Spelling suggestions: "subject:"théorie dde valeur extrêmement"" "subject:"théorie dee valeur extrêmement""
31 |
Les approches extrêmes de la contagion sur les marchés financiers / Extreme approaches of contagion in financial marketsXu, Bei 16 November 2012 (has links)
La thèse est composée de trois parties. La première présente un certain nombre de mesures de dépendance extrême. Une application sur les actions et les obligations de 49 pays montre que la théorie des valeurs extrêmes multivariées conduit aux résultats différents de ceux issus du coefficient de corrélation, mais relativement proches de ceux obtenus du rho de Spearman conditionnel multivarié. Cette partie évalue aussi le risque de pertes importantes simultanées. La deuxième partie examine les déterminants des co-mouvements extrêmes entre 5 pays core et 49 pays non core. Les mécanismes de transmission des chocs varient de la période moins récente à la période récente, des pays développés aux pays émergents, des chocs normaux aux chocs extrêmes. La troisième partie étudie le rôle de valeur refuge de l’or sur la période 1986-2012. Les gains positifs extrêmes de l'or peuvent être liés aux pertes extrêmes du S&P. Cependant, ce lien n'est pas toujours valable, il évolue dans le temps et serait conditionné par d'autres facteurs. / The thesis consists of three parts. The first part introduces a number of measures of extreme dependency. An application on stock and bond markets of 49 countries shows the multivariate extreme value theory leads to results which are different from those from the correlation coefficient, but relatively close to those obtained from multivariate conditional Spearman's rho. This part also assesses the risk of simultaneous losses. The second part examines the determinants of extreme co-movements between 5 core countries and 49 non-core countries. Transmission mechanisms of shocks vary from less recent to recent period, from developed to emerging markets, from normal to extreme shocks. The third part examines the role of safe haven of gold over the period 1986-2012. Extreme positive gains of gold can be linked to extreme losses of S&P. However, this relationship is not always valid, it evolves over time and could be determined by other factors.
|
32 |
Modélisation de la dépendance et mesures de risque multidimensionnelles / Dependence modeling and multidimensional risk measuresDi Bernardino, Éléna 08 December 2011 (has links)
Cette thèse a pour but le développement de certains aspects de la modélisation de la dépendance dans la gestion des risques en dimension plus grande que un. Le premier chapitre est constitué d'une introduction générale. Le deuxième chapitre est constitué d'un article s'intitulant « Estimating Bivariate Tail : a copula based approach », soumis pour publication. Il concerne la construction d'un estimateur de la queue d'une distribution bivariée. La construction de cet estimateur se fonde sur une méthode de dépassement de seuil (Peaks Over Threshold method) et donc sur une version bivariée du Théorème de Pickands-Balkema-de Haan. La modélisation de la dépendance est obtenue via la Upper Tail Dependence Copula. Nous démontrons des propriétés de convergence pour l'estimateur ainsi construit. Le troisième chapitre repose sur un article: « A multivariate extension of Value-at-Risk and Conditional-Tail-Expectation», soumis pour publication. Nous abordons le problème de l'extension de mesures de risque classiques, comme la Value-at-Risk et la Conditional-Tail-Expectation, dans un cadre multidimensionnel en utilisant la fonction de Kendall multivariée. Enfin, dans le quatrième chapitre de la thèse, nous proposons un estimateur des courbes de niveau d'une fonction de répartition bivariée avec une méthode plug-in. Nous démontrons des propriétés de convergence pour les estimateurs ainsi construits. Ce chapitre de la thèse est lui aussi constitué d'un article, s'intitulant « Plug-in estimation of level sets in a non-compact setting with applications in multivariate risk theory», accepté pour publication dans la revue ESAIM:Probability and Statistics. / In this PhD thesis we consider different aspects of dependence modeling with applications in multivariate risk theory. The first chapter is constituted by a general introduction. The second chapter is essentially constituted by the article “Estimating Bivariate Tail: a copula based approach”, actually submitted for publication. It deals with the problem of estimating the tail of a bivariate distribution function. We develop a general extension of the POT (Peaks-Over-Threshold) method, mainly based on a two-dimensional version of the Pickands-Balkema-de Haan Theorem. The dependence structure between the marginals in the upper tails is described by the Upper Tail Dependence Copula. Then we construct a two-dimensional tail estimator and study its asymptotic properties. The third chapter of this thesis is based on the article “A multivariate extension of Value-at-Risk and Conditional-Tail-Expectation” and submitted for publication. We propose a multivariate generalization of risk measures as Value-at-Risk and Conditional-Tail-Expectation and we analyze the behavior of these measures in terms of classical properties of risk measures. We study the behavior of these measures with respect to different risk scenarios and stochastic ordering of marginals risks. Finally in the fourth chapter we introduce a consistent procedure to estimate level sets of an unknown bivariate distribution function, using a plug-in approach in a non-compact setting. Also this chapter is constituted by the article “Plug-in estimation of level sets in a non-compact setting with applications in multivariate risk theory”, accepted for publication in ESAIM: Probability and Statistics journal.
