Spelling suggestions: "subject:"exture 2analysis"" "subject:"exture 3analysis""
111 |
Variation in Dental Microwear Textures and Dietary Variation in African Old World Monkeys (Cercopithecidae)January 2015 (has links)
abstract: Dietary diversity is an important component of species’s ecology that often relates to species’s abundance and geographic distribution. Additionally, dietary diversity is involved in many hypotheses regarding the geographic distribution and evolutionary fate of fossil primates. However, in taxa such as primates with relatively generalized morphology and diets, a method for approximating dietary diversity in fossil species is lacking.
One method that has shown promise in approximating dietary diversity is dental microwear analyses. Dental microwear variance has been used to infer dietary variation in fossil species, but a strong link between variation in microwear and variation in diet is lacking. This dissertation presents data testing the hypotheses that species with greater variation in dental microwear textures have greater annual, seasonal, or monthly dietary diversity.
Dental microwear texture scans were collected from Phase II facets of first and second molars from 309 museum specimens of eight species of extant African Old World monkeys (Cercopithecidae; n = 9 to 74) with differing dietary diversity. Dietary diversity was calculated based on food category consumption frequency at study sites of wild populations. Variation in the individual microwear variables complexity (Asfc) and scale of maximum complexity (Smc) distinguished groups that were consistent with differences in annual dietary diversity, but other variables did not distinguish such groups. The overall variance in microwear variables for each species in this sample was also significantly correlated with the species’s annual dietary diversity. However, the overall variance in microwear variables was more strongly correlated with annual frequencies of fruit and foliage consumption. Although some variation due to seasonal and geographic differences among individuals was present, this variation was small in comparison to the variation among species. Finally, no association was found between short-term monthly dietary variation and variation in microwear textures.
These results suggest that greater variation in microwear textures is correlated with greater annual dietary diversity in Cercopithecidae, but that variation may be more closely related to the frequencies of fruit and foliage in the diet. / Dissertation/Thesis / Doctoral Dissertation Anthropology 2015
|
112 |
Um modelo de visão computacional para identificação do estágio de maturação e injúrias no pós-colheita de bananas (Musa sapientum)Tezuka, Érika Sayuri 28 September 2009 (has links)
Made available in DSpace on 2016-06-02T19:05:40Z (GMT). No. of bitstreams: 1
2695.pdf: 5053010 bytes, checksum: 2e6ff8d79ec3a3f85928bc9486a54956 (MD5)
Previous issue date: 2009-09-28 / This dissertation presents the development of a computer vision system for bananas (Musa sapientum) analysis in post-harvest stage based on digital image processing techniques. The development used considerations about image acquisition, pre-processing, identification based on texture, percentage of brown spots and injuries on the fruits and classification of its maturity levels. The validation has been developed considering geometric patterns generated in laboratory, as well as real fruits. With the texture map it was possible to identify the existence of brown spots or injuries in a specific region of the images. The assessment of the level of maturation was performed considering both human observers and the computer vision system. The average of identification level of maturity was equal to 50% for human observers and 100% for computer vision. The results show identification rates of 80.40% for brown spots on the single image of banana, 97.70% for brown spots on the images of bundle of bananas, 97.80% for injuries for the set of single image of banana, and 75.30% for hand injuries considering the images of bundle of bananas. Besides, the method presents application for quality assessing of fruits in the post-harvest procedures. / Este trabalho apresenta o desenvolvimento de um sistema de visão computacional para análise de bananas (Musa sapientum), em estágio de pós-colheita, utilizando técnicas de processamento digital de imagens. Para o desenvolvimento foram consideradas as etapas de aquisição das imagens, pré-processamento, identificação baseada em textura, classificação em níveis de maturação e a obtenção do percentual de manchas marrons e injúrias. A validação foi desenvolvida considerando padrões geométricos gerados em laboratório, bem como considerando frutas reais. A obtenção do mapa de textura viabilizou a identificação da existência de manchas marrons ou injúrias em uma região da imagem. A avaliação método de classificação em nível de maturação foi realizada considerando os resultados obtidos com observadores humanos e visão computacional. A média da taxa de acerto dos observadores foi de 50% e a taxa de acerto da visão computacional foi de 100%. Além disso, os resultados da análise de manchas marrons e injúrias indicam uma taxa de acerto de 80,40% para manchas marrons em imagem de banana individual, 97,70% para manchas marrons em imagem de penca de bananas, 97,80% para injúrias em imagem de banana individual e 75,30% para injúrias em imagem de pencas. Adicionalmente, o desempenho global do sistema motiva a aplicação desta metodologia para avaliação da qualidade dos frutos no pós-colheita de bananas.
