• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • 1
  • Tagged with
  • 20
  • 20
  • 20
  • 7
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Increase the packing density of vertically aligned carbon nanotube array for the application of thermal interface materials

Gu, Wentian 23 March 2011 (has links)
To fulfill the potential of carbon nanotube (CNT) as thermal interface material (TIM), the packing density of CNT array needs improvement. In this work, two potential ways to increase the packing density of CNT array are tested. They are liquid precursor(LP)CVD and cycled catalyst deposition method. Although LP-CVD turned out to be no help for packing density increase, it is proved to enhance the CNT growth rate. The packing density of CNT array indeed increases with the cycle number. The thermal conductivity of the CNT array increases with the packing density. This work is believed to be a step closer to the real life application of CNT in electronic packaging industry.
12

Characterization of thermal interface materials using flash diffusivity and infrared microscopy methods

Chhasatia, Viralsinh January 2009 (has links)
Thesis (M.S.)--State University of New York at Binghamton, Thomas J. Watson School of Engineering and Applied Science, Department of Mechanical Engineering, 2009. / Includes bibliographical references.
13

Characterization of Thermo-Mechanical Damage in Tin and Sintered Nano-Silver Solders

January 2018 (has links)
abstract: Increasing density of microelectronic packages, results in an increase in thermal and mechanical stresses within the various layers of the package. To accommodate the high-performance demands, the materials used in the electronic package would also require improvement. Specifically, the damage that often occurs in solders that function as die-attachment and thermal interfaces need to be addressed. This work evaluates and characterizes thermo-mechanical damage in two material systems – Electroplated Tin and Sintered Nano-Silver solder. Tin plated electrical contacts are prone to formation of single crystalline tin whiskers which can cause short circuiting. A mechanistic model of their formation, evolution and microstructural influence is still not fully understood. In this work, growth of mechanically induced tin whiskers/hillocks is studied using in situ Nano-indentation and Electron Backscatter Diffraction (EBSD). Electroplated tin was indented and monitored in vacuum to study growth of hillocks without the influence of atmosphere. Thermal aging was done to study the effect of intermetallic compounds. Grain orientation of the hillocks and the plastically deformed region surrounding the indent was studied using Focused Ion Beam (FIB) lift-out technique. In addition, micropillars were milled on the surface of electroplated Sn using FIB to evaluate the yield strength and its relation to Sn grain size. High operating temperature power electronics use wide band-gap semiconductor devices (Silicon Carbide/Gallium Nitride). The operating temperature of these devices can exceed 250oC, preventing use of traditional Sn-solders as Thermal Interface materials (TIM). At high temperature, the thermomechanical stresses can severely degrade the reliability and life of the device. In this light, new non-destructive approach is needed to understand the damage mechanism when subjected to reliability tests such as thermal cycling. In this work, sintered nano-Silver was identified as a promising high temperature TIM. Sintered nano-Silver samples were fabricated and their shear strength was evaluated. Thermal cycling tests were conducted and damage evolution was characterized using a lab scale 3D X-ray system to periodically assess changes in the microstructure such as cracks, voids, and porosity in the TIM layer. The evolution of microstructure and the effect of cycling temperature during thermal cycling are discussed. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2018
14

Constant Interface Temperature Reliability Assessment Method: An Alternative Method for Testing Thermal Interface Material in Products

Amoah-Kusi, Christian 26 May 2015 (has links)
As electronic packages and their thermal solutions become more complex the reliability margins in the thermal solutions diminish and become less tolerant to errors in reliability predictions. The current method of thermally stress testing thermal solutions can be over or under predicting end of life thermal performance. Benefits of accurate testing and modeling are improved silicon yield in manufacturing, improved performance, lower cost thermal solutions, and shortened test times. The current method of thermally stress testing is to place the entire unit in an elevated isothermal temperature and periodically measure thermal performance. Isothermally aging is not an accurate representation of how the unit will be used by the customer and does not capture the thermal gradients and mechanical stresses due to different coefficients of thermal expansion of the materials used in the thermal solution. A new testing system, CITRAM which is an acronym for Constant Interface Temperature Reliability Method, has been developed that uses an electronic test board. The approach captures the thermal and mechanical stresses accurately and improves test time by 20-30% as a result of automation. Through this study a difference in the two methods has been identified and the new CITRAM method should be adopted as current practice.
15

