• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 36
  • 36
  • 15
  • 14
  • 13
  • 11
  • 9
  • 9
  • 8
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

EVALUATION AND PREVENTION OF SPONTANEOUS COMBUSTION DURING HANDLING AND STORAGE OF COAL

Najarzadeh, Amir E. 01 January 2018 (has links)
Spontaneous combustion of coal has historically been a major problem for the coal industry, predominantly during storage and transportation. Various methods have been used in the laboratory for evaluating the propensity of different coal sources to self-heat. However, the heterogeneity of coal and the complexity of the system has resulted in inconsistencies and sometimes conflicting results as indicated by the findings reported in several publications. The primary objective of the current study was to build a laboratory scale apparatus that simulates the condition of a coal stockpile to evaluate the events leading to spontaneous combustion and develop potential remedies. As such, the influential factors can be identified with confidence, thereby providing an improved understanding of the spontaneous combustion. An adiabatic heating apparatus was designed and constructed which included instrumentation to closely monitor the oxidation process and the stages leading to spontaneous combustion under various conditions. The device was equipped with thermocouples which measured the temperature rise as a function of time leading to the determination of an index value that indicated the propensity of a given coal source to spontaneously combustion. The index was referred to as the R70 value which was measured as the temperature was increased during the period of rapid oxidation. The units for the index was degrees Celsius per hour. As such, a high index value reflected the likelihood of spontaneous combustion for a given coal source. To standardize the test procedure, a detailed three-level statistical experimental design was conducted involving three critical parameters, i.e., particle size, oxygen flow rate and the duration of the drying period prior to feeding oxygen to the system. Using empirical models describing the R70 value as a function of the parameter values developed from the test data, it was determined that R70 was sensitive to the sample particle size and drying time. A decrease in particle size and drying time significantly increased the R70 value while the oxygen rate did not have a significant impact over the range of values tested. Based on the results of the test program, a standard test procedure was established to evaluate various coal sources and identify chemicals that could be used to remediate the spontaneous combustion issue. Several sub-bituminous coal sources collected from the Powder River Basin were tested in the apparatus and found to be prone to spontaneous combustion as indicated by R70 values that approached 50oC per hour. Several chemicals were evaluated as a means of eliminating or slowing the spontaneous combustion process. These agents included anti-oxidants, binders and humectants. Organic binders were used to agglomerate the fine coal particles which limited surface area exposure. The effect significantly reduced the oxidation rate as indicated by a reduction in the R70 index from 44.07oC/hr to 5.71oC/hr. However, after entering the latent heat stage, the temperature increased rapidly at a rate of 27.58oC/hr. Humectants were evaluated which contained several hydrophilic groups, mainly hydroxyl groups, and thus have an affinity for water. As a result, when the coals were treated with humectant, the latent heat rate was reduced to 4.24oC/hr although the R70 remained relatively high. By using a combination of humectant and binder, the optimum result was obtained with an R70 value of 5.04oC/hr and a latent heat rate of 11.06oC/hr. These findings were successfully implemented into industrial practice for significantly delaying the spontaneous combustion event.
12

EXAMINATION OF LITHIUM-ION BATTERY PERFORMANCE DEGRADATION UNDER DYNAMIC ENVIRONMENT AND EARLY DETECTION OF THERMAL RUNAWAY WITH INTERNAL SENSOR MEASUREMENT

