Spelling suggestions: "subject:"ehe amazon basin"" "subject:"ehe amazon yasin""
51 |
Aerosol profiling with lidar in the Amazon Basin during the wet and dry season 2008Baars, Holger 19 April 2012 (has links)
Im Rahmen der vorliegenden Arbeit wurden die Eigenschaften von atmosphärischen Aerosolpartikeln im tropischen Regenwald des Amazonasgebietes bestimmt. Dazu wurden die Daten einer fast einjährigen Lidarmesskampagne ausgewertet und diskutiert.
Die Messungen wurden mit einem automatischen Mehrwellenlängen-Polarisations-Raman-Lidar im zentralen Amazonasbecken nahe Manaus, Brasilien, im Zeitraum von Januar bis November 2008 durchgeführt. Somit konnten erstmalig optische und mikrophysikalische Aerosoleigenschaften im Amazonasgebiet während der Regenzeit
(ca. Dezember-Mai) und Trockenzeit (ca. Juni-November) höhenaufgelöst charakterisiert werden.
Einleitend werden die meteorologischen Bedingungen im Amazonasgebiet erläutert und eine Literaturübersicht über Aerosolforschung in dieser Region gegeben. Das Messgerät
sowie verschiedene Kalibrier- und Korrekturschemen, die zur Datenauswertung notwendig sind, werden vorgestellt. Auch Vergleiche mit anderen Messgeräten werden diskutiert.
Diese zeigen, dass die aus den Lidarmessungen abgeleiteten Parameter von hoher Qualität sind. Anhand von Fallstudien werden mit Hilfe von Rückwärtstrajektorien und Satellitenmessungen typische Aerosolbedingungen am Messstandort diskutiert.
Um die generellen Unterschiede zwischen Regen- und Trockenzeit zu quantifizieren, wird eine statistische Auswertung aller analysierten Lidarmessungen präsentiert.
Die Analyse der Lidardaten zeigt, dass während der Regenzeit im Amazonasgebiet in ca. der Hälfte aller Fälle sehr saubere Bedingungen mit einer Aerosol Optischen Dicke (AOD) von weniger als 0.05 (bei 532 nm) vorherrschen können. Allerdings wurde in ca. 30% aller analysierten Fälle im Zeitraum von Januar bis Mai auch afrikanisches
Aerosol, vornehmlich Saharastaub und Biomasseverbrennungsaerosol (BBA), am Messstandort detektiert. Dabei dominierte meist BBA die Aerosolpopulation, wie die Depolarisationsmessungen zeigten. In der Trockenzeit ist die Atmosphäre im Amazonasbecken hauptsächlich mit BBA aus Südamerika belastet. Daher ist die AOD im Durchschnitt um einen Faktor drei größ er als in der Regenzeit. BBA wurde zu dieser
Jahreszeit regelmäßig bis zu einer Höhe von 4-6 km detektiert. Basierend auf den vorgestellten Langzeitmessungen werden erstmalig die optischen Eigenschaften von südamerikanischem BBA statistisch analysiert und diskutiert. / Continuous lidar measurements were performed in the Amazon rain forest for almost one year in 2008. The results of the automated multiwavelength-Raman-polarization lidar observations were presented in this dissertation. These measurements are the first long-term observations of the vertical aerosol structure ever made in the Amazon Basin. The advanced lidar observations were conducted 60 km north of Manaus in the central northern part of Amazonia. The area is widely covered with pristine rain forest. A HYSPLIT backward-trajectory analysis showed that the observations were representative on a regional scale for the central northern part of the Amazon rain forest. The general weather conditions in this region are characterized by a wet (December-June) and a dry season (July-November). During the dry season, a high fire activity occurs in Amazonia, which heavily influences the atmospheric conditions. With the lidar instrument, vertical profiles of the particle backscatter coefficient at 355, 532, and 1064 nm, of the particle extinction coefficient at 355 and 532 nm, and of the particle linear depolarization ratio at 355 nm can be determined.
The results from the long-term lidar observations performed in Brazil contain a lot of new information about the aerosol conditions in the central northern Amazon Basin and corroborate certain findings from former aerosol measurements in Amazonia.
It was shown for the first time that advection of Saharan dust together with biomass burning aerosol (BBA) from Africa occurred regularly throughout the wet season. In about one third (32%) of all lidar observations during the wet season, African aerosol was dominating the optical aerosol properties in Amazonia. The analysis of the vertical aerosol structure during such events revealed that the African aerosol arriving in the central northern Amazon Basin was usually trapped in the lowermost 3-3.5 km of the troposphere. To quantify the amount of Saharan dust and African smoke transported towards the lidar site, the dust contribution to the measured optical aerosol properties was separated by means of the measured particle depolarization ratio. This study led to the result that in about one half of the cases with African aerosol advection, smoke particles contributed to more than 50% to the total Aerosol Optical Depth (AOD). The smoke transport from Africa towards Amazonia occurred predominantly between January and April when the fire activity in Central Africa was highest.
BBA is thus a major constituent of the aerosol plumes that are regularly transported from Africa towards Amazonia. This is a key finding of the presented study.
During clean conditions, an AOD (532 nm) of less than 0.05 was observed and the aerosol was trapped in the lowermost 2 km of the troposphere. However, the analysis of the long-term data set revealed that these clean atmospheric conditions occurred in only 48% of all wet-season cases. One example for such background conditions was intensively discussed and it was shown that a major meso-scale rain event occurred in the Amazon region at the same time. This precipitation event was possibly partly responsible for the very low aerosol load.