|
113 |
Segmentação não supervisionada de texturas baseada no algoritmo ppmNascimento, Tiago Dias Carvalho do 26 March 2010 (has links)
Made available in DSpace on 2015-05-14T12:36:57Z (GMT). No. of bitstreams: 1
parte1.pdf: 1278902 bytes, checksum: c1a877f74ec783e6525701070c717a4d (MD5)
Previous issue date: 2010-03-26 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The image segmentation problem is present in various tasks such as remote sensing,
object detection in robotics, industrial automation, content based image retrieval, security, and
others related to medicine. When there is a set of pre-classified data, segmentation is called
supervised. In the case of unsupervised segmentation, the classes are extracted directly from the
data. Among the image properties, the texture is among those that provide the best results in the
segmentation process. This work proposes a new unsupervised texture segmentation method that
uses as the similarity measure between regions the bit rate obtained from compression using
models, produced by the Prediction by Partial Matching (PPM) algorithm, extracted from them.
To segment an image, it is split in rectangular adjacent regions and each of them is assigned to a
different cluster. Then a greedy agglomerative clustering algorithm, in which the two closest
clusters are grouped at every step, is applied until the number of remaining clusters is equal to the
number of classes (supplied by the user). In order to improve the localization of the region
boundaries, the image is then split in shorter regions, that are assigned to the cluster whose PPM
model results in lower bit rate. To evaluate the proposed method, three image set were used:
Trygve Randen, Timo Ojala and one created by the author of this work. By adjusting the method
parameters for each image, the hit rate obtained was around 97% in most cases and 100% in
several of them. The proposed method, whose main drawback is the complexity order, is robust
to regions with different geometric shapes, grouping correctly even those that are disconnected. / O problema da segmentação de imagens está presente em diversas tarefas como
sensoriamento remoto, detecção de objetos em robótica, automação industrial, recuperação de
imagens por conteúdo, segurança, e outras relacionadas à medicina. Quando há um conjunto de
padrões pré-classificados, a segmentação é denominada supervisionada. No caso da segmentação
não supervisionada, as classes são extraídas diretamente dos padrões. Dentre as propriedades de
uma imagem, a textura está entre as que proporcionam os melhores resultados no processo de
segmentação. Este trabalho propõe um novo método de segmentação não supervisionada de
texturas que utiliza como medida de similaridade entre regiões as taxas de bits resultantes da
compressão utilizando modelos produzidos pelo algoritmo Prediction by Partial Matching (PPM)
extraídos das mesmas. Para segmentar uma imagem, a mesma é dividida em regiões retangulares
adjacentes e cada uma delas é atribuída a um grupo distinto. Um algoritmo aglomerativo guloso,
que une os dois grupos mais próximos em cada iteração, é aplicado até que o número de grupos
seja igual ao número de classes (fornecido pelo usuário). Na etapa seguinte, cujo objetivo é
refinar a localização das fronteiras, a imagem é dividida em regiões ainda menores, as quais são
atribuídas ao agrupamento cujo modelo PPM resulta na taxa de bits mais baixa. Para avaliar o
método proposto, foram utilizados três bancos de imagens: o de Trygve Randen, o de Timo Ojala
e um criado pelo autor deste trabalho. Ajustando-se os parâmetros do método para cada imagem,
a taxa de acerto obtida foi em torno de 97% na maioria dos casos e 100% em vários deles. O
método proposto, cuja principal desvantagem é a ordem de complexidade, se mostrou robusto a
regiões de diferentes formas geométricas, agrupando corretamente até mesmo as desconexas.