Bing Li (9690776) 15 December 2020 (has links)
Performance degradation of lithium-ion batteries (LIBs) from in-service abuse was analyzed using novel dynamic abuse tests and sensor-based in-situ monitoring of battery state of health (SOH). The relation between dynamic impact and structure changes of LiCoO<sub>2</sub> (LCO) electrode was analyzed through a nano-impact test directly applied to the electrode and Raman imaging. After the electrode structure damage induced by the dynamic loading was analyzed, the performance of the LIBs with the abused electrodes was evaluated to establish the relation between the number of impact cycles and LIB performance degradation. The mechanism of impact related LIB capacity decrease was analyzed, and the capacity change can be predicted based on the impact abuse history using this approach. In order to provide more detailed information on the battery performance degradation caused by the in-service dynamic loads, a dynamic aging testing platform was designed to simulate in-service vibration and impact experienced by the LIBs. Based on the lessons learned, a sensor network was constructed to provide a comprehensive in-situ evaluation of the SOH of commercial batteries. Mechanisms of LIB capacity fade, temperature increase, and cell deformation from cycling in representative dynamic environments were analyzed and correlated with theoretical predictions. Difference between the aging of a battery pack and that of a single cell was also investigated, which presented the influence of current imbalance on the SOH decay of battery packs. SEM imaging, Raman imaging, and electrochemical impedance spectroscopy (EIS) analysis were also applied to support the sensor network measurements.<br><div> In order to provide an early detection of catastrophic LIB failure such as thermal runaway, an internal resistance temperature detector (RTD) based electrode temperature monitoring approach was developed. By embedding the RTD into LIBs with 3D printing technique, electrode temperature can be collected during ordinary cycling and electrical abuse of LIBs, such as external short circuit and overcharge. The internal RTD presented high measuring efficiency, while there was no interference between the sensor measurement and battery operation. The internal RTD detected the short circuit event and overcharge failure prior of time: the efficiency of the internal RTD was 6-10 times higher than the external RTD in the short circuit test. This provided the chance for early detection and prevention of catastrophic LIB failures. Besides, with the detailed information on electrode temperature evolution during LIB thermal runaway available, the internal RTD also provided the chance to enhance the understanding of the thermal runaway mechanism.</div>
13

Exploring Particulate Filtration during Thermal Runaway in Lithium-Ion Battery Packs / Studie av partikelfiltrering under termisk rusning i litiumjonbatteripaket

Halvarsson, Amanda January 2023 (has links)
Med övergången till elektrifiering inom transport uppstår nya utmaningar när det gäller batterisystem som placeras i elfordon. Det finns för närvarande en möjlighet att minska riskerna med toxiciteten hos partiklar som sprutas ut med de gaser som bildas under termisk rusning i litiumjonbattericeller som är placerade i batterisystem. Syftet med denna avhandling är att identifiera potentiella material för partikelfiltrering från dessa gaser, undersöka de valda materialens prestanda i ett experiment, och föreslå material för framtida studier. Filtermaterialet är avsett att sitta vid ventilen i batteripacket. Totalt valdes 5 filter för experimenten, där 3 av dessa var mikrofiberfilter gjorda av kvarts och 2 var mikrofiberfilter av glas. Filtren klämdes mellan stålplattor med ett hål, och placerades 40 cm ovanför battericellens ventil. Battericellerna utlöstes till termisk rusning och filtren placerades i den direkta vägen för utslungade partiklar för att testa deras termiska motstånd och partikelretentionsförmåga. Filtren karaktäriserades med hjälp av vägning, svepelektronmikroskopi, samt energidispersivt röntgenspektroskopi. Efter ett första test ansågs glasfiberfiltren inte ha tillräckligt hög värmeresistens för att fortsätta testas. Kvartsmikrofiberfiltren varierade i fråga om värmeresistens, där de ibland brann upp och ibland förblev helt intakta. Detta berodde troligtvis till stor del på skillnader i termisk rusning mellan experimenten på grund av varierande uppvärmningsparametrar. Kvalitativt sett lyckades kvartsmikrofiberfiltren fånga upp partiklar, men det kan inte kvantifieras i detta experiment hur effektiva de var när det gäller partikelretention. Filtren visade potential för en enkel tillämpning i batteripacket, men ytterligare forskning bör göras för att undersöka viktiga faktorer, såsom mottryck från filtren. Dessutom finns det vissa material som kan vara intressanta att testa i framtiden, bland annat keramiska material, sintrade metallfiberfiltar och ablativa material. / With the shift towards electrification in transportation, new challenges arise with regards to battery systems placed in electric vehicles. There is an opportunity to reduce risks associated with the toxicity of particles ejected from the gases that form during thermal runaway (TR) in lithium-ion battery cells placed in battery systems. The aim of this thesis is to identify potential materials for particle filtration from these gases, investigate the performance of the chosen materials in an experiment, and suggest materials for future studies. The filter material is intended to sit by the vent in the battery pack. In total 5 filters were chosen for the experiments, where 3 of those were quartz microfibre filters and 2 were glass microfibre filters. The filters were sandwiched between steel plates with a hole, placed 40 cm above the battery cell vent. The battery cells were triggered into thermal runaway, and the filters were placed in the direct path of ejected particles in order to test their thermal resistance and particle retention capabilities. The filters were characterized using weighing, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. From an initial test, the glass fibre filters were deemed not sufficient enough in terms of thermal resistance to continue being tested. The quartz microfibre filters varied in terms of thermal resistance, where they at times burned away and other times remained intact. This was largely attributed to differences in TRs between the experiments due to varying heating parameters. Qualitatively, the quartz microfibre filters succeeded in catching particles, but it cannot be quantified in this experiment how efficient they were in terms of particle retention. The filters showed potential in an easy application in battery packs, but further research should be done to investigate important factors, such as back pressure from the filters. Furthermore, there are certain materials that could be interesting to trial in the future. These include ceramic materials, sintered metal fibre felts, and ablative materials.
14