Two case studies from the dry season were presented for which BBA dominated the optical properties. In the first case, a comparable high aerosol load (AOD of 0.41) prevailed while in the second one, a medium aerosol load (AOD of 0.15) was observed. Aged BBA advected from regions south of the lidar site were identified to be the dominant aerosol species for both cases. However, very different geometrical, optical and microphysical properties of BBA (e.g., vertical layering, lidar ratio, Ångström exponent, effective radius, SSA) were observed on both days. In the first case, aerosol was present up to about 4.5 km. Extinction-related Ångström exponent s of about 1 and lidar ratios between 70 and 90 sr were found at different heights for the smoke aerosol. The BBA was highly absorbing (SSA of 0.81) at heights of the highest RH (85%), whereas above under dry conditions (RH=50%) only moderate absorption (SSA of 0.93) was detected. In the second case, smoke was detected up to 4.5 km, and Ångström exponent of about 2 and lidar ratios of 45-55 sr were measured in the aerosol layers. The BBA was only moderately absorbing indicated by SSA values between 0.92 and 0.94. The reason for the differences in the smoke properties could be the shorter travel time to the lidar site (<24 h), different aging processes (e.g., cloud/rain processing), or different burning conditions. In both cases, no depolarizing effects of the BBA could be observed.
The strong contrast between the aerosol conditions in the dry season and the wet season were confirmed by the statistical analysis of all lidar observations in 2008. Due to the high BBA concentration in the atmosphere, the mean AOD of the dry season was found to be a factor of 3 higher than the mean AOD of the wet season (0.26 compared to 0.08 at 532 nm). Maximum AOD values were less than 0.55 (at 532 nm) and hence show that the lidar location was not in the direct vicinity of fire events.
In only 7% of all cases in the dry season 2008, an AOD below 0.1 was observed. Also the maximum extinction and backscatter coefficient values in the dry season 2008 were 2-3 times higher than during the wet season of this year.
The vertical aerosol distributions differ also significantly between the two seasons. In the wet season, the aerosol was mostly trapped in the lowermost 2.5 km, while in the dry season aerosol typically reached up to 4.5 km. Aerosol was occasionally detected up to 6.14 km in the dry season. The majority of the aerosol (95% of the AOD), however, was found to be on average below 2.3 km in the wet season and below 3 km in the dry season. During the wet season, lofted aerosol layers and multiple aerosol stratification was less frequent than in the dry season. The extent of BBA plumes during the dry season showed no correlation to the ML top height. Virtually uniform smoke haze layers were observed up to the AL top. Thus, pyro-convection and/or cloud-related mixing seem to be the major processes for the vertical distribution of BBA.
|
52 |
A UNESCO e a governança ambiental na bacia amazônicaMatsunaga, Fernando [UNESP] 06 June 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:45Z (GMT). No. of bitstreams: 0
Previous issue date: 2011-06-06Bitstream added on 2014-06-13T18:30:30Z : No. of bitstreams: 1
matsunaga_f_me_mar.pdf: 578631 bytes, checksum: 4f9ea920c19f05a53f249fdb3e1b0a5d (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / A Organização das Nações Unidas para a Educação, Ciência e Cultura (UNESCO) é estruturada de forma multidisciplinar atuando nas diversas áreas do saber e conhecimento. Uma delas é a questão ambiental, que ganha cada vez mais destaque no cenário internacional. Atualmente está em desenvolvimento e execução a Década da Educação para o Desenvolvimento Sustentável, que vai de 2005-2014 (DEDS) e conta com diversas parcerias e busca ampliar ações em prol da Sustentabilidade Ambiental. Este projeto é estruturado de forma a pensar e discutir a Governança Global Ambiental (GGA) – sua origem, processos e problemas (conceituais e práticos) - e entender como a UNESCO contribui para a GGA através da Educação para o Desenvolvimento Sustentável (EDS). Embora a UNESCO seja uma Instituição de atuação global, enfocaremos as ações e debates desenvolvidos na Bacia Amazônica relacionados principalmente com o Programa Latino-Americano e Caribenho de Educação Ambiental (PLACEA), no âmbito da Iniciativa Latino Americana e Caribenha de Desenvolvimento Sustentável (ILAC), proposta pela Venezuela em 2003 e o Plano Andino-amazônico de Comunicação e Educação Ambiental (PANACEA), proposto pelo Peru em 2005 / The United Nations Educational Scientific and Cultural Organization (UNESCO) is structured in a multidisciplinary way acting on several areas of knowledge. One of that is the environmental that gain more space in the international scene. The United Nations Decade of the Education for the Sustainable Development from 2005 to 2014 is an initiative in progress that has many partnerships and seeks to expand actions toward Environmental Sustainability. This project is structured in a way that allow us to think and discuss the Environmental Global Governance (EGG) – its origins, process and problems (conceptual and practical) and understand how the UNESCO contribute to the EGG throughout the Education for Sustainable Development (ESD). Although it is an Institution of global scale, our focus will be in the actions and debates on the Amazon Region specially those that are related with the Latin American and Caribbean Program of Environmental Education (PLACEA), part of the of the Latin American and Caribbean Initiative for Sustainable Development (ILAC), proposed by Venezuela in 2003 and the Andean-amazonic Plan of Environmental Communication and Education (PANACEA), proposed by Peru in 2005
|
Page generated in 0.0801 seconds