler Werkstoffkombinatio-nen und belastungsgerecht dimensionierter Strukturkomponenten unter dem Aspekt der Gewichtsminimalität in Material und Konstruktion im Fokus. Ein breit gefächertes Eigen-schaftsprofil für \"maßgeschneiderte\" Leichtbauanwendungen besitzen textilverstärkte Ver-bundbauteile, denn sowohl die Fadenarchitektur als auch die Matrix können in weiten Berei-chen variiert und an die im Bauwesen vorliegenden komplexen Anforderungen angepasst werden. In der vorliegenden Arbeit werden hierzu vor allem Methoden und Lösungen anhand von Beispielen zu: multifunktionalen Faser-Kunststoff-Verbunden (FKV), funktionsintegrier-ten faserverstärkten mineralischen Tragelemente und Verbundstrukturen in textilbewehrter Beton-GFK-Hybridbauweise betrachtet. Von zentraler Bedeutung ist dabei die Schaffung von materialtechnischen, konstruktiven und technologischen Grundlagen entlang der gesamten Wertschöpfungskette – von der Leichtbauidee über Demonstrator und Referenzobjekt bis hin zur technologischen Umsetzung zur Überführung der Forschungsergebnisse in die Praxis. / In the last few years, lightweight construction in the building sector has gained more and more importance in the course of resource saving. Without a significant increase in efficiency, future-oriented construction and resource-conserving living is difficult to achieve. Optimized building, in the sense of the erection and maintenance of buildings with little use of material, energy and surface over the entire life time cycle of a building, requires lightweight design in terms of material, structure and technology.
In this thesis, a scientific overview of the current state of research on function-integrative light-weight construction in architecture is presented. Furthermore, advanced methods and research approaches were developed and applied, that allows the design, dimensioning and testing of novel high-performance supporting structures in lightweight design. The focus is on the development of high-performance, multi-functional material combinations and load-adapted structural elements, under the aspect of weight minimization in material and construction. Textile-reinforced composites have a broad range of material properties for optimized \"tailor-made\" lightweight design applications, since the thread architecture as well as the matrix can be varied within wide ranges and can adapted to the complex requirements in the building industry.
Within the scope of this thesis, methods and solutions are examined in the field of: multifunc-tional fiber-reinforced plastics (FRP), function-integrated fiber-reinforced composites with mineral matrix (TRC) and textile-reinforced hybrid composites (BetoTexG: combination of TRC and FRP). In this connection the creation of material, structural and technological foundations along the entire value chain is of central importance: From the lightweight design idea to the demonstrator and reference object, to the technological implementation for the transfer of the research results into practice.
|
129 |
SFB 528: Textile Bewehrungen zur Bautechnischen Verstärkung und Instandsetzung: Arbeits- und Ergebnisbericht für die Periode II/1999 - I/2002Curbach, Manfred 04 September 2005 (has links)
Durch die beanspruchungsgerechte Anordnung von Fasermaterialien wie Glas oder Carbon mit hervorragenden Trageigenschaften entstehen technische Textilien, die in eine Betonmatrix eingebracht werden können, so daß ein neuer, innovativer Verbundwerkstoff entsteht, der sowohl bei der Herstellung neuer Betonbauteile verwendet werden kann als auch für den Einsatz in der Instandsetzung und Verstärkung bestehender Bauwerke geeignet ist. Da die verwendeten Materialien im Gegensatz zum Stahl nicht korrosionsempfindlich sind und gleichzeitig hohe Festigkeiten aufweisen, können Verstärkungen aus textilbewehrtem Beton mit sehr geringen Abmessungen ausgeführt werden. Bei Holzkonstruktionen können textile Verstärkungen die durch die Anisotropie bedingten Festigkeits- und Steifigkeitsunterschiede kompensieren und die Dauerhaftigkeit erhöhen. Bei Verzicht auf Knotenbleche aus Stahl und durch Applikation von textilen Strukturen können beachtliche Steigerungen der Tragfähigkeit und der Duktilität von Verbindungen erreicht werden. In den fünf Projektbereichen werden in theoretischen und experimentellen Untersuchungen die Grundlagen für die Werkstoffe, die mechanische Beschreibung, die konstruktive Durchbildung und die Bemessung, die technologische Aufbringung, bautechnische Umsetzung und die Langzeiteigenschaften