• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 90
  • 90
  • 21
  • 10
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Abrupt climate change during the last glacial period: A Gulf of Mexico perspective

Hill, Heather W 01 June 2006 (has links)
Understanding the cause of abrupt climate change in the geologic past can help assess the potential magnitude and variability of future changes in regional and global climate. The research presented here focuses on some of the first records of hydrologic variability in the central North American continent during an interval of Marine Isotope Stage 3 (24-57 thousand years before present (ka)). Sediment core MD02-2551 from the Orca Basin, northern Gulf of Mexico, is used to document the first detailed melting history of the southern margin of the Laurentide Ice Sheet (LIS) during MIS 3, and to record terrestrial inputs from the Mississippi River related to changes in evaporation-precipitation over the mid-continent, from 28-45 ka.Paired measurements of oxygen isotopes and Mg/Ca-SST on the planktonic foraminifera Globigerinoides ruber (pink) are used to calculate the oxygen isotopic composition of seawater and test one of the key hypotheses for abrupt climate change. Five rvals of freshwater input from 28-45 ka do not match the abrupt Dansgaard-Oeschger temperature oscillations recorded in Greenland ice. Rather, summer melting of the LIS may have occurred during Antarctic warming and likely contributed to sea-level variability during MIS 3. A detailed assessment over one of the meltwater events, using the oxygen and carbon isotopic composition of G. ruber and the deeper dwelling Neogloboquadrina dutertrei, demonstrate that meltwater was confined to the surface layers and likely had an impact on the biological pump in the Gulf of Mexico. A similar oxygen isotopic composition of seawater record determined from the year-round white G. ruber suggests that melting was not limited to the warmest summer months. The timing of LIS meltwater input is decoupled from an interval of enhanced wet conditions over the North American continent and increased Mississippi River discharge, as shown by a suite of organic and sedimentologic proxies. Increasing summer insolation on the orbital scale may have led to a northward migration of the Intertropical Convergence Zone and an intensification and westward shift in the conical position of the Bermuda High, which shuttles moisture to the North American continent and contributes to flooding in the Mississippi River drainage basin.
82

History and the Natchez Trace Parkway

Gidcomb, Barry D. Drake, Frederick D., January 2000 (has links)
Thesis (D.A.)--Illinois State University, 2000. / Title from title page screen, viewed May 4, 2006. Dissertation Committee: Frederick D. Drake (chair), Lawrence W. McBride, M. Paul Holsinger, L. Moody Simms. Includes bibliographical references (leaves 245-254) and abstract. Also available in print.
83

The Des Moines Rapids: A History of its Adverse Effects on Mississippi River Traffic and its Use as a Source of Water Power to 1860

Enders, Donald L. 01 January 1973 (has links)
During the 19th Century, the Mississippi River was the chief commercial highway in the United States. But for two impediments, the Upper and Lower (Des Moines) Rapids, its entire course of 2400 miles would have offered an untroubled thoroughfare to watercraft.The federal government, as well as private concerns, attempted throughout the better part of that century to alleviate the river of its barriers and to develop its rapids as a source of power. Those attempts were disappointingly unsuccessful, however, and not until the advent of the 20th Century, when the nation had matured both economically and technologically, was the Mississippi freed of its obstacles and developed on a large scale as a source of energy.
84

Flow and transport modeling in large river networks

Tavakoly Zadeh, Ahmad A. 17 September 2014 (has links)
The work presented in this dissertation discusses large scale flow and transport in river networks and investigates advantages and disadvantages of grid-based and vector-based river networks. This research uses the Mississippi River basin as a continental-case study and the Guadalupe and San Antonio rivers and Seine basin in France as regional-case studies. The first component of this research presents an extension of regional river flow modeling to the continental scale by using high resolution river data from NHDPlus dataset. This research discovers obstacles of flow computations for river a network with hundreds of thousands river segments in continental scales. An upscaling process is developed based on the vector-based river network to decrease the computational effort, and to reduce input file size. This research identifies drainage area as a key factor in the flow simulation, especially in a wet climate. The second component of this research presents an enhanced GIS framework for a steady-state riverine nitrogen transport modeling in the San Antonio and Guadalupe river network. Results show that the GIS framework can be applied to represent a spatial distribution of flow and total nitrogen in a large river network with thousands of connected river segment. However, time features of the GIS environment limit its applicability to large scale time-varied modeling. The third component shows a modeling regional flow and transport with consideration of stream-aquifer interactions at a regional scale at high resolution. The STICS- Eau-Dyssée combined system is implemented for entire seine basin to compute daily nitrate flux in the Seine grid river network. Results show that river-aquifer exchange has a significant impact on river flow and transport modeling in larger river networks. / text
85

