• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 7
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 111
  • 111
  • 19
  • 12
  • 12
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Engineering and Discovery of Novel Biocatalysts

Renn, Dominik 09 1900 (has links)
Biocatalysis is considered a green and environmentally friendly technology. Therefore, novel enzymes and enzymatic systems, together with cascades and protein engineering approaches, are in high demand. Here, three very different biocatalytic approaches have been studied. First, the richness of enzymes in the Red Sea brine pools has been assessed, and the discovery and characterization of a novel halophilic γ-carbonic anhydrase is described, together with the protein engineering approach, which boosted the initial catalytic activity of the γ- carbonic anhydrase. The understanding of polyextremophilicity principles from enzymes from the Red Sea brine pool, contributes to the bioengineering effort of turning mesophilic enzymes into more stable variants. Next, focus is given to the use of amine-transaminases in cascades for chiral amine synthesis. This resulted in the development of a self-sufficient sustainable cascade for chiral and non-chiral amine synthesis. This cascade was achieved by combining a lysine decarboxylase with an amine-transaminase to generate a cheap amino donor source for a more sustainable reaction economy. Finally, gas vesicle nanoparticles are functionalized by various engineering principles to create floating platforms for the immobilization of enzymes. The proof-of-concept was achieved by anchoring a phytase via anchoring peptides on the gas vesicle nanoparticles surface. These bioengineering approaches contributed to the effort of generating first principles for protein engineering.
52

Fate of Plastic Pollution in the Arabian Seas

Martin, Cecilia 09 1900 (has links)
Plastic pollution has become of public concern recently and only in the last decades the need of quantifying loads of plastic in the marine environment and identifying their ultimate destination has been urged as a mean to point at where interventions should concentrate. The Arabian seas (Red Sea and Arabian Gulf) have oceanographic features that candidate them as accumulation zones for marine plastics, but, especially the Red Sea, are largely unexplored. The dissertation here presented provides significant advances in the understanding of the marine plastic distribution in the two basins. Despite the initial hypothesis, the Red Sea was found to hold a remarkably low abundance of plastic particles in its surface waters. Similarly, previous assessments have reported the same in the Arabian Gulf. In line with the global estimates, only a small portion of the plastic that is discarded yearly in the marine environment is found in its surface waters, implying the presence of removal processes. However, the unexpectedly low loads of floating plastics in the Arabian seas indicate that sinks are likely more significant here than elsewhere. In the Red Sea, an extensive survey of macroplastic stranded on shores, globally considered a major sink of marine plastic, has indicated that Avicennia marina mangrove forests, through the mesh created by their pneumatophores, contribute significantly more than unvegetated shores in retaining plastics. Loads of plastic in the Arabian Gulf mangrove stands, more impacted by coastal development than stands in the Red Sea, are even larger. The role of mangroves as significant sinks of plastics is further corroborated by the finding that the burial rates of plastic in their sediments follow an exponential increase in line with the global plastic production increase, ultimately demonstrating that plastic is likely sequestered there permanently. Mangrove forests alone are, however, not enough to justify the mismatch between plastic inputs and loads in surface waters. The experimental finding showed here that coral structures can passively trap substantial loads of microplastics and the large extension of reefs, especially in the Red Sea, suggest that reefs might constitute a missing sink of marine plastic in the basin worth exploring.
53

Biodiversity Patterns on an Inshore to Offshore Gradient Using Metabarcoding and Barcoding Molecular Tools

Villalobos Vazquez de la Parra, Rodrigo 12 1900 (has links)
It has been estimated that coral reefs shelter 830 000 species. Well-studied biodiversity patterns provide tools for better representation of species in marine protected areas. A cross-shelf gradient in biodiversity exists for fishes, corals, and macroalgae. Here, an inshore to offshore gradient in biodiversity on the Saudi Arabian coast of the Red Sea was sampled using Autonomous Reef Monitoring Structures (ARMS) with barcoding and metabarcoding techniques. It was hypothesized that differences in community structure would be driven by an increase in habitat area. The difference was attributed to the greater accumulation of sediments close to shore that increases the area habitable for sediment dwelling organisms and favors macroalgal cover. Macroalgae are inhabited by a greater number of species than live coral. Only 10% of the sequences of the barcoded fraction and <1% of the metabarcoded fraction had a BLAST hit on the NCBI database with a previously identified species sequence. In addition, the rarefaction curves for all fractions did not plateau. The ARMS community composition changed from inshore to offshore and was significantly correlated with the percentage of algal and bryozoan plate cover. The differences in community composition were related to changes in habitat but not to sediments retrieved from the ARMS.
54

A Tale of Two Aggregations: Kinship and Population Genetics of Whale Sharks (Rhincodon typus) at Shib Habil, Saudi Arabia, and Mafia Island, Tanzania.

