Spelling suggestions: "subject:"ehe blackscholes equation"" "subject:"ehe blackholes equation""
11 |
Numerical singular perturbation approaches based on spline approximation methods for solving problems in computational financeKhabir, Mohmed Hassan Mohmed January 2011 (has links)
Philosophiae Doctor - PhD / Options are a special type of derivative securities because their values are derived from the value of some underlying security. Most options can be grouped into either of the two categories: European options which can be exercised only on the expiration date, and American options which can be exercised on or before the expiration date. American options are much harder to deal with than European ones. The reason being the optimal exercise policy of these options which led to free boundary problems. Ever since the seminal work of Black and Scholes [J. Pol. Econ. 81(3) (1973), 637-659], the differential equation approach in pricing options has attracted many researchers. Recently, numerical singular perturbation techniques have been used extensively for solving many differential equation models of sciences and engineering. In this thesis, we explore some of those methods which are based on spline approximations to solve the option pricing problems. We show a systematic construction and analysis of these methods to solve some European option problems and then extend the approach to solve problems of pricing American options as well as some exotic options. Proposed methods are analyzed for stability and convergence. Thorough numerical results are presented and compared with those seen in the literature. / South Africa
|
12 |
Numerical singular perturbation approaches based on spline approximation methods for solving problems in computational financeKabir, Mohmed Hassan Mohmed January 2011 (has links)
Philosophiae Doctor - PhD / Options are a special type of derivative securities because their values are derived from
the value of some underlying security. Most options can be grouped into either of
the two categories: European options which can be exercised only on the expiration
date, and American options which can be exercised on or before the expiration date.
American options are much harder to deal with than European ones. The reason being
the optimal exercise policy of these options which led to free boundary problems. Ever
since the seminal work of Black and Scholes [J. Pol. Bean. 81(3) (1973), 637-659],
the differential equation approach in pricing options has attracted many researchers.
Recently, numerical singular perturbation techniques have been used extensively for
solving many differential equation models of sciences and engineering. In this thesis,
we explore some of those methods which are based on spline approximations to solve
the option pricing problems. We show a systematic construction and analysis of these
methods to solve some European option problems and then extend the approach to
solve problems of pricing American options as well as some exotic options. Proposed
methods are analyzed for stability and convergence. Thorough numerical results are
presented and compared with those seen in the literature.
|
13 |
Μαθηματικές μέθοδοι στα μικροοικονομικά και χρηματοοικονομικάΑνδριόπουλος, Κωστής 22 December 2011 (has links)
Η διατριβή χωρίζεται σε δύο μέρη. Στο Μέρος Α' χρησιμοποιούνται μαθηματικές μέθοδοι της Θεωρίας Παιγνίων και των Δυναμικών Συστημάτων για να μελετηθεί η κανονική και χαοτική δυναμική διαφόρων μοντέλων της Μικροοικονομίας. Βασικά αποτελέσματα είναι η μετάβαση σε συνθήκες πλήρους ανταγωνισμού και η διαφοροποίηση του παραγόμενου προιόντος σε ένα δυοπώλιο-τριοπώλιο. Στο Μέρος Β', κύριος στόχος της έρευνας ήταν να συνδεθούν ορισμένες από τις πλέον γνωστές μερικές διαφορικές εξισώσεις (ΜΔΕ) που χρησιμοποιούνται στα Οικονομικά Μαθηματικά και Χρηματοοικονομικά, με την εξίσωση της θερμότητας της Μαθηματικής Φυσικής, εφαρμόζοντας την κατά Lie συμμετρίες ανάλυση. Επίσης η ανάλυση αυτή αποδείχθηκε ιδιαίτερα ισχυρή για την εύρεση αλγεβρικών δομών εξισώσεων που περιγράφουν την τιμολόγηση αγαθών. Έτσι, οδηγούμαστε με συστηματικό τρόπο όχι μόνο στην εύρεση νέων λύσεων αλλά και στην ανακάλυψη κομψών γενικεύσεων των εξισώσεων αυτών. / The thesis is divided into two parts. In Part One we use the mathematical methods of Game Theory and Dynamical Systems to study the stable and chaotic dynamics of various models in Microeconomics. Some of our main results are the route to perfect competition and the differentiation of goods in a duopoly and in a triopoly. In Part Two, our main concern was to link some of the most well-known partial differential equations that are encountered in Economics and Financial Mathematics, with the heat equation of Mathematical Physics, using Lie symmetry analysis. More to that, this analysis proved extremely powerful to the finding of interesting algebraic properties for equations that describe the pricing of commodities. In such way, we succeed in presenting, in a systematic fashion, not only new solutions, but also elegant generalisations of the equations under investigation.
|
14 |
Pricing Financial Derivatives with the FiniteDifference Method / Prissättning av finansiella derivat med den finita differensmetodenDanho, Sargon January 2017 (has links)
In this thesis, important theories in financial mathematics will be explained and derived. These theories will later be used to value financial derivatives. An analytical formula for valuing European call and put option will be derived and European call options will be valued under the Black-Scholes partial differential equation using three different finite difference methods. The Crank-Nicholson method will then be used to value American call options and solve their corresponding free boundary value problem. The optimal exercise boundary can then be plotted from the solution of the free boundary value problem. The algorithm for valuing American call options will then be further developed to solve the stock loan problem. This will be achieved by exploiting a link that exists between American call options and stock loans. The Crank-Nicholson method will be used to value stock loans and their corresponding free boundary value problem. The optimal exit boundary can then be plotted from the solution of the free boundary value problem. The results that are obtained from the numerical calculations will finally be used to discuss how different parameters affect the valuation of American call options and the valuation of stock loans. In the end of the thesis, conclusions about the effect of the different parameters on the optimal prices will be presented. / I det här kandidatexamensarbetet kommer fundamentala teorier inom finansiell matematik förklaras och härledas. Dessa teorier kommer lägga grunden för värderingen av finansiella derivat i detta arbete. En analytisk formel för att värdera europeiska köp- och säljoptioner kommer att härledas. Dessutom kommer europeiska köpoptioner att värderas numeriskt med tre olika finita differensmetoder. Den finita differensmetoden Crank-Nicholson kommer sedan användas för att värdera amerikanska köpoptioner och lösa det fria gränsvärdesproblemet (free boundary value problem). Den optimala omvandlingsgränsen (Optimal Exercise Boundary) kan därefter härledas från det fria gränsvärdesproblemet. Algoritmen för att värdera amerikanska köpoptioner utökas därefter till att värdera lån med aktier som säkerhet. Detta kan åstadkommas genom att utnyttja ett samband mellan amerikanska köpoptioner med lån där aktier används som säkerhet. Den finita differensmetoden Crank-Nicholson kommer dessutom att användas för att värdera lån med aktier som säkerhet. Den optimala avyttringsgränsen (Optimal Exit Boundary) kan därefter härledas från det fria gränsvärdesproblemet. Resultaten från de numeriska beräkningarna kommer slutligen att användas för att diskutera hur olika parametrar påverkar värderingen av amerikanska köpoptioner, samt värdering av lån med aktier som säkerhet. Avslutningsvis kommer slutsatser om effekterna av dessa parametrar att presenteras.
|
Page generated in 0.1278 seconds