|
33 |
Measuring and managing operational risk in the insurance and banking sectors / Mesure et gestion du risque opérationnel en assurance et financeKaram, Elias 26 June 2014 (has links)
Notre intérêt dans cette thèse est de combiner les différentes techniques de mesure du risque opérationnel dans les secteurs financiers, et on s'intéresse plus particulièrement aux conséquences du risque d'estimation dans les modèles, qui est un risque opérationnel particulier. Nous allons présenter les concepts mathématiques et actuariels associés ainsi qu'une application numérique en ce qui concerne l'approche de mesure avancée comme Loss Distribution pour calculer l'exigence en capital. En plus, on se concentre sur le risque d'estimation illustré avec l'analyse des scénarios de l'opinion d'experts en conjonction avec des données de pertes internes pour évaluer notre exposition aux évènements de gravité. Nous concluons cette première partie en définissant une technique de mise l'échelle sur la base de (MCO) qui nous permet de normaliser nos données externes à une banque locale Libanaise.Dans la deuxième partie, on donne de l'importance sur la mesure de l'erreur induite sur le SCR par l'erreur d'estimation des paramètres, on propose une méthode alternative pour estimer une courbe de taux et on termine par attirer l'attention sur les réflexions autour des hypothèses de calcul et ce que l'on convient de qualifier d'hypothèse "cohérente avec les valeurs de marché" serait bien plus pertinente et efficace que la complexification du modèle, source d'instabilité supplémentaire, ainsi mettre en évidence le risque d'estimation qui est lié au risque opérationnel et doit être accordé beaucoup plus d'attention dans nos modèles de travail / Our interest in this thesis is first to combine the different measurement techniques for operational risk in financial companies, and we highlight more and more the consequences of estimation risk which is treated as a particular part of operational risk. In the first part, we will present a full overview of operational risk, from the regulatory laws and regulations to the associated mathematical and actuarial concepts as well as a numerical application regarding the Advanced Measurement Approach, like Loss Distribution to calculate the capital requirement, then applying the Extreme Value Theory. We conclude this first part by setting a scaling technique based on (OLS) enabling us to normalize our external data to a local Lebanese Bank. On the second part, we feature estimation risk by first measuring the error induced on the SCR by the estimation error of the parameters, to having an alternative yield curve estimation and finishing by calling attention to the reflections on assumptions of the calculation instead of focusing on the so called hypothesis "consistent with market values", would be more appropriate and effective than to complicate models and generate additional errors and instability. Chapters in this part illustrate the estimation risk in its different aspects which is a part of operational risk, highlighting as so the attention that should be given in treating our models
|
34 |
Contributions à l'estimation de quantiles extrêmes. Applications à des données environnementales / Some contributions to the estimation of extreme quantiles. Applications to environmental data.Methni, Jonathan El 07 October 2013 (has links)