Hardenstine, Royale 12 1900 (has links)
In a recent global study of whale shark population genetics, aggregations were found to belong to either the Indo-Pacific or Atlantic population. This overview included an aggregation found within the Red Sea near Al Lith, Saudi Arabia, however the Mafia Island, Tanzania, aggregation was not part of the study. Both aggregations have unique aspects with the Saudi Arabian individuals showing sexual parity with no segregation, while recent acoustic results have revealed cryptic residency at Mafia Island. Genetic analysis using 11 microsatellite markers was performed on whale sharks from both locations. A combination of primers sourced from previous studies and newly designed primers were used to compare both aggregations and the individuals within. Samples were collected in the Red Sea for 5 seasons spanning 6 years, and for 2 seasons in Tanzania. Analysis with STRUCTURE showed a lack of significant genetic differences between the two aggregations, confirming that whale sharks in Tanzania are part of the Indo-Pacific population. Kinship analysis using COLONY found two potential pairs of full siblings in Tanzania. One pair had a high probability (.993) of being a full sibling dyad while the other had a lower probability (.357). There were no sibling pairs identified from the Red Sea aggregation. Genetic diversity was investigated using allelic richness over the 6 seasons at Al Lith, with values showing no significant change. This is in contrast to results that showed a decline in genetic diversity at Western Australia’s Ningaloo reef. These differences, however, only highlight the need for genetic diversity studies over longer time periods and at other aggregations within the Indo-Pacific.
55

Biodiversity of Macrofauna Associated with Sponges across Ecological Gradients in the Central Red Sea

Kandler, Nora 12 1900 (has links)
Between 33 and 91 percent of marine species are currently undescribed, with the majority occurring in tropical and offshore environments. Sponges act as important microhabitats and promote biodiversity by harboring a wide variety of macrofauna and microbiota, but little is known about the relationships between the sponges and their symbionts. This study uses DNA barcoding to examine the macrofaunal communities associated with sponges of the central Saudi Arabian Red Sea, a drastically understudied ecosystem with high biodiversity and endemism. In total, 185 epifaunal and infaunal operational taxonomic units (OTUs) were distinguished from the 1399 successfully-sequenced macrofauna individuals from 129 sponges representing seven sponge species, one of which (Stylissa carteri) was intensively studied. A significant difference was found in the macrofaunal community composition of Stylissa carteri along a cross-shelf gradient using relative OTU abundance (Bray-Curtis diversity index). The abundance of S. carteri also follows a cross-shelf gradient, increasing with proximity to shore. The difference in macrofaunal communities of several species of sponges at one location was found to be significant as well, using OTU presence (binary Jaccard diversity index). Four of the seven sponge species collected were dominated by a single annelid OTU, each unique to one sponge species. A fifth was dominated by four arthropod OTUs, all species-specific as well. Region-based diversity differences may be attributed to environmental factors such as reef morphology, water flow, and sedimentation, whereas species-based differences may be caused by sponge morphology, microbial abundances, and chemical defenses. As climate change and ocean acidification continue to modify coral reef ecosystems, understanding the ecology of sponges and their role as microhabitats may become more important. This thesis also includes a supplemental document in the form of a spreadsheet showing the number of macrofauna individuals of each OTU found within each sponge sample.
56