und damit für die Sicherheit und die Lebensdauer bei der Verwendung textiler Bewehrungen für die Instandsetzung und Verstärkung geschaffen. / The stress-oriented arrangement of fibre materials, such as glass or carbon, which have an excellent load-bearing capacity, leads to technical textiles that may be incorporated into a concrete matrix. So a new, innovative composite material is produced, which can be used for the production of new concrete members and also for the restoration and strengthening of existing structures. As the materials used are noncorrosive compared to steel and as they show great strength at the same time, textile-reinforced concrete can be used for strengthening tasks of small dimensions. With regard to timber structures, textile reinforcement can compensate the strength and stiffness differences caused by anisotropy and can increase durability. If textile structures are used instead of steel gussets this may lead to a considerable increase in the ultimate strength and the ductility of joints. The five fields of the project are designed that theoretical and experimental investigations are carried out to provide the fundamentals of the materials. Additionally information will be obtained about the mechanical description, the detailing and the dimensioning, the techniques of applying, the realisation on the site and the long-term behaviour. All leading to a safety concept and also a service life concept for the use of textile reinforcements for restoration and strengthening.
|
130 |
Mechanisms of the interaction between continuous and short fibres in textile-reinforced concrete (TRC)Barhum, Rabea 21 November 2013 (has links)
This thesis reports on experimental investigations of the mechanisms inherent in the joint action of short and continuous fibres in high-performance, cement-based composites. Experiments on different levels of observation (macro- meso- and micro-levels) were performed to provide detailed insights into the various effects of adding different types of short fibres (dispersed AR glass, integral AR glass and dispersed carbon fibres) on the strength, deformation, and failure behaviour of textile-reinforced concrete (TRC) subjected to tensile loading. Moreover, visual inspections of the specimens' surfaces and microscopic investigation of the fracture surfaces and the interface zone between fibre and matrix were performed and evaluated. Subsequently, the mathematical descriptions for TRC with short fibres under deformation controlled tensile loading conditions were derived based on a multi-scale rheological-statistical modelling approach.
Based on a literature review, the state of the art is presented and discussed to identify key questions that are yet to be answered satisfactorily. This provides the starting point for the investigations presented in this thesis.
The experimental program on the macro-level included uniaxial tension tests performed on thin, narrow plates reinforced by: a) only textile reinforcement, b) only short fibres, and c) hybrid reinforcement (both textile reinforcement with the addition of short fibres). Special attention was directed toward the course of the stress-strain relationship, crack pattern development, and fibre failure behaviour.
The stress-strain curves resulting from uniaxial tension testing demonstrated clearly the positive influence of all types of short fibre on the mechanical performance of TRC. While the first-crack stress in TRC specimens increased significantly due to the addition of short fibres, an expansion of the strain region, where multiple cracks form, was observed for the stress-strain curves for TRC with added short fibres. The visual inspection of the specimens\' surfaces showed a higher number of cracks and finer crack patterns for given strain levels in the cases when short fibres were added to TRC. Moreover, depending on fibre type, the positive effects of the addition of short fibres on both tensile strength and work-to-fracture of the composite were found to vary significantly.
The findings at the micro- and meso-levels of observation provided to a great extent a core of understanding of some particular mechanical behavioural properties of TRC with short fibres at the macro-level of observation. Thus, in addition to the experimental testing performed on composite materials with different parameter combinations, investigations of the action of individual material components, i.e., multifilament-yarns and single short fibres, embedded into cement-based matrices were carried out.
