• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 23
  • 23
  • 23
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Důsledky tvorby anortitu v keramickém střepu / Results of Anorthite Creation in ceramic Body

Beránková, Karla January 2012 (has links)
Anorthite is crystalline phase in the ceramic body. Is acquired on burning a mixture of calcium ceramic raw material. This work deals with the influence on the resulting properties of anorthite ceramic body, especially flexural strength, porosity, shrinkage, thermal expansion coefficient. And the influence of different CaO sources on the properties. As a source of CaO was used calcium carbonate, calcium hydroxide and fluid fly ash.
22

INFLUENCE OF CARBON CONTENT AND COOLING CONDITIONS ON THE THERMAL CONDUCTIVITY AND TENSILE STRENGTH OF HIGH SILICON LAMELLAR GRAPHITE IRON

Ram, Gokul, Harikrishnan, Vishnu January 2020 (has links)
Much study has been carried out to determine the properties of Lamellar Graphite Iron (LGI) or grey iron and their relations to factors such as the cooling rate, the dendrite morphology, the pouring temperature, and so on. However, there hasn’t been much comprehensive study on the properties of LGI outside the generally used and accepted composition, with 1 to 3% Silicon. The scope of this study is to measure and evaluate the thermal conductivity and tensile strength of LGI, for a higher concentration of  Si and different carbon contents. The concentration of Si aimed for was 4% but the concentration obtained after spectroscopy was between 4.1% to 4.15%. There are two hypereutectic, one near-eutectic and three hypoeutectic samples considered and these six chemical compositions were cast under different cooling conditions . The cooling time has been varied by providing different molds of 30mm, 55mm, and 80mm diameter cylinders respectively, for all the six sample compositions. The microstructure analysis carried out studies the segregation of Si, the graphite morphology, primary austenite morphology. These factors are then compared to the thermal and tensile behavior measured in this study. It can be observed that the thermal conductivity studied in the present work has a direct correlation for a higher Si content and tends to be greater than the thermal conductivity values observed from other studies with lower content Of Si. However, the conductivity shows an inverse relation with the cooling rate and is maximum for the samples with the lowest cooling rate. The tensile strength, on the other hand, seems to have a lower value than that observed in previous studies for LGI with 1 to 3% Si, but shows a direct correlation with the cooling rate. The mean area fraction of dendrites obtained and the mean interdendritic hydraulic diameter is also measured and their influence on the properties are also studied. The addition of more Si has greatly favored the thermal behavior positively but has also reduced the tensile strength.
23

Structural and Thermoelectric Properties of Binary and Ternary Skutterudite Thin Films

Daniel, Marcus 02 April 2015 (has links)
Increasing interest in an effciency enhancement of existing energy sources led to an extended research in the field of thermoelectrics. Especially skutterudites with their high power factor (electric conductivity times Seebeck coefficient squared) are suitable thermoelectric materials. However, a further improvement of their thermoelectric properties is necessary. The relatively high thermal conductivity can be decreased by introducing loosely bound guest ions, whereas atom substitution or nanostructuring (as thin films) could yield an increased power factor. The present work proves the feasibility to deposit single phase skutterudite thin films by MBE technique. In this regard CoSby and FeSby film series were deposited with three different methods: i) codeposition at elevated temperatures, ii) codeposition at room temperature followed by post-annealing, and iii) modulated elemental reactant method. The structural and thermoelectric properties of these films were investigated by taking the thermal stability of the film and the substrate properties into account. Compared to the stoichiometric Sb content of skutterudites of 75 at.%, a small excess of Sb is necessary for achieving single phase skutterudite films. It was found, that the deposited single phase CoSb3 films reveal bipolar conduction (and therefore a low Seebeck coefficient), whereas FeSb3 films show p-type conduction and very promising power factors at room temperature. The need of substrates with a low thermal conductivity and a suitable thermal expansion coefficient is also demonstrated. A high thermal conductivity influences the measurements of the Seebeck coefficient and the obtained values will be underestimated by thermal shortening of the film by the substrate. If the thermal expansion coefficient of film and substrate differ strongly from each other, crack formation at the film surface was observed. Furthermore, the realization of controlled doping by substitution as well as the incorporation of guest ions was successfully shown. Hence, this work is a good starting point for designing skutterudite based thin film structures. Two successful examples for such structures are given: i) a thickness series, where a strong decrease of the resistivity was observed for films with a thickness lower than 10nm, and ii) a FexCo1-xSb3 gradient film, for which the gradient was maintained even at an annealing temperature of 400°C.:Contents 1 Introduction 2 Nanostructured thermoelectric materials 2.1 Thermoelectric materials and ZT 2.2 Recent developments in improving ZT in thin films 3 Thermoelectric transport theory 3.1 Electronic transport coefficients 3.2 Lattice thermal conductivity 4 Skutterudites as promising thermoelectric material 4.1 CoSb3 4.1.1 Structural properties of skutterudites 4.1.2 Band structure of CoSb3 and density of states 4.1.3 Thermoelectric properties of CoSb3 4.1.4 Synthesis of CoSb3 thin films 4.2 FeSb3 4.2.1 Structural and thermoelectric properties of FeSb3 thin films 4.2.2 Synthesis of FeSb3 thin films 5 Experimental methods 5.1 Basic methods for structural characterization 5.2 Electric characterization: Resistivity and Hall measurements using van der Pauw geometry 5.3 Thermoelectric characterization (Seebeck coefficient) 5.4 Thermal characterization methods 6 Deposition of skutterudite thin films 6.1 Deposition chamber and deposition parameters 6.2 Deposition methods 6.3 Composition control of skutterudite films 7 Control of structural properties by the used deposition method 7.1 Structural properties of CoSb3 thin films 7.1.1 Crystallization characteristics of CoSb3 films 7.1.2 Comparison of films deposited with different deposition methods 7.1.3 Influence of different deposition parameters on the film properties 7.2 Structural properties of FeSb3 thin films 7.2.1 Crystallization behaviour 7.2.2 Structural properties of post-annealed Fe-Sb films prepared by codeposition 7.2.3 Influence of the heating rate on the film properties 8 CoSb3 and FeSb3 composition series 8.1 CoSby composition series 8.1.1 Films deposited at elevated temperatures 8.1.2 Annealed films 8.2 FeSby composition series 9 Influence of various substrates on the film properties 9.1 Substrate influence on the film morphology 9.2 Substrate influence on thermoelectric properties and measurements 10 FexCo1-xSb3 - controlled doping by substitution of Co with Fe 10.1 Properties of codeposited FexCo1-xSb3 films 10.2 Properties of FexCo1-xSb3 films deposited via MERM 11 Filled CoSb3 thin films 12 Examples for nanostructured thin film approaches 12.1 CoSb3 thickness series 12.2 FexCo1-xSb3 gradient films 13 Summary and Outlook

Page generated in 0.7003 seconds