“I’VE KNOWN RIVERS:” REPRESENTATIONS OF THE MISSISSIPPI RIVER IN AFRICAN AMERICAN LITERATURE AND CULTURE

Gooch, Catherine 01 January 2019 (has links)
My dissertation, titled “I’ve Known Rivers”: Representations of the Mississippi River in African American Literature and Culture, uncovers the impact of the Mississippi River as a powerful, recurring geographical feature in twentieth-century African American literature that conveys the consequences of capitalist expansion on the individual and communal lives of Black Americans. Recent scholarship on the Mississippi River theorizes the relationship between capitalism, geography, and slavery. Walter Johnson’s River of Dark Dreams: Slavery and Empire in the Cotton Kingdom, Sven Beckert’s Empire of Cotton: A Global History, and Edward Baptist’s The Half Has Never Been Told: Slavery and the Making of American Capitalism examine how enslaved black labor contributed to the expansion of capitalism in the nineteenth century, but little is known about artistic representations of the Mississippi in the twentieth century. While scholars point primarily to the Mississippi River’s impact on slavery in the nineteenth century, I’ve Known Rivers reveals how black writers and artists capture the relationship between slavery, capitalism, and the Mississippi River. I consider a wide variety of texts in this study, from Richard Wright’s Uncle Tom’s Children and early 20th century Blues music, to late 20th century novels such as Toni Morrison’s Sula. This broad array of interdisciplinary texts illustrates a literary tradition in which the Mississippi’s representation in twentieth-century African American literature serves as both a reflection of the continuously changing economic landscape and a haunting reminder of slavery’s aftermath through the cotton empire. Furthermore, I’ve Known Rivers demonstrates how traumatic sites of slavery along the river are often reclaimed by black artists as source of empowerment, thereby contributing a long overdue analysis of the Mississippi River in African American literature as a potent symbol of racial progress.
86

Bio-Optical Variability of Surface Waters in the Northeastern Gulf of Mexico

Nababan, Bisman 11 April 2005 (has links)
Bio-optical variability of surface waters in Northeastern Gulf of Mexico (NEGOM) was examined using satellite and in situ data. Relatively high chlorophyll-a concentration (chl>=1 mg m-3) and high colored dissolved organic mater (ag443>=0.1 m-1) were generally observed inshore, near major river mouths, and in plumes of Mississippi River water that extended offshore during the three consecutive summer seasons (1998, 1999, and 2000). River discharge dominated chlorophyll-a concentration variability inshore, particularly near major river mouths. Strong interannual variability in chlorophyll-a concentration was observed inshore from Escambia to Tampa Bay region during the winter to spring transition, which was different in 1998 compared to the winter to spring transition in 1999 and 2000. This was related to higher fresh water discharge during the 1997-1998 El Niño-Southern Oscillation event as well as strong upwelling in spring 1998. The Mississippi plume extended >500 km southeast of the Mississippi delta and up to the Florida Keys was observed for the periods extending over 14 weeks between May and September every year of the study. In general, ag443 covaried linearly and inversely with salinity inshore during spring and fall, indicating conservative mixing. The NEGOM salinity-ag443 relationship of fall 1998, i.e., Salinity=36.59-29.86*ag443 (n=8771, r2=0.86; 0.01<=ag443<=0.52, 16 <=S<=36), served as the best predictor of NEGOM salinity based on in situ ag443 observations for spring and fall seasons from all years (<3% mean percentage errors; corresponding to <1.03 psu). This may help estimate salinity from satellite ocean color data, but further testing using data from multiple years is needed to improve such relationship. While river discharge was an important source of colored dissolved organic matter (CDOM), phytoplankton blooms also contributed to CDOM formation in the NEGOM. Using a pigment index of phytoplankton taxonomic groups, the variability in biomass proportion of microphytoplankton explained up to 76% of the variability of the average of normalized phytoplankton absorption coefficients (545, 625, and 673 nm). The clorophyll-specific absorption coefficient, a*ph(440), varies by a factor of 7 (0.02-0.15 m2mg-1). Particle size and pigment composition played important roles in determining a*ph(440) variability. This must be accounted for in chlorophyll-a concentration algorithms based on aph.
87