The Red Sea: An Arena for Wind-Wave Modeling in Enclosed Seas

Langodan, Sabique 12 1900 (has links)
Wind and waves play a major role in important ocean dynamical processes, such as the exchange of heat, momentum and gases between atmosphere and ocean, that greatly contributes to the earth climate and marine lives. Knowledge on wind and wave weather and climate is crucial for a wide range of applications, including oceanographic studies, maritime activities and ocean engineering. Despite being one of the important world shipping routes, the wind-wave characteristics in the Red Sea are yet to be fully explored. Because of the scarcity of waves data in the Red Sea, numerical models become crucial and provide very powerful tools to extrapolate wind and wave data in space, and backward and forward in time. Unlike open oceans, enclosed basins wave have different characteristics, mainly because of their local generation processes. The complex orography on both sides of the Red Sea makes the local wind, and consequently wave, modeling very challenging. This thesis considers the modeling of wind-wave characteristics in the Red Sea, including their climate variability and trends using state-of-the-art numerical models and all available observations. Different approaches are investigated to model and understand the general and unusual wind and wave conditions in the basin using standard global meteorological products and customised regional wind and wave models. After studying and identifying the main characteristics of the wind-wave variability in the Red Sea, we demonstrate the importance of generating accurate atmospheric forcing through data assimilation for reliable wave simulations. In particular, we show that the state-of-the-art physical formulation of wave models is not suitable to model the unique situation of the two opposing wind-waves systems in the Red Sea Convergence Zone, and propose and successfully test a modification to the input and white-capping source functions to address this problem. We further investigate the climate variability and trends of wind and waves in the Red Sea using high-resolution wind and wave reanalyses that have been generated as part of this thesis. An innovative spectral partition technique is first applied to distinguish the dominant wave systems. Our analysis demonstrates that winds, and consequently waves, exhibit a decreasing trend in the Red Sea. This is mainly attributed to a remarkable weakening of the winds protruding from the Mediterranean Sea. We also use these highresolution reanalyses to assess the potential for harvesting wind and wave energy from the Red Sea.
57

Impact of Crab Bioturbation on Nitrogen-Fixation Rates in Red Sea Mangrove Sediment

Qashqari, Maryam S. 05 1900 (has links)
Mangrove plants are a productive ecosystem that provide several benefits for marine organisms and industry. They are considered to be a food source and habitat for many organisms. However, mangrove growth is limited by nutrient availability. According to some recent studies, the dwarfism of the mangrove plants is due to the limitation of nitrogen in the environment. Biological nitrogen fixation is the process by which atmospheric nitrogen is fixed into ammonium. Then, this fixed nitrogen can be uptaken by plants. Hence, biological nitrogen fixation increases the input of nitrogen in the mangrove ecosystem. In this project, we focus on measuring the rates of nitrogen fixation on Red Sea mangrove (Avicennia marina) located at Thuwal, Saudi Arabia. The nitrogen fixation rates are calculated by the acetylene reduction assay. The experimental setup will allow us to analyze the effect of crab bioturbation on nitrogen fixing rates. This study will help to better understand the nitrogen dynamics in mangrove ecosystems in Saudi Arabia. Furthermore, this study points out the importance of the sediment microbial community in mangrove trees development. Finally, the role of nitrogen fixing bacteria should be taken in account for future restoration activities.
58

The Effect of Increasing Temperature on Greenhouse Gas Emissions by Halophila stipulacea in the Red Sea

Burkholz, Celina 12 1900 (has links)
Seagrass ecosystems are intense carbon sinks, but they can also emit greenhouse gases (GHG), such as carbon dioxide (CO2) and methane (CH4), to the atmosphere. Yet, GHG emissions by seagrasses are not considered when estimating global CH4 production rates by natural sources, although these estimations will help predict future scenarios and potential changes in CH4 emissions. In addition, the effect of warming on GHG emissions by seagrasses has not yet been reported. The present study aims to assess the CO2 and CH4 production rates by vegetated and adjacent bare sediment of a monospecific seagrass meadow (Halophila stipulacea) located in the central Red Sea. We measured CH4 and CO2 fluxes and their isotopic signatures by cavity ringdown spectroscopy on chambers containing vegetated and bare sediment. The fluxes were measured at temperatures from 25 °C (winter seawater temperature) to 37 °C to cover the natural thermal range and future seawater temperatures in the Red Sea. Additional parameters analyzed included changes in the sediment microbial community composition, sediment organic matter, organic carbon, nitrogen, and phosphorus concentration. We detected up to 100-fold higher CH4 (up tp 571.65 µmol CH4 m−2 d−1) and up to six-fold higher CO2 (up to 13,930.18 µmol CO2 m−2 d−1) fluxes in vegetated sediment compared to bare sediment, and an increase in CH4 and CO2 production with increasing temperature. In contrast, CH4 and CO2 production rates decreased in communities that were maintained at 25 °C, while communities that were exposed to prolonged darkness showed a decrease in CH4 and an increase in CO2 production rates. However, only minor changes were seen in the microbial community composition with increasing temperatures. These results show that GHG emissions by seagrasses might be affected by natural temperature extremes and warming due to climate change in the Red Sea. The findings will have critical implications for the estimation of natural GHG sources, especially when predicting future changes in the global CH4 budget.
59

Characterization of Red Sea Cyanobacteria Aimed for Cell Factory Applications in Saudi Arabia: Synechococcus sp. RSCCF101.