It was found that short fibres indeed improve the bond between multifilament-yarns and the surrounding matrix. By their random positioning on the yarn\'s surface, short fibres built new adhesive cross-links which provided extra connecting points to the surrounding matrix. Furthermore, the water-to-binder ratio of the matrix influenced bond quality between fibre and matrix, i.e., various degrees of matrix-fibre bond were observed. As a result, the mechanical behaviour of the composite varied with w/b: While the good bond of the fibre embedded in a matrix with a low water-to-binder ratio leads to increase in stiffness and strength of the composite, fibres with weak bonding can be considered as defects with respect to stiffness as they lead to a decrease in the value.
The thesis further derives the mathematical relationships for TRC with the addition of short fibres under deformation-controlled tensile loading. A physically based rheological model consisting of simple rheological elements was developed based on the experimental results on the micro-scale, using single-fibre pullout tests. Special attention was paid to the gradual de-bonding process and the resulting force-displacement branch. The model adequately reproduced both relevant fibre failure scenarios: fibre fracture and fibre pullout.
By means of statistical procedures the combination of these models led to description of the stress-crack opening behaviour of an individual crack bridged by the given number of short fibres.
The stress-strain relation for TRC with short fibres subjected to tensile loading was then derived. The concept followed at the macro-level of observation was modelling separately the three main regions of the characteristic stress-strain curve. The regions of crack-free material and crack-widening were considered linear and described based on the corresponding characteristic values of each region. The behaviour of the multiple cracking region was derived by considering an increasing number of cracks in serial interconnection and the contribution of the uncracked matrix in between. The stress transfer, i.e., bridging stress, across the crack was determined based on the contribution of both short fibres and multifilament-yarns. Behaviour of individual cracks was adjusted by varying the number of bridging fibres in different cracks and by varying the yarn bridging stress according to range observed in the pullout experiments. / In der vorliegenden Arbeit wird über Untersuchungen zu den Mechanismen der Wechselwirkungen zwischen Kurz- und Endlosfasern in zement-basierenten Hochleistungskompositen berichtet. Hierzu wurden experimentelle Untersuchungen auf verschiedenen Betrachtungsebenen (Makro-, Meso- und Mikroebene) durchgeführt mit dem Ziel, detaillierte Erkenntnisse zu den Auswirkungen der Zugabe von verschiedenen Arten von Kurzfasern (disperse und integrale AR-Glasfasern, Kohlenstofffasern) hinsichtlich des Festigkeits-, Verformungs- und Bruchverhaltens von Textilbeton (engl.: textile-reinforced concrete = TRC) unter Zugbeanspruchung zu gewinnen. Die Bruchflächen sowie die Gestalt der Interphase zwischen der Bewehrung aus Textilien oder Kurzfasern und der umhüllenden zemengebundenen Matrix wurden mit optischen und elektronenmikroskopischen Verfahren hinsichtlich der Wechselwirkungsphänomene ausgewertet. Die Ergebnisse der experimentellen Arbeiten bildeten den Ausgangspunkt für die mathematischen Beschreibungen für TRC mit Kurzfasern unter verformungsgesteuerter Zugbelastung. Die Formulierungen erfolgten auf Grundlage multiskalarer rheologisch-statistischer Modellansätze.
In einer Literatursichtung wurde zunächst der Kenntnisstand zu den Materialien und zum Verhalten von TRC und Faserbeton unter Zugbeanspruchung dargestellt und diskutiert. Die noch zu erforschenden Fragen wurden präzisiert und die Grundlagen für deren Untersuchung geschaffen.