|
114 |
Análise de textura em imagens de ressonância magnética na predição de recorrência tumoral em pacientes portadores de adenomas hipofisários clinicamente não funcionantes / Magnetic Resonance Imaging Texture Analysis in the Prediction of Tumor Recurrence in Patients with Non-functioning Pituitary AdenomasLeonardo Ferreira Machado 28 November 2017 (has links)
O presente trabalho propõe o uso de parâmetros de textura extraídos computacionalmente de IRM como biomarcadores de imagem na predição de recorrência tumoral em pacientes de adenomas pituitários clinicamente não funcionantes (APNF). Para isso, esse estudo analisou imagens de RM de 15 pacientes de APNF retrospectivamente separados em dois grupos: O grupo de pacientes recorrentes, definido por 7 pacientes que exibiram recorrência tumoral em um período de 4, 640 +- 0, 653 anos (média +- erro padrão) de acompanhamento clínico após a primeira abordagem cirúrgica; e o grupo de pacientes estáveis, formado por 8 pacientes com lesões consideradas estáveis em um período de 4,512 +- 0, 536 anos. Uma máscara de segmentação tridimensional da lesão tumoral foi construída manualmente por um especialista sobre a imagem 3D T1-W DCE pré-operatória para cada paciente. Em seguida, essa segmentação e a própria imagem de ressonância foram usadas para extrair 48 características numéricas de textura. Adicionalmente, 4 características clínicas foram consideradas no estudo: a imunohistoquímica, invasividade, idade na primeira cirurgia e sexo, totalizando 52 características. Cada uma destas 52 características fora testada através de testes estatísticos convencionais univariados para ver se existia evidencias do poder discriminatório dessas características para diferenciar esses dois grupos de pacientes. Mais adiante, diferentes subconjuntos dessas características foram usados para construir modelos de predição baseados na teoria de aprendizagem de máquinas (usando os algoritmos k-nearest neighbor (kNN), decision tree (DTC), e random forest (RFC)) para investigar um modelo de classificação capaz de identificar os pacientes que experimentariam recorrência tumoral após a primeira cirurgia. 9 características de textura foram consideradas individualmente significantes (p < 0, 05) na diferenciação dos grupos de paciente recorrente e estável. Afirmando esses achados, a análise com a curva ROC para cada uma das 9 características exibiu medidas de AUC de 0,803 a 0,857 significando uma boa performance de classificação. A idade, imunoistoquímica, invasividade e sexo não mostraram evidencias de associação com recorrência tumoral. As melhores performances com algoritmos de classificação foram com kNN e RFC, ambos atingiram uma especificidade de 1,000 conservando alta acurácia (0,933) e obtendo 0,991 na análise com a curva ROC, o que caracteriza uma performance de classificação quase perfeita. DTC não mostrou nenhuma melhora se comparado com os resultados das classificações univariadas. Esses resultados permitem concluir que parâmetros de textura são úteis na predição de recorrência tumoral após a primeira cirurgia em pacientes de APNF. E que os valores de predição dessas características podem ser observados por testes estatísticos univariados convencionais e por análises multivariadas através de algoritmos baseados em aprendizagem de máquinas / The present work proposes the usage of texture features computationally extracted from MRI as imaging biomarkers in the prediction of tumor recurrence in patients with non-functioning pituitary adenomas (NFPA). With this purpose, this study analyzed MR images from 15 patients of NFPA retrospectively separated in two groups: the recurrent patient group, formed by seven (7) patients who exhibited tumor recurrence in a period of 4,640 +- 0,653 years (mean +- standard error) of follow-up period after the first surgical approach; and the stable patient group formed by eight (8) patients with lesions considered stable in a period of 4,512 +- 0,536 years. A three-dimensional segmentation mask of the tumor lesion was manually performed by a specialist over preoperative 3D T1-W DCE MR image for each patient. Next, this segmentation and the preoperative MRI itself were used to extract 48 numerical textural features. Additionally, 4 clinical features were considered in the study: immunohistochemistry, invasiveness, age at first surgery, and gender, totalizing 52 features. Each one of those 52 features were tested through conventional univariate statistical tests to see if there were evidence of their discrimination power to differentiate these two patient groups. Moreover, different subsets of those features were used to build machine learning prediction models (using k-nearest neighbor (kNN), decision tree (DTC), and random forest (RFC) algorithms) to investigate a classification model capable of identifying the patients that would experience tumor recurrence after the first surgery. 