Design, evaluation, and applications of an aerial survey to estimate abundance of wintering waterfowl in Mississippi

Pearse, Aaron Todd, January 2007 (has links)
Thesis (Ph.D.)--Mississippi State University. Department of Wildlife and Fisheries. / Title from title screen. Includes bibliographical references.
88

Modeling Effects of Climatological Variability and Management Practices on Conservation of Groundwater from the Mississippi River Valley Shallow Alluvial Aquifer in the Mississippi Delta Region

Thornton, Robert Frank 12 May 2012 (has links)
Ninety-eight percent of water taken from the Mississippi River Shallow Alluvial Aquifer, hereafter referred to as “the aquifer” or “MRVA,” is used by the agricultural industry for irrigation. Mississippi Delta agriculture is increasingly using more water from the MRVA and the aquifer has been losing about 300,000 acreeet per year. This research expands on previous work in which a model was developed that simulates the effects of climatic variability, crop acreage changes, and specific irrigation methods on consequent variations in the water volume of the MRVA. This study corrects an identified problem by replacing total growing season precipitation with an irrigation demand driver based on evaporation and crop coefficients and changing the time scale from the entire growing season to a daily resolution. The calculated irrigation demand, as a climatological driver for the model, captures effective precipitation more precisely than the initial growing season precipitation driver. Predictive equations resulting from regression analyses of measured versus calculated irrigation water use showed R2 and correlations of 0.33 and 0.57, 0.77 and 0.88, 0.71 and 0.84, and 0.68 and 0.82 for cotton, corn, soybeans and rice, respectively. Ninetyive percent of the predicted values fall within a range of + or - about 23,000 acreeet, an error of about 10-percent. The study also adds an additional conservation strategy through the use of surface water from onarm reservoirs in lieu of groundwater. Analyses show that climate could provide the entire water need of the plants in 70-percent of the years for corn, 65-percent of the years for soybeans and cotton, and even 5-percent of the years for rice. Storing precipitation in onarm structures is an effective way to reduce reliance of Delta producers on groundwater. If producers adopted, at a minimum, the 97.5:2.5 ratio suggested management practice, this minimal management strategy could potentially conserve 48-percent, 35-percent and 42-percent of groundwater for cotton, corn and soybeans, respectively. Even in extreme drought years such as 2007, cotton, corn and soybeans produced under the 97.5:2.5 management strategy could conserve 32-percent, 46-percent and 38-percent of groundwater, respectively.
89

Mr. Stanton's Navy: the U. S. Army Ram Fleet and Mississippi Marine Brigade, 1862-1864

Mangrum, Robert G. 05 1900 (has links)
The purpose of this thesis is to illustrate the importance of the military principle of unity of command by examining the military history of a Union army unit during the Civil War. The Mississippi Marine Brigade and its predecessor, the Ellet Ram Fleet, being a creation of the War Department, and yet conducting tactical operations within the scope of the Navy Department, vividly illustrates the problems inherent in joint army-navy operations. The brigade's primary mission was to counter guerrilla warfare in the Mississippi River valley. The text describes the organization, administration, and major operations of the brigade as a mobile, independent, private military force.
90

Seamless Lidar Surveys Reveal Rates and Patterns of Subsidence in the Mississippi River Delta

Woock, Celeste E 23 May 2019 (has links)
Light Detection and Ranging (Lidar) data are used to report the temporal and spatial patterns of subsidence as well as the potential contributors to subsidence within the Barataria and Terrebonne Bays. In recent decades, subsidence in southeast Louisiana has become a topic of substantial and growing concern to the scientific community, the local residents, and all those invested in the region. Lidar data were acquired from the United States Geological Survey (USGS) and the LSU Center for Geoinformatics. The data has been manipulated to map the differenced Lidar, complete an instantaneous slope analysis, and determine the thickness of the Holocene sediments. The goal was to gain a more comprehensive understanding of the subsidence patterns and the dynamic processes driving subsidence within the study area. These efforts provide a better ability to plan for the future of the Louisiana working coast and mitigate against relative sea level rise and coastal land loss.

Page generated in 0.0652 seconds