Bei den Experimenten auf der Makroebene wurden drei Bewehrungsvarianten betrachtet: a) textile Bewehrung, b) Kurzfaserbewehrung, und c) hybride Bewehrung (Textil und Kurzfasern). An Dehnkörpern wurde die Spannungs-Dehnungsbeziehung unter einachsiger Zugbelastung studiert und dabei das Rissbild und die Phänomene des Faserversagens detailliert beobachtet. Anhand der Spannungs-Dehnungsbeziehungen konnte gezeigt werden, dass die Zugabe von Kurzfasern bei allen untersuchten Kurzfaserarten zu einer erheblichen Verbesserung der Leistungsfähigkeit von Textilbeton führt. Dies zeigte sich unter anderem in einer ausgeprägten Anhebung der Erstrissspannung sowie der Entwicklung von zahlreicheren und damit feineren Rissen, die zu einer Verbesserung der Duktilität führten. Ebenso wurden Steigerungen der Zugfestigkeit und der Energiedissipation festgestellt. In welchem Maß diese Änderungen stattfinden, hängt von der Art der Kurzfasern ab.
Die Experimente auf der Mikro- und Mesoebene wurden so konzipiert, dass sie die Erkundung der Mechanismen, die den auf der Makroebene beobachteten Phänomenen zugrunde liegen, unterstützten. Auf der Mesoebene wurden Mulitifilamentgarnauszugversuche (mit und ohne Kurzfasern in der Matrix) und auf der Mikroebene Einzelfaserauszugsversuche für alle betrachteten Kurzfasertypen durchgeführt.
Es wurde festgestellt, dass die Kurzfasern den Verbund zwischen Matrix und Multifilamentgarn verbessern. Kurzfasern können bei zufälliger Positionierung an der Garnoberfläche zusätzliche Haftbrücken bzw. Verbindungsstellen zu umgebender Matrix bilden. Für die Verbundqualität zwischen Faser und Matrix ist der Wasser-Bindemittel-Wert (W/B-Wert) von entscheidender Bedeutung. Bei einer Matrix mit niedrigem W/B-Wert führt die gute Qualität des Verbunds der eingebetteten Fasern zu einer Erhöhung der Steifigkeit sowie der Festigkeit des Komposites. Bei hohem W/B-Wert haben die Fasern einen schlechten Verbund zur Matrix und müssen überwiegend als Fehl- bzw. Schwachstellen betrachtet werden. Festigkeit und Steifigkeit des Komposits nehmen daher ab.
Die Ableitung mathematischer Beziehungen für Textilbeton mit Zugabe von Kurzfasern unter verformungsgesteuerter Zugbelastung erfolgte aufbauend auf den Ergebnissen der experimentellen Untersuchungen auf der Mikroebene. Die Einzelfaserauszugsversuche wurden mit Hilfe eines physikalisch basierten Modelles nachgebildet, das aus einfachen rheologischen Elementen besteht. Phänomene wie die graduelle Ablösung der Faser, Faserbruch und Faserauszug wurden durch eine entsprechende Kombination und Parametrierung der rheologischen Elemente abgebildet. Im Ergebnis wurden zutreffende Kraft-Rissöffnungsbeziehungen modelliert.
Auf der Mesoebene wurde ein einzelner Riss modelliert, der sowohl durch Multifilamentgarne als auch Kurzfasern überbrückt werden kann. Der rissüberbrückenden Wirkung der zahlreichen Kurzfasern wurde mit Hilfe statistischer Methoden rechnung getragen, die unterschiedliche Faser-Risswinkel und Einbindelängen berücksichtigen. Die resultierende Spannungs-Rissöffnungskurve umfasst die rissüberbrückende Wirkung von Multifilamentgarnen und Kurzfasern.
Auf der Makroebene kann die charakteristische Spannungs-Dehnungsbeziehung von TRC unter Zugbelastung in 3 Bereiche (Zustände I, IIa, IIb) unterteilt werden. Die Kurvenverläufe im Zustand I (ungerissenen) sowie Zustand IIb (abgeschlossenes Rissbild) wurden als linear betrachtet und basierend auf den entsprechenden charakteristischen Werten des jeweiligen Zustands beschrieben. Das Verhalten im Zustand IIa (multiple Rissbildung) wurde durch die Reihenschaltung einer zunehmenden Anzahl von Rissen sowie den Beitrags der ungerissenen Matrix zwischen den Rissen modelliert.
|
Page generated in 0.105 seconds