9 quantitative textural features were found to be individually significant (p < 0,05) in the differentiation of recurrent and stable patient group. Affirming these findings, the ROC curve analysis for each one of those 9 features exhibited an AUC score from 0.803 to 0.857 meaning a good classification performance. Age, immunohistochemistry and invasiveness status, and gender did not show evidence of association with tumor recurrence. The best performances with classification algorithms were obtained with kNN and RFC, both reached specificity of 1.000 conserving high accuracy (0.933) and scoring 0.991 in ROC curve analysis, what characterizes an almost perfect classification performance. DTC did not show any improvement compared to the univariate classification results. These findings allow to conclude that textural features are useful in the prediction of tumor recurrence after first surgery in NFPA patients. And that the prediction value of those features can be observed with both conventional univariate statistical tests and multivariate analyses through machine learning algorithms
|
115 |
Caracterização e identificação de displasias corticais focais em pacientes com epilepsia refratária através de análise de imagens estruturais de ressonância magnética nuclear / Characterization and identification of focal cortical dysplasia in patients with refractory epilepsy through analysis of structural magnetic resonance imagesFabrício Henrique Simozo 11 April 2018 (has links)
A displasia cortical focal (DCF) é uma das causas mais frequentes de epilepsia refratária. Na clínica, diferentes informações são usadas para localizar o foco epileptogênico, mas nenhum método é autossuficiente para evidenciar o local original das crises, associado com a presença da DCF. Embora haja relatos na literatura indicando alterações no padrão de distribuição de tons de cinza e morfologia dos voxels decorrentes da DCF, algumas limitações dos métodos desenvolvidos ainda impedem a utilização clínica. Nossa proposta foi investigar a capacidade de identificar DCF através de análises de espessura cortical e padrões de textura em imagens estruturais de Ressonância Magnética (RM), validando os métodos desenvolvidos a partir uma base de imagens retrospectiva, cujo tecido epileptogênico já havia sido ressecado e a DCF confirmada em análise histológica. A caracterização das DCF foi feita a partir da segmentação automática de tecido cortical saudável em conjunto com a segmentação manual da DCF feita por um especialista, e consiste na geração de mapas de característica e extração de valores de distribuições para comparação em análise estatística. Investigamos também a eficácia da detecção de DCF através do uso de algoritmos de aprendizado de máquina para classificação automática. Obtivemos precisão 0,81 e sensitividade 0,87, colocando o método desenvolvido em par com outros métodos presentes na literatura. Entretanto, foi identificada uma grande dependência do desempenho de métodos de pré-processamento, como corregistro e segmentação automática. / Focal Cortical Dysplasia (FCD) is one of the most frequent causes of refractory epilepsy. In clinical procedures, the information gathered from different techniques is used in order to locate the epileptogenic focus, associated with the presence of FCD. However, there is no self sufficient method to evidence the presence and location of such lesions and especially its extension. Although there are reports indicating change in gray scale intensity patterns and voxel morphology in the presence of DCF, limitations in developed methods still prevent their clinical use. Our proposal was to investigate the capability of identifying FCD through cortical thickness and texture patter analysis in structural MRI images, validating developed methods by utilizing a retrospective base of images from patients that were subjected to surgery, with the FCD being confirmed in histological analysis. Characterization of FCD was achieved from automatic segmentation of healthy cortex and manual segmentation of FCD tissue made by an specialist, and consists in the generation of texture or structural feature maps and comparison of distribution values in healthy or FCD tissue with statistical analysis. We also investigate the efficiency of FCD detection with Machine Learning automatic classification, obtaining precision of 0,81 and sensitivity of 0,87, placing our method on par with other methods in the literature. However, there is a major performance dependency of proposed method with pre-processing steps, like registration and automatic segmentation.