Cette thèse s'inscrit dans le contexte de la statistique des valeurs extrêmes. Elle y apporte deux contributions principales. Dans la littérature récente en statistique des valeurs extrêmes, un modèle de queues de distributions a été introduit afin d'englober aussi bien les lois de type Pareto que les lois à queue de type Weibull. Les deux principaux types de décroissance de la fonction de survie sont ainsi modélisés. Un estimateur des quantiles extrêmes a été déduit de ce modèle mais il dépend de deux paramètres inconnus, le rendant inutile dans des situations pratiques. La première contribution de cette thèse est de proposer des estimateurs de ces paramètres. Insérer nos estimateurs dans l'estimateur des quantiles extrêmes précédent permet alors d'estimer des quantiles extrêmes pour des lois de type Pareto aussi bien que pour des lois à queue de type Weibull d'une façon unifiée. Les lois asymptotiques de nos trois nouveaux estimateurs sont établies et leur efficacité est illustrée sur des données simulées et sur un jeu de données réelles de débits de la rivière Nidd se situant dans le Yorkshire en Angleterre. La seconde contribution de cette thèse consiste à introduire et estimer une nouvelle mesure de risque appelé Conditional Tail Moment. Elle est définie comme le moment d'ordre a>0 de la loi des pertes au-delà du quantile d'ordre p appartenant à ]0,1[ de la fonction de survie. Estimer le Conditional Tail Moment permet d'estimer toutes les mesures de risque basées sur les moments conditionnels telles que la Value-at-Risk, la Conditional Tail Expectation, la Conditional Value-at-Risk, la Conditional Tail Variance ou la Conditional Tail Skewness. Ici, on s'intéresse à l'estimation de ces mesures de risque dans le cas de pertes extrêmes c'est-à-dire lorsque p tend vers 0 lorsque la taille de l'échantillon augmente. On suppose également que la loi des pertes est à queue lourde et qu'elle dépend d'une covariable. Les estimateurs proposés combinent des méthodes d'estimation non-paramétrique à noyau avec des méthodes issues de la statistique des valeurs extrêmes. Le comportement asymptotique de nos estimateurs est établi et illustré aussi bien sur des données simulées que sur des données réelles de pluviométrie provenant de la région Cévennes-Vivarais. / This thesis can be viewed within the context of extreme value statistics. It provides two main contributions to this subject area. In the recent literature on extreme value statistics, a model on tail distributions which encompasses Pareto-type distributions as well as Weibull tail-distributions has been introduced. The two main types of decreasing of the survival function are thus modeled. An estimator of extreme quantiles has been deduced from this model, but it depends on two unknown parameters, making it useless in practical situations. The first contribution of this thesis is to propose estimators of these parameters. Plugging our estimators in the previous extreme quantiles estimator allows us to estimate extreme quantiles from Pareto-type and Weibull tail-distributions in an unified way. The asymptotic distributions of our three new estimators are established and their efficiency is illustrated on a simulation study and on a real data set of exceedances of the Nidd river in the Yorkshire (England). The second contribution of this thesis is the introduction and the estimation of a new risk measure, the so-called Conditional Tail Moment. It is defined as the moment of order a>0 of the loss distribution above the quantile of order p in (0,1) of the survival function. Estimating the Conditional Tail Moment permits to estimate all risk measures based on conditional moments such as the Value-at-Risk, the Conditional Tail Expectation, the Conditional Value-at-Risk, the Conditional Tail Variance or the Conditional Tail Skewness. Here, we focus on the estimation of these risk measures in case of extreme losses i.e. when p converges to 0 when the size of the sample increases. It is moreover assumed that the loss distribution is heavy-tailed and depends on a covariate. The estimation method thus combines nonparametric kernel methods with extreme-value statistics. The asymptotic distribution of the estimators is established and their finite sample behavior is illustrated both on simulated data and on a real data set of daily rainfalls in the Cévennes-Vivarais region (France).