Conditions of Protection Against Quench and Thermal Runaway of Conduction-Cooled High Temperature Superconducting Magnets / 伝導冷却高温超伝導マグネットのクエンチおよび熱暴走に対する保護可能な条件についての研究

LUO, XIJIE 23 March 2022 (has links)
付記する学位プログラム名: 京都大学卓越大学院プログラム「先端光・電子デバイス創成学」 / 京都大学 / 新制・課程博士 / 博士(工学) / 甲第23903号 / 工博第4990号 / 新制||工||1779(附属図書館) / 京都大学大学院工学研究科電気工学専攻 / (主査)教授 雨宮 尚之, 准教授 掛谷 一弘, 講師 美舩 健, 教授 松尾 哲司 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
15

Carbon Anode Performance and Safety Evaluation of Potassium-ion Batteries

Ryan A Adams (6331787) 10 June 2019 (has links)
<div>Potassium-ion batteries (PIBs) recently emerged as a next-generation energy storage technology, utilizing abundant and inexpensive potassium as the charge carrier cation. PIBs operate by an analogous mechanism to lithium-ion batteries (LIBs), with reversible potassium intercalation in anode and cathode through an inorganic salt - organic solvent electrolyte medium. Despite its larger size, potassium exhibits several electrochemical advantages over sodium, including a higher affinity for intercalation into graphitic (carbonaceous) anodes, forming a stage-one KC<sub>8</sub> structure in graphite for a specific capacity of 279 mAh g<sup>-1</sup>. This thesis aims to provide a thorough foundation for PIB carbon anodes, through a comprehensive experimental approach combining electrode synthesis, advanced material characterization and electrochemical-analytical techniques.</div><div><br></div><div>Safety concerns have consistently plagued LIBs despite almost three decades of widespread commercialization. Thermal runaway of LIBs can initiate as early as 80°C from exothermic breakdown of the solid electrolyte interphase (SEI) layer that covers the carbon anode surface. The subsequent reaction of lithiated carbon with electrolyte solvent leads to cathode decomposition and oxygen release for cell gassing and combustion. This thesis investigates the thermal runaway behavior of graphite anode for PIBs via differential scanning calorimetry analysis, determining the effect of electrode material, state-of-charge, and cycling history on heat generation. Notably, the PIB system emits significantly less heat overall than for LIBs, albeit an earlier and more intense onset reaction at 100°C raises safety concerns. Strategies to mitigate this exothermic reaction are presented, including electrode binder manipulation to improve graphite particle coverage and enhance SEI layer stability.</div><div><br></div><div>To further evaluate the practicality of PIBs, the electrochemical behavior of graphite anode was investigated from 0 - 40°C operating temperature, in comparison to standard LIBs. The poor rate capability of potassium is attributed to sluggish solid-state diffusion and augmented cell impedance, where 3-electrode studies revealed dramatic polarization of the potassium metal counter electrode at low temperatures. Accelerated cell aging at elevated temperatures is attributed to SEI layer growth induced by the 61% volumetric expansion of graphite during potassiation, as well as the extreme reactivity of potassium metal. A full-cell system with a Prussian blue nanoparticle cathode and graphite anode showed enhanced rate performance at low temperatures by removing potassium metal counter electrode. These results provide valuable mechanistic insight for potassium intercalation in graphite and offer a practical evaluation of temperature dependent electrochemical performance for PIBs.