|
116 |
Processo de design baseado no projeto axiomático para domínios próximos: estudo de caso na análise e reconhecimento de textura. / Design process based on the axiomatic design for close domain: case study in texture analysis and recognition.Ricardo Alexandro de Andrade Queiroz 19 December 2011 (has links)
O avanço tecnológico recente tem atraído tanto a comunidade acadêmica quanto o mercado para a investigação de novos métodos, técnicas e linguagens formais para a área de Projeto de Engenharia. A principal motivação é o atendimento à demanda para desenvolver produtos e sistemas cada vez mais completos e que satisfaçam as necessidades do usuário final. Necessidades estas que podem estar ligadas, por exemplo, à análise e reconhecimento de objetos que compõe uma imagem pela sua textura, um processo essencial na automação de uma enorme gama de aplicações como: visão robótica, monitoração industrial, sensoriamento remoto, segurança e diagnóstico médico assistido. Em vista da relevância das inúmeras aplicações envolvidas e pelo fato do domínio de aplicação ser muito próximo do contexto do desenvolvedor, é apresentada uma proposta de um processo de design baseado no Projeto Axiomático como sendo o mais indicado para esta situação. Especificamente, se espera que no estudo de caso da análise de textura haja uma convergência mais rápida para a solução - se esta existir. No estudo de caso, se desenvolve uma nova concepção de arquitetura de rede neural artificial (RNA), auto-organizável, com a estrutura espacial bidimensional da imagem de entrada preservada, tendo a extração e reconhecimento/classificação de textura em uma única fase de aprendizado. Um novo conceito para o paradigma da competição entre os neurônios também é estabelecida. O processo é original por permitir que o desenvolvedor assuma concomitantemente o papel do cliente no projeto, e especificamente por estabelecer o processo de sistematização e estruturação do raciocínio lógico do projetista para a solução do problema a ser desenvolvido e implementado em RNA. / The recent technological advance has attracted the industry and the academic community to research and propose methods, seek for new techniques, and formal languages for engineering design in order to respond to the growing demand for sophisticated product and systems that fully satisfy customers needs. It can be associated, for instance, with an application of object recognition using texture features, essential to a variety of applications domains, such as robotic vision, industrial inspection, remote sensing, security and medical image diagnosis. Considering the importance of the large number of applications mentioned before, and due to their characteristic where both application and developer domain are very close to each other, this work aims to present a design process based on ideas extracted from axiomatic design to accelerate the development for the classical approach to texture analysis. Thus, a case study is accomplished where a new conception of neural network architecture is specially designed for the following proposal: preserving the two-dimensional spatial structure of the input image, and performing texture feature extraction and classification within the same architecture. As a result, a new mechanism for neuronal competition is also developed as specific knowledge for the domain. In fact, the process proposed has some originality because it does take into account that the developer assumes also the customers role on the project, and establishes the systematization process and structure of logical reasoning of the developer in order to develop and implement the solution in neural network domain.