PROCESSING OF NANOCOMPOSITES AND THEIR THERMAL AND RHEOLOGICAL CHARACTERIZATION

Jacob M Faulkner (7023458) 13 August 2019 (has links)
<p>Polymer nanocomposites are a constantly evolving material category due to the ability to engineer the mechanical, thermal, and optical properties to enhance the efficiency of a variety of systems. While a vast amount of research has focused on the physical phenomena of nanoparticles and their contribution to the improvement of such properties, the ability to implement these materials into existing commercial or newly emerging processing methods has been studied much less extensively. The primary characteristic that determines which processing technique is the most viable is the rheology or viscosity of the material. In this work, we investigate the processing methods and properties of nanocomposites for thermal interface and radiative cooling applications. The first polymer nanocomposite examined here is a two-component PDMS with graphene filler for 3D printing via a direct ink writing approach. The composite acts as a thermal interface material which can enhance cooling between a microprocessor and a heat sink by increasing the thermal conductivity of the gap. Direct ink writing requires a shear thinning ink with specific viscoelastic properties that allow for the material to yield through a nozzle as well as retain its shape without a mold following deposition. No predictive models of viscosity for nanocomposites exist; therefore, several prominent models from literature are fit with experimental data to describe the change in viscosity with the addition of filler for several different PDMS ratios. The result is an understanding of the relationship between the PDMS component ratio and graphene filler concentration with respect to viscosity, with the goal of remaining within the acceptable limits for printing via direct ink writing. The second nanocomposite system whose processability is determined is paint consisting of acrylic filled with reflective nanoparticles for radiative cooling paint applications. The paint is tested with both inkjet and screen-printing procedures with the goal of producing a thermally invisible ink. Radiative cooling paint is successfully printed for the first time with solvent modification. This work evaluates the processability of polymer nanocomposites through rheological tailoring. </p><br>
16

導熱介面材料全球競爭策略分析: 高柏科技公司個案探討 / Global Competitive Strategic Analysis in TIM Industry: A Case Study

蕭酩献, Hsiao, Kenny Unknown Date (has links)
導熱介面材料(Thermal Interface Materials, TIM)是所有電子相關產品不可或缺的組成元素之一,沒有了它,市面上就不會有電腦、遊戲機、智慧型手機,也不會有電視機、LED燈,更不會有油電混合車;既然如此不可或缺,但它卻又不造就了是電子產業慣例定義中的關鍵零組件。如此特殊的屬性與定位,導熱介面材料的不凡與平凡。 台灣廠商高柏科技過去十年,趁著消費性電子產品的興起,投入導熱介面材料的生產與銷售,並且堅持自行研發產品,十年間已見規模。但是由於小廠迅速冒出,削價競爭,殺戮慘烈,平凡的低階產品市場已成紅海。有鑑於全球總體的大趨勢,節能減碳需求與日俱增,導熱、散熱等熱管理產業已然成為下一波的主流市場,高柏科技是否可再一次順應潮流,再創另一個豐收的十年,全球競爭力的提高將是成敗關鍵。 高柏科技於是亟思運用既有核心競爭優勢,輔以積極開闢海外市場,希望以全球佈局的高度,以敏銳的市場洞察力,察覺導熱介面材料下一個世代的產品應用之星,找到一片屬於導熱介面材料的不凡的深湛藍海。 / Thermal Interface Materials (TIM) is one of key components in many electronics applications. TIM generally works to solve thermal issues in these electronic products. T-Global Technology Co., one of the top 15 leading companies in the global TIM industry, has been building its own brand by manufacturing and marketing it own products since 10 years ago. The company faces much higher competitions from producers of emerging markets who focus on the low-cost or entry-lever productions. This study considers and investigates how to develop sustainable growth strategies in the current situation. A thorough analysis suggests that strategies of deeper penetrating and expanding into global markets by leveraging the company's core competence may well serve the purpose.
17