Ng, Yi Mei 04 1900 (has links)
Saudi Arabia is highly accessible to marine water, receives year-round availability of sunlight and generates a high annual carbon dioxide emission, all of which are justifications that merits the deployment of cyanobacterial cell factories. However, industrial cyanobacterial strains capable of thriving in conditions of the Arabian Peninsula are currently lacking. Given the fact that native cyanobacteria from the Red Sea are adapted to the local conditions, they are therefore good cell factory candidates where their inherent attributes can be harnessed. In this dissertation, an isolation and screening pipeline was developed to specifically identify physiologically robust cyanobacterial strains from the central Red Sea. Seventeen unicellular cyanobacterial strains were extensively cataloged through a series of physiological characterization and their evolutionary relationships were ascertained through phylogenetic analyses. Arising from this survey work, a high light, thermo- and halo-tolerant Synechococcus sp. RSCCF101 was selected for metabolic analysis under various growth conditions to assess its suitability as a platform for cell factory development. Significant metabolic changes were observed in cells subjected to different light regimes. High phycocyanin and chlorophyll a content were obtained under the low-light growth (50 μmol photons.m-2.s-1) while high biomass was accumulated, along with an increase external nitrate demand, under the high light growth (200 μmol photons.m-2.s-1). A genomic and transcriptomic approach was undertaken to elucidate the molecular signatures of Synechococcus sp. RSCCF101. Synechococcus sp. RSCCF101 contains a small genome (3 Mbp) that is rich in guanine cytosine content (68%) and harbors genes that encode for compatible solutes biosynthetic pathway and phycobilisome subunits which may account for its halo-tolerant and phycocyanin rich phenotype. Upon high-light treatment, the light harvesting machineries of Synechococcus sp. RSCCF101 was downregulated while the photosystem protection and carbon fixation capacity were upregulated. Taken together, the findings of this research will facilitate in the development of a new model system for industrial applications in high-light, high temperature and high salinity environments in general and Saudi Arabia in particular.
60

Characterization of the genetic diversity and thermal tolerance of Pocilloporid Corals in the Red Sea

Buitrago-López, Carol 07 1900 (has links)
This dissertation characterizes the genetic diversity and thermal tolerance of the coral holobiont Stylophora pistillata and Pocillopora verrucosa (family Pocilloporidae) across the Saudi Arabian Red Sea coast (~1500 km). The population genetic structure and holobiont diversity was assessed using genome-wide single nucleotide polymorphisms (SNPs) identified with reference genome-based RAD-Seq, while the associated microbial communities of the algal symbiont (Symbiodiniaceae) and bacteria were inferred from metabarcoding analyses of the ITS2 and 16S rRNA gene. Thermal tolerance of Stylophora pistillata colonies was assessed using standardized short-term heat stress assays on the novel Coral Bleaching Automated Stress System (CBASS). Chapter 1 details the assembly and annotation of the P. verrucosa genome (~380 Mbp; 27,439 gene models), which was highly complete and compared well to the already available S. pistillata genome. Chapter 2 presents population genetic analyses of both coral species, which revealed pronounced differences in their population genetic structure. While P. verrucosa seemed to be highly connected across the Red Sea basin with the exception of the far south, S. pistillata depicted a complex population genetic structure. Microbial communities of Symbiodiniaceae and bacteria were overall less diverse in P. verrucosa than in S. pistillata, and followed an association pattern that was partly determined by the environment and partly by host genotype. Chapter 3 identifies thermally tolerant S. pistillata genotypes by comparing the heat stress response of colonies collected at two sites within the same reef. Ex-situ heat-stress assays confirmed that colonies from the more temperature stable site (fore reef) were less thermally tolerant than their conspecifics from the back reef, where the diel temperature is more variable. This chapter also highlights the utility of acute heat-stress assays as a tool to identify thermotolerant colonies. Taken together, the work of this dissertation provides a foundation for coral conservation in the Red Sea. It highlights that the genetic structure differs between coral species, suggesting that effective conservation through marine protected areas need to incorporate data from multiple species. Coral population genetic data should further be complemented by thermal tolerance assays across the Red Sea to associate genetic diversity with patterns of heat stress tolerance.

Page generated in 0.0707 seconds