|
35 |
Contributions à l'évaluation des risques en assurance tempête et automobile / Contributions to risk assessment in wind storm and car insuranceMornet, Alexandre 30 September 2015 (has links)
Dans cette thèse, nous étudions la garantie tempête consacrée aux dommages causés par le vent et un développement de l'assurance comportementale à travers le risque automobile. Nous associons des informations extérieures comme la vitesse du vent aux données de l'assurance. Nous proposons la construction d'un indice tempête pour compléter et renforcer l'évaluation des dégâts causés par les tempêtes majeures. Nous définissons ensuite un partage du territoire français en 6 zones tempêtes, dépendant des corrélations extrêmes de vent, pour tester plusieurs scénarios. Ces différents tests et considérations nous permettent d'améliorer notre indice tempête. Nous nous appuyons sur les modèles de la théorie des valeurs extrêmes pour montrer l'impact de la variabilité sur le calcul des périodes de retour et besoins en fonds propres. Nous soulignons ainsi les difficultés rencontrées pour dégager des résultats robustes en lien avec les évènements extrêmes. Pour ce qui est de l'assurance automobile, nous testons différentes méthodes pour répondre aux évolutions techniques et réglementaires. Nous caractérisons la partition homme / femme en utilisant la procédure logistique, l'analyse des correspondances multiples ou les arbres de classification. Nous montrons qu'il est possible de compenser l'absence de la variable sexe par d'autres informations spécifiques à l'assuré ou à son véhicule et en particulier l'utilisation de relevés kilométriques. Enfin, nous nous intéressons à l'expérience acquise par les conducteurs novices. Nous étudions le comportement sur la route de l'assuré pour créer de nouvelles classes de risques / In this Ph.D. Dissertation we study the storm guarantee dedicated to the damage caused by the wind and a development of the behavioral insurance through the automobile risk. We associate external information like the wind speed to insurance data. We propose the construction of a storm index to complete and strengthen the evaluation of the damages caused by the major storms. Then we define a partition of the French territory in 6 zones storms, depending on extreme wind correlations to test several scenarios. These various tests and considerations allow us to improve our storm index. We lean on extreme value theory models to show the impact of the variability on the calculation of return periods and capital requirements. We underline the difficulties to obtain strong results in connection with the extreme events. Concerning car insurance, we test various methods to answer the technical and legal evolutions. We characterize the man/woman partition by using the logistic procedure, the multiple correspondence analysis or the classification trees. We show that it is possible to compensate for the absence of the sex variable with other information specific to the insurants or to their vehicle and in particular the use of kilometric data. Finally, we are interested in the acquired experience by young drivers. We study the behavior on the road of the insurants to create new classes of risks
|
36 |
Calcul de probabilités d'événements rares liés aux maxima en horizon fini de processus stochastiques / Calculation of probabilities of rare events related to the finite-horizon maxima of stochastic processesShao, Jun 12 December 2016 (has links)
Initiée dans le cadre d’un projet ANR (le projet MODNAT) ciblé sur la modélisation stochastique de phénomènes naturels et la quantification probabiliste de leurs effets dynamiques sur des systèmes mécaniques et structuraux, cette thèse a pour objet le calcul de probabilités d’événements rares liés aux maxima en horizon fini de processus stochastiques, avec prise en compte des quatre contraintes imposées suivantes : (1) l’ensemble des processus considérés doit contenir les quatre grandes catégories de processus rencontrés en dynamique aléatoire, à savoir les gaussiens stationnaires, les gaussiens non stationnaires, les non gaussiens stationnaires et les non gaussiens non stationnaires ; (2) ces processus doivent pouvoir être, soit décrits par leurs lois, soit fonctions de processus décrits par leurs lois, soit solutions d’équations différentielles stochastiques, soit même solutions d’inclusions différentielles stochastiques ; (3) les événements en question sont des dépassements de seuils très élevés par les maxima en horizon fini des processus considérés et ces événements sont de très faible occurrence, donc de très faible probabilité (de l’ordre de 10 −4 à 10 −8 ), du fait de la valeur élevée des seuils ; et enfin (4) le recours à une approche Monte-Carlo pour effectuer ce type de calcul doit être banni, car trop chronophage compte tenu des contraintes précédentes. Pour résoudre un tel problème, dont le domaine d’intérêt s’étend bien au delà de la mécanique probabiliste et de la fiabilité structurale (on le rencontre notamment dans tous les secteurs scientifiques en connexion avec la statistique des valeurs extrêmes, comme par exemple les mathématiques financières ou les sciences économiques) une méthode innovante est proposée, dont l’idée maîtresse est née de l’analyse des résultats d’une étude statistique de grande ampleur menée dans le cadre du projet MODNAT. Cette étude, qui porte sur l’analyse du comportement des valeurs extrêmes des éléments d’un vaste ensemble de processus, a en effet mis en évidence deux fonctions germes dépendant explicitement de la probabilité cible (la première en dépendant directement, la seconde indirectement via une probabilité conditionnelle auxiliaire elle-même fonction de la probabilité cible) et possédant des propriétés de régularité remarquables et récurrentes pour tous les processus de la base de données, et c’est sur l’exploitation conjointe de ces propriétés et d’un principe d’approximation bas niveau-extrapolation haut niveau que s’appuie la construction de la méthode. Deux versions de celle-ci en sont d’abord proposées, se distinguant par le choix de la fonction germe et dans chacune desquelles cette fonction est approximée par un polynôme. Une troisième version est également développée, basée sur le formalisme de la deuxième version mais utilisant pour la fonction germe une approximation de type "fonction de survie de Pareto". Les nombreux résultats numériques présentés attestent de la remarquable efficacité des deux premières versions. Ils montrent également que celles-ci sont de précision comparable. La troisième version, légèrement moins performante que les deux premières, présente quant à elle l’intérêt d’établir un lien direct avec la théorie des valeurs extrêmes. Dans chacune de ses trois versions, la méthode proposée constitue à l’évidence un progrès par rapport aux méthodes actuelles dédiées à ce type de problème. De par sa structure, elle offre en outre l’avantage de rester opérationnelle en contexte industriel. / Initiated within the framework of an ANR project (the MODNAT project) targeted on the stochastic modeling of natural hazards and the probabilistic quantification of their dynamic effects on mechanical and structural systems, this thesis aims at the calculation of probabilities of rare events related to the maxima of stochastic processes over a finite time interval, taking into account the following four constraints : (1) the set of considered processes must contain the four main categories of processes encountered in random dynamics, namely stationary Gaussian, non-stationary Gaussian, stationary non-Gaussian and non-stationary non-Gaussian ones ; (2) these processes can be either described by their distributions, or functions of processes described by their distributions, or solutions of stochastic differential equations, or solutions of stochastic differential inclusions ; (3) the events in question are crossings of high thresholds by the maxima of the considered processes over finite time intervals and these events are of very weak occurrence, hence of very small probability, due to the high size of thresholds ; and finally (4) the use of a Monte Carlo approach to perform this type of calculation must be proscribed because it is too time-consuming given the above constraints. To solve such a problem, whose field of interest extends well beyond probabilistic mechanics and structural reliability (it is found in all scientific domains in connection with the extreme values theory, such as financial mathematics or economical sciences), an innovative method is proposed, whose main idea emerged from the analysis of the results of a large-scale statistical study carried out within the MODNAT project. This study, which focuses on analyzing the behavior of the extreme values of elements of a large set of processes, has indeed revealed two germ functions explicitly related to the target probability (the first directly related, the second indirectly via a conditional auxiliary probability which itself depend on the target probability) which possess remarkable and recurring regularity properties for all the processes of the database, and the method is based on the joint exploitation of these properties and a "low level approximation-high level extrapolation" principle. Two versions of this method are first proposed, which are distinguished by the choice of the germ function and in each of which the latter is approximated by a polynomial. A third version has also been developed. It is based on the formalism of the second version but which uses as germ function an approximation of "Pareto survival function" type. The numerous presented numerical results attest to the remarkable effectiveness of the first two versions. They also show that they are of comparable precision. The third version, slightly less efficient than the first two, presents the interest of establishing a direct link with the extreme values theory. In each of its three versions, the proposed method is clearly an improvement compared to current methods dedicated to this type of problem. Thanks to its structure, it also offers the advantage of remaining operational in industrial context.
|
37 |
Contribution de la Théorie des Valeurs Extrêmes à la gestion et à la santé des systèmes / Contribution of extreme value theory to systems management and healthDiamoutene, Abdoulaye 26 November 2018 (has links)