Processing of vertically aligned carbon nanotubes for heat transfer applications

Cross, Robert 25 August 2008 (has links)
The development of wide band gap semiconductors for power and RF electronics as well as high power silicon microelectronics has pushed the need for advanced thermal management techniques to ensure device reliability. While many techniques to remove large heat fluxes from devices have been developed, fewer advancements have been made in the development of new materials which can be integrated into the packaging architecture. This is especially true in the development of thermal interface materials. Conventional solders are currently being used for interface materials in the most demanding applications, but have issues of high cost, long term reliability and inducing negative thermomechanical effects in active die. Carbon nanotubes have been suggested as a possible thermal interface material which can challenge solders because of their good thermal properties and 1-D structure which can enhance mechanical compliance between surfaces. In this work, we have developed a novel growth and transfer printing method to manufacture vertically aligned CNTs for thermal interface applications. This method follows the nanomaterial transfer printing methods pioneered at Georgia Tech over the past several years. This process is attractive as it separates the high growth synthesis temperatures from the lower temperatures needed during device integration. For this thesis, CNTs were grown on oxidized Si substrates which allowed us to produce high quality vertically aligned CNTs with specific lengths. Through the development of a water vapor assisted etch process, which takes place immediately after CNT synthesis, control over the adhesion of the nanotubes to the growth surface was achieved. By controlling the adhesion we demonstrated the capability to transfer arrays of vertically aligned CNTs to polyimide tape. The CNTs were then printed onto substrates like Si and Cu using a unique gold bonding process. The thermal resistances of the CNTs and the bonded interfaces were measured using the photoacoustic method, and the strength of the CNT interface was measured through tensile tests. Finally, the heat dissipation capabilities of the vertically aligned CNTs were demonstrated through incorporation with high brightness LEDs. A comparison of LED junction temperatures for devices using a CNT and lead free solder thermal interface was made.
18