|
117 |
Estudo comparativo da transformada wavelet no reconhecimento de padrões da íris humana / A comparative study of wavelet transform in human iris pattern recognitionCélio Ricardo Castelano 21 September 2006 (has links)
Neste trabalho é apresentado um método para reconhecimento de seres humanos através da textura da íris. A imagem do olho é processada através da análise do gradiente, com uma técnica de dispersão aleatória de sementes. Um vetor de características é extraído para cada íris, baseado na análise dos componentes wavelet em diversos níveis de decomposição. Para se mensurar as distâncias entre esses vetores foi utilizado o cálculo da distância Euclidiana, gerando-se curvas recall x precision para se medir a eficiência do método desenvolvido. Os resultados obtidos com algumas famílias wavelets demonstraram que o método proposto é capaz de realizar o reconhecimento humano através da íris com uma precisão eficiente. / This work presents a method for recognition of human beings by iris texture. The image of the eye is processed through gradient analysis, based on a random dispersion of seeds. So, it is extracted a feature vector for each iris based on wavelet transform in some levels of decomposition. To estimate the distances between these vectors it was used the Euclidean distance, and recall x precision curves are generated to measure the efficiency of the developed method. The results gotten with some wavelets families had demonstrated that the proposed methodology is capable to do human recognition through the iris with an efficient precision.
|
118 |
Uma nova abordagem de descritor de textura baseada em transformada ripplet para classificação de lesões da mamaMoreira Junior, Wagner Lopes January 2018 (has links)
Orientador: Prof. Dr. Marcelo Zanchetta do Nascimento / Coorientadora: Profa. Dra. Ana Lígia Scott / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Engenharia da Informação, Santo André, 2018. / Nos últimos anos a ciência vem contribuindo significativamente para o avanço no diagnóstico precoce de doenças, através da análise de imagens médicas. As novas tecnologias de geração de imagens, através da digitalização, trazem a possibilidade de geração de uma gama de imagens que antes era inviável do ponto de vista econômico. Com esse avanço, a quantidade de informações que cada paciente gera é extensa, aumentando consideravelmente o trabalho de investigação manual. Por isso, a necessidade de se desenvolver soluções automatizadas para análise dessas imagens. Sem contar que essas soluções introduzem um fator de precisão mais acurado, que podem contribuir com uma segunda opinião. As abordagens no domínio da frequência para extração de características de textura, utilizadas largamente para identificação de características de imagens de mama, fazem uso da Transformada Wavelet em conjunto com outros extratores. No entanto, a Wavelet é muito eficiente para identificar características em uma abordagem 1D, o que dificulta a descrição de bordas e contornos. A Transformada Ripplet-II vem justamente para resolver tais lacunas, ou seja, demonstra ser uma técnica capaz de obter informações de textura de imagens com maior precisão, como demonstra os estudos mais recentes. Este trabalho apresenta a investigação da transformada Ripplet-II em imagens histológicas de lesões de mama, para demonstrar a eficácia dessa abordagem na distinção dos grupos de lesões benignas e malignas. O método proposto utilizou um filtro CLAHE, de equalização de histogramas, na etapa de pré-processamento, antes da extração dos descritores resultantes da aplicação da Ripplet-II. Obteve-se ainda características derivadas da Matriz de Co-ocorrência, que foram combinadas com os descritores Ripplet-II. Como resultado da classificação das imagens, utilizando-se o ReliefF como seletor e o Random Forest como classificador. Na fase dos experimentos, uma comparação foi realizada entre descritores Wavelet e Ripplet-II, com valores de acurácia de 88,46% e 96,15%, respectivamente. A aproximação proposta mostra resultados promissores como uma técnica para classificação de lesões em imagens histológicas de mama. / In recent years, science has been contributing significantly to the advance in the early diagnosis of diseases, through the analysis of medical images. The new technologies of imaging, through the digitalization, bring the possibility of generating a range of images that previously was impracticable from the economic point of view. With this advance, the amount of information each patient generates is extensive, greatly increasing the manual research work. Therefore, the