Le fonctionnement d'un système, de façon générale, peut être affecté par un incident imprévu. Lorsque cet incident a de lourdes conséquences tant sur l'intégrité du système que sur la qualité de ses produits, on dit alors qu'il se situe dans le cadre des événements dits extrêmes. Ainsi, de plus en plus les chercheurs portent un intérêt particulier à la modélisation des événements extrêmes pour diverses études telles que la fiabilité des systèmes et la prédiction des différents risques pouvant entraver le bon fonctionnement d'un système en général. C'est dans cette optique que s'inscrit la présente thèse. Nous utilisons la Théorie des Valeurs Extrêmes (TVE) et les statistiques d'ordre extrême comme outil d'aide à la décision dans la modélisation et la gestion des risques dans l'usinage et l'aviation. Plus précisément, nous modélisons la surface de rugosité de pièces usinées et la fiabilité de l'outil de coupe associé par les statistiques d'ordre extrême. Nous avons aussi fait une modélisation à l'aide de l'approche dite du "Peaks-Over Threshold, POT" permettant de faire des prédictions sur les éventuelles victimes dans l'Aviation Générale Américaine (AGA) à la suite d'accidents extrêmes. Par ailleurs, la modélisation des systèmes soumis à des facteurs d'environnement ou covariables passent le plus souvent par les modèles à risque proportionnel basés sur la fonction de risque. Dans les modèles à risque proportionnel, la fonction de risque de base est généralement de type Weibull, qui est une fonction monotone; l'analyse du fonctionnement de certains systèmes comme l'outil de coupe dans l'industrie a montré qu'un système peut avoir un mauvais fonctionnement sur une phase et s'améliorer sur la phase suivante. De ce fait, des modifications ont été apportées à la distribution de Weibull afin d'avoir des fonctions de risque de base non monotones, plus particulièrement les fonctions de risque croissantes puis décroissantes. En dépit de ces modifications, la prise en compte des conditions d'opérations extrêmes et la surestimation des risques s'avèrent problématiques. Nous avons donc, à partir de la loi standard de Gumbel, proposé une fonction de risque de base croissante puis décroissante permettant de prendre en compte les conditions extrêmes d'opérations, puis établi les preuves mathématiques y afférant. En outre, un exemple d'application dans le domaine de l'industrie a été proposé. Cette thèse est divisée en quatre chapitres auxquels s'ajoutent une introduction et une conclusion générales. Dans le premier chapitre, nous rappelons quelques notions de base sur la théorie des valeurs extrêmes. Le deuxième chapitre s'intéresse aux concepts de base de l'analyse de survie, particulièrement à ceux relatifs à l'analyse de fiabilité, en proposant une fonction de risque croissante-décroissante dans le modèle à risques proportionnels. En ce qui concerne le troisième chapitre, il porte sur l'utilisation des statistiques d'ordre extrême dans l'usinage, notamment dans la détection de pièces défectueuses par lots, la fiabilité de l'outil de coupe et la modélisation des meilleures surfaces de rugosité. Le dernier chapitre porte sur la prédiction d'éventuelles victimes dans l'Aviation Générale Américaine à partir des données historiques en utilisant l'approche "Peaks-Over Threshold" / The operation of a system in general may at any time be affected by an unforeseen incident. When this incident has major consequences on the system integrity and the quality of system products, then it is said to be in the context of extreme events. Thus, increasingly researchers have a particular interest in modeling such events with studies on the reliability of systems and the prediction of the different risks that can hinder the proper functioning of a system. This thesis takes place in this very perspective. We use Extreme Value Theory (EVT) and extreme order statistics as a decision support tool in modeling and risk management in industry and aviation. Specifically, we model the surface roughness of machined parts and the reliability of the associated cutting tool with the extreme order statistics. We also did a modeling using the "Peaks-Over Threshold, POT" approach to make predictions about the potential victims in the American General Aviation (AGA) following extreme accidents. In addition, the modeling of systems subjected to environmental factors or covariates is most often carried out by proportional hazard models based on the hazard function. In proportional hazard models, the baseline risk function is typically Weibull distribution, which is a monotonic function. The analysis of the operation of some systems like the cutting tool in the industry has shown that a system can deteriorated on one phase and improving on the next phase. Hence, some modifications have been made in the Weibull distribution in order to have non-monotonic basic risk functions, more specifically, the increasing-decreasing risk function. Despite these changes, taking into account extreme operating conditions and overestimating risks are problematics. We have therefore proposed from Gumbel's standard distribution, an increasingdecreasing risk function to take into account extreme conditions, and established mathematical proofs. Furthermore, an example of the application in the field of industry was proposed. This thesis is organized in four chapters and to this must be added a general introduction and a general conclusion. In the first chapter, we recall some basic notions about the Extreme Values Theory. The second chapter focuses on the basic concepts of survival analysis, particularly those relating to reliability analysis by proposing a function of increasing-decreasing hazard function in the proportional hazard model. Regarding the third chapter, it deals with the use of extreme order statistics in industry, particularly in the detection of defective parts, the reliability of the cutting tool and the modeling of the best roughness surfaces. The last chapter focuses on the prediction of potential victims in AGA from historical data using the Peaks-Over Threshold approach.
|
38 |
Extremes of log-correlated random fields and the Riemann zeta function, and some asymptotic results for various estimators in statisticsOuimet, Frédéric 05 1900 (has links)
No description available.
|
Page generated in 0.0804 seconds