Carbon nanotubes for thermal interface materials in microelectronic packaging

Lin, Wei 14 November 2011 (has links)
As the integration scale of transistors/devices in a chip/system keeps increasing, effective cooling has become more and more important in microelectronics. To address the thermal dissipation issue, one important solution is to develop thermal interface materials with higher performance. Carbon nanotubes, given their high intrinsic thermal and mechanical properties, and their high thermal and chemical stabilities, have received extensive attention from both academia and industry as a candidate for high-performance thermal interface materials. The thesis is devoted to addressing some challenges related to the potential application of carbon nanotubes as thermal interface materials in microelectronics. These challenges include: 1) controlled synthesis of vertically aligned carbon nanotubes on various bulk substrates via chemical vapor deposition and the fundamental understanding involved; 2) development of a scalable annealing process to improve the intrinsic properties of synthesized carbon nanotubes; 3) development of a state-of-art assembling process to effectively implement high-quality vertically aligned carbon nanotubes into a flip-chip assembly; 4) a reliable thermal measurement of intrinsic thermal transport property of vertically aligned carbon nanotube films; 5) improvement of interfacial thermal transport between carbon nanotubes and other materials. The major achievements are summarized. 1. Based on the fundamental understanding of catalytic chemical vapor deposition processes and the growth mechanism of carbon nanotube, fast synthesis of high-quality vertically aligned carbon nanotubes on various bulk substrates (e.g., copper, quartz, silicon, aluminum oxide, etc.) has been successfully achieved. The synthesis of vertically aligned carbon nanotubes on the bulk copper substrate by the thermal chemical vapor deposition process has set a world record. In order to functionalize the synthesized carbon nanotubes while maintaining their good vertical alignment, an in situ functionalization process has for the first time been demonstrated. The in situ functionalization renders the vertically aligned carbon nanotubes a proper chemical reactivity for forming chemical bonding with other substrate materials such as gold and silicon. 2. An ultrafast microwave annealing process has been developed to reduce the defect density in vertically aligned carbon nanotubes. Raman and thermogravimetric analyses have shown a distinct defect reduction in the CNTs annealed in microwave for 3 min. Fibers spun from the as-annealed CNTs, in comparison with those from the pristine CNTs, show increases of ~35% and ~65%, respectively, in tensile strength (~0.8 GPa) and modulus (~90 GPa) during tensile testing; an ~20% improvement in electrical conductivity (~80000 S m⁻¹) was also reported. The mechanism of the microwave response of CNTs was discussed. Such an microwave annealing process has been extended to the preparation of reduced graphene oxide. 3. Based on the fundamental understanding of interfacial thermal transport and surface chemistry of metals and carbon nanotubes, two major transfer/assembling processes have been developed: molecular bonding and metal bonding. Effective improvement of the interfacial thermal transport has been achieved by the interfacial bonding. 4. The thermal diffusivity of vertically aligned carbon nanotube (VACNT, multi-walled) films was measured by a laser flash technique, and shown to be ~30 mm² s⁻¹ along the tube-alignment direction. The calculated thermal conductivities of the VACNT film and the individual CNTs are ~27 and ~540 W m⁻¹ K⁻¹, respectively. The technique was verified to be reliable although a proper sampling procedure is critical. A systematic parametric study of the effects of defects, buckling, tip-to-tip contacts, packing density, and tube-tube interaction on the thermal diffusivity was carried out. Defects and buckling decreased the thermal diffusivity dramatically. An increased packing density was beneficial in increasing the collective thermal conductivity of the VACNT film; however, the increased tube-tube interaction in dense VACNT films decreased the thermal conductivity of the individual CNTs. The tip-to-tip contact resistance was shown to be ~1×10⁻⁷ m² K W⁻¹. The study will shed light on the potential application of VACNTs as thermal interface materials in microelectronic packaging. 5. A combined process of in situ functionalization and microwave curing has been developed to effective enhance the interface between carbon nanotubes and the epoxy matrix. Effective medium theory has been used to analyze the interfacial thermal resistance between carbon nanotubes and polymer matrix, and that between graphite nanoplatlets and polymer matrix.
19

COMPLIANT MICROSTRUCTURES FOR ENHANCED THERMAL CONDUCTANCE ACROSS INTERFACES

Jin Cui (9187607) 04 August 2020 (has links)
<p>With the extreme increases in power density of electronic devices, the contact thermal resistance imposed at interfaces between mating solids becomes a major challenge in thermal management. This contact thermal resistance is mainly caused by micro-scale surface asperities (roughness) and wavy profile of surface (nonflatness) which severely reduce the contact area available for heat conduction. High contact pressures (1~100 MPa) can be used to deform the surface asperities to increase contact area. Besides, a variety of conventional thermal interface materials (TIM), such as greases and pastes, are used to improve the contact thermal conductance by filling the remaining air gaps. However, there are still some applications where such TIMs are disallowed for reworkability concerns. For example, heat must be transferred across dry interfaces to a heat sink in pluggable opto-electronic transceivers which needs to repeatedly slide into / out of contact with the heat sink. Dry contact and low contact pressures are required for this sliding application.</p> <p>This dissertation presents a metallized micro-spring array as a surface coating to enhance dry contact thermal conductance under ultra-low interfacial contact pressure. The shape of the micro-springs is designed to be mechanically compliant to achieve conformal contact between nonflat surfaces. The polymer scaffolds of the micro-structured TIMs are fabricated by using a custom projection micro-stereolithography (μSL) system. By applying the projection scheme, this method is more cost-effective and high-throughput than other 3D micro-fabrication methods using a scanning scheme. The thermal conductance of polymer micro-springs is further enhanced by metallization using plating and surface polishing on their top surfaces. The measured mechanical compliance of TIMs indicates that they can deform ~10s μm under ~10s kPa contact pressures over their footprint area, which is large enough to accommodate most of surface nonflatness of electronic packages. The measured thermal resistances of the TIM at different fabrication stages confirms the enhanced thermal conductance by applying metallization and surface polishing. Thermal resistances of the TIMs are compared to direct metal-to-metal contact thermal resistance for flat and nonflat mating surfaces, which confirms that the TIM outperforms direct contact. A thin layer of soft polymer is coated on the top surfaces of the TIMs to accommodate surface roughness that has a smaller spatial period than the micro-springs. For rough surfaces, the polymer-coated TIM has reduced thermal resistance which is comparable to a benchmark case where the top surfaces of the TIM are glued to the mating surface. A polymer base is designed under the micro-spring array which can provide the advantages for handling as a standalone material or integration convenience, at the toll of an increased insertion resistance. Through-holes are designed in the base layer and coated with thermally conductive metal after metallization to enhance thermal conductance of the base layer; a thin layer of epoxy is applied between the base layer and the working surface to reduce contact thermal resistance exposed on the base layer. Cycling tests are conducted on the TIMs; the results show good early-stage reliability of the TIM under normal pressure, sliding contact, and temperature cycles. The TIM is thermally demonstrated on a pluggable application, namely, a CFP4 module, which shows enhanced thermal conductance by applying the TIM. </p> To further enhance the potential mechanical compliance of microstructured surfaces, a stable double curved beam structure with near-zero stiffness composed of intrinsic negative and positive stiffness elastic elements is designed and fabricated by introducing residual stresses. Stiffness measurements shows that the positive-stiffness single curved beam, which is the same as the top beam in the double curved beam, is stiffer than the double curved beam, which confirms the negative stiffness of the bottom beam in the double curved beam. Layered near zero-stiffness materials made of these structures are built to demonstrate the scalability of the zero-stiffness zone.
20