need to develop automated solutions to analyze these images. Not to mention that these solutions introduce a factor of precision, that can contribute to a second opinion. Frequency approaches for extracting texture characteristics, widely used for identification of breast imaging characteristics, make use of the Wavelet Transform in conjunction with other extractors. However, Wavelet is very efficient at identifying features in a 1D approach, which makes it difficult to describe edges and contours. The Ripplet-II Transform comes precisely to solve such gaps, that is, it proves to be a technique capable of obtaining information of texture of images with greater precision, as it demonstrates the most recent studies. This work presents the investigation of the Ripplet-II transform in histological images of breast lesions, to demonstrate the effectiveness of this approach in distinguishing groups of benign and malignant lesions. The proposed method used a CLAHE histogram equalization filter in the preprocessing step before extracting the resulting descriptors from the Ripplet-II. We also obtained features derived from the Co-occurrence Matrix, which were combined with the Ripplet-II descriptors. As a result of the classification of the images, using ReliefF as selector and Random Forest as a classifier. At the stage of the experiments, a comparison was carried out between Wavelet descriptors and Ripplet II, with accuracy values of 88.46% and 96.15%, respectively. The proposed approach shows promising results as a technique for lesion classification in histological breast imaging.
|
119 |
Uma proposta imuno-inspirada para segmentação de imagens com texturas usando transformada wavelet packet / An immune-inspired proposal for textured image segmentation using wavelet packet transformSilva, Karinne Saraiva da 15 August 2018 (has links)
Orientador: Yuzo Iano / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-15T16:56:14Z (GMT). No. of bitstreams: 1
Silva_KarinneSaraivada_M.pdf: 10827460 bytes, checksum: 88bfa38e14ff8802bd4874d959af1e99 (MD5)
Previous issue date: 2010 / Resumo: Segmentação de texturas é um ponto crucial em muitas aplicações da área de visão computacional e processamento digital de imagens. Muitas são as aplicações que utilizam imagens com texturas, como: sensoriamento remoto, análise de imagens médicas, inspeção industrial, etc. Para análise de texturas, é essencial o uso de um extrator de características capaz de representar bem cada textura presente na imagem. A transformada wavelet packet fornece a caracterização necessária para discriminação de texturas, oferecendo também uma representação multi-escala, ferramenta muito importante na análise de texturas. Outro ponto importante neste trabalho, é o fato da metodologia aqui proposta ser não supervisionada. Para tal, é utilizado o algoritmo de clusterização ARIA, que determina automaticamente o número de clusters presentes no conjunto de dados. A eficiência do método desenvolvido é comprovada aplicando-o em diversas imagens, como: mosaicos de Brodatz, imagens naturais, imagens médicas e outras aplicações. / Abstract:Texture segmentation is a crucial aspect in many computer vision and digital image processing applications. Several of these applications use texture images, such as remote sensing, medical image analysis, industrial inspection, etc. For texture analysis, it is essential to use a feature-extractor that can represent precisely each of the textures present in the picture. The wavelet packet transform provides the characteristics required for discrimination of the textures, as well as offering a multi-scale representation, which is a very important tool in texture analysis. Another important aspect in this work is that the proposed methodology is unsupervised. To achieve that, the clustering algorithm ARIA is used, which automatically determines the number of clusters present in the data set. The efficiency of the developed method is clear in the application of the method on several types of images, such as mosaics of Brodatz, natural images, medical images and other applications. / Mestrado / Telecomunicações e Telemática / Mestre em Engenharia Elétrica
|
120 |
Identification automatisée des espèces d'arbres dans des scans laser 3D réalisés en forêt / Automatic recognition of tree species from 3D point clouds of forest plotsOthmani, Ahlem 26 May 2014 (has links)