Neuartige Charakterisierungsmethoden für moderne Thermische Interface-Materialien einschließlich deren Struktur-Eigenschafts-Korrelation

Abo Ras, Mohamad 11 June 2020 (has links)
Die fortschreitende Miniaturisierung von elektronischen Systemen begleitet von steigender Leistung und Funktionalität führt zur Erhöhung der Leistungsdichte. Um diesem Trend zu entsprechen, werden neue Entwärmungskonzepte benötigt, die wiederum neuartige Materialien und Materialverbünde fordern. Ein wichtiger Aspekt dieser Arbeit ist deshalb die Konzentration auf die für den Wärmetransport entscheidenden Materialien. Diese Arbeit befasst sich mit der Entwicklung von Methoden für die umfassende thermische Charakterisierung von den verschiedenen Materialien und Materialklassen, die in der Elektronikindustrie verwendet werden. Die Messsysteme wurden so entworfen und entwickelt, dass spezifische Anwendungsbedingungen berücksichtigt werden können, keine aufwändige Probenherstellung notwendig ist und gleichzeitig eine hohe Messgenauigkeit gewährleistet ist. Es wurden vier verschiedene Messsysteme innerhalb dieser Arbeit entwickelt und realisiert, die in ihrer Gesamtheit die Charakterisierung von fast allen Package-Materialien unter gewünschten Randbedingungen ermöglichen. Zahlreiche Materialien und Effekte wurden daraufhin im Rahmen dieser Arbeit mit den entwickelten Messsystemen untersucht und diskutiert. / The continuous miniaturization of electronic systems accompanied by increasing performance and functionality leads to an increase in power density. In order to comply this trend, new heat dissipation concepts are needed which demand new materials and material composites. An important aspect of this work is therefore the concentration on the materials that are decisive for the heat flow. This thesis deals with the development of Methods for comprehensive thermal characterization of the different materials and material classes used in the electronics industry. The measuring systems have been designed and developed in such a way that they enable to take into account specific application conditions, no costly sample preparation is necessary and at the same time high measuring accuracy is ensured. Four different measuring systems were developed and realized within this work, which, in their entirety, enable the characterization of almost all package materials under desired boundary conditions. Based on this, numerous materials and effects were investigated and discussed in the context of this work with the developed measurement systems.

Page generated in 0.0875 seconds