L’objectif de ces travaux de thèse est la reconnaissance automatique des espèces d’arbres à partir de scans laser terrestres, information indispensable en inventaire forestier. Pour y répondre, nous proposons différentes méthodes de reconnaissance d’espèce basées sur la texture géométrique 3D des écorces.Ces différentes méthodes utilisent la séquence de traitement suivante : une étape de prétraitement, une étape de segmentation, une étape d’extraction des caractéristiques et une dernière étape de classification. Elles sont fondées sur les données 3D ou bien sur des images de profondeur extraites à partir des nuages de points 3D des troncs d’arbres en utilisant une surface de référence.Nous avons étudié et testé différentes approches de segmentation sur des images de profondeur représentant la texture géométrique de l'écorce. Ces approches posent des problèmes de sur-Segmentation et d'introduction de bruit. Pour cette raison, nous proposons une nouvelle approche de segmentation des nuages de points 3D : « Burst Wind Segmentation », inspirée des lignes de partage des eaux. Cette dernière réussit, dans la majorité des cas, à extraire des cicatrices caractéristiques qui sont ensuite comparées à un dictionnaire des cicatrices (« ScarBook ») pour discriminer les espèces d’arbres.Une grande variété de caractéristiques est extraite à partir des régions segmentées par les différentes méthodes proposées. Ces caractéristiques représentent le niveau de rugosité, la forme globale des régions segmentées, la saillance et la courbure du contour, la distribution des points de contour, la distribution de la forme selon différents angles,...Enfin, pour la classification des caractéristiques visuelles, les forêts aléatoires (Random Forest) de Leo Breiman et Adèle Cutler sont utilisées dans une approche à deux étapes : sélection des variables importantes, puis classification croisée avec les variables retenues, seulement.L’écorce de l’arbre change avec l'accroissement en diamètre ; nous avons donc étudié différents critères de variabilité naturelle et nous avons testé nos approches sur une base qui présente cette variabilité. Le taux de bonne classification dépasse 96% dans toutes les approches de segmentation proposées mais les meilleurs résultats sont atteints avec la nouvelle approche de segmentation « Burst Wind Segmentation » étant donné que cette approche réussit mieux à extraire les cicatrices, utilise un dictionnaire de cicatrices et a été évaluée sur une plus grande variété de caractéristiques de forme, de courbure, de saillance et de rugosité. / The objective of the thesis is the automatic recognition of tree species from Terrestrial LiDAR data. This information is essential for forest inventory. As an answer, we propose different recognition methods based on the 3D geometric texture of the bark.These methods use the following processing steps: a preprocessing step, a segmentation step, a feature extraction step and a final classification step. They are based on the 3D data or on depth images built from 3D point clouds of tree trunks using a reference surface.We have investigated and tested several segmentation approaches on depth images representing the geometric texture of the bark. These approaches have the disadvantages of over segmentation and are quite sensitive to noises. For this reason, we propose a new 3D point cloud segmentation approach inspired by the watershed technique that we have called «Burst Wind Segmentation». Our approach succeed in extracting in most cases the characteristic scars that are next compared to those stored in a dictionary («ScarBook») in order to determine the tree species.A large variety of characteristics is extracted from the regions segmented by the different methods proposed. These characteristics are the roughness, the global shape of the segmented regions, the saliency and the curvature of the contour, the distribution of the contour points, the distribution of the shape according to the different orientations.Finally, for the classification of the visual characteristics, the Random Forest method by Leo Breiman and Adèle Cutler is used in a two steps approach: selection of the most important variables and cross classification with the selected variables.The bark of the tree changes with the trunk diameter. We have thus studied different natural variability criteria and we have tested our approaches on a test set that includes this variability. The accuracy rate is over 96% for all the proposed segmentation approaches but the best result is obtained with the «Burst Wind Segmentation» one due to the fact that this approach can better extract the scars, it uses a dictionary of scars for recognition, and it has been evaluated on a greater variety of shapes, curvatures, saliency and roughness.
|
Page generated in 0.0479 seconds