</div><div><br></div><div>Supplementary research includes the exploration of carbon nanofibers electrospun from polyacrylonitrile precursor with subsequent pyrolysis as PIB anode. The design of an amorphous, low density carbon with a nanoscale one dimensional morphology enables mitigation of the 61% volumetric expansion of graphite during potassiation. Remarkable stability (2000 charge-discharge cycles) is thus achieved by preventing electrode pulverization, SEI layer growth, and impedance rise during cycling. Electrochemical analysis revealed a pseudo-capacitance mechanism, enabling rapid charging through surface storage of potassium that could be enhanced by surface functionalization via plasma oxidation treatment. Moreover, two dimensional MXene transition carbonitride sheets were explored as PIB anode with X-ray diffraction and X-ray photoelectron spectroscopy used to study structural changes during potassium insertion.</div><div><br></div><div>Finally, the effect of particle morphology was investigated for LIB carbon anodes, wherein commercial graphite is compared with synthesized spherical and spiky carbons. Intercalation dynamics, side reaction rates (e.g. SEI growth), self-heating, and thermal runaway behavior were studied through a combination of electrochemical analysis and modeling by a finite volume method. Spherical particles outperform irregular commercial graphite by eliminating unstructured inhomogeneities that lead to non-uniform current distributions. Interestingly, spiky particles offer a nontrivial response, where the ordered irregularities enhance intercalation dynamics to prevent degradation at extreme operating conditions. These findings emphasize the importance of tailoring particle morphology and structure in promoting desired LIB behavior and suppressing unwanted problems.</div>
16

Teplotní jevy v olověných akumulátorech / Thermal phenomena in lead acid batteries

Kovařík, Lukáš January 2011 (has links)
This thesis project solve problematic of thermal proces in lead-acid batteries. There are decribed history of lead – acid batteries, distributions of batteries, overview of construction lead – acid batteries and VRLA batteries and is decribed thermal runaway proces and basic termal process. They are listed here practical results and the measurements is concluded.
17

Lithium-Ion Battery Electrolyte Evaporation

Dylan Michael Poe (15348418) 29 April 2023 (has links)
<p> Energy storage has received much attention due to the increasing use of energy, especially renewable energy. Lithium-ion batteries have great characteristics for electrical energy storage. Higher specific energy density, cycle life, cell voltage, shorter charge times gives lithium-ion batteries favorable energy storage characteristics over other battery chemistries. Although lithium-ion batteries are increasing in use for electrical energy storage, their safety still poses an engineering problem. When lithium-ion batteries are abused, they can enter thermal runaway. This event is dangerous as it can eject hot gases and shrapnel. Previous studies focused on different aspects of thermal runaway, for example, heat generation from chemical reactions, propagation to other cells, and the physics of gas venting. One phenomenon that has not received much attention is the evaporation of the electrolyte out of a failed lithium-ion battery. Understanding the effect of electrolyte evaporation is key to having a more complete understanding of thermal runaway. In this thesis, the physics of electrolyte evaporation is studied with the purpose of developing more accurate thermal abuse models. An evaporation model was developed, based on porous drying theory and a 1-D liquid diffusion process. Experiments were conducted to identify the liquid diffusion coefficient which governs the rate of electrolyte transport within the porous separator within the battery. The 1-D liquid diffusion model was then implemented into an existing thermal abuse model and exercised for a typical oven test scenario. Results showed that the physics-based evaporation model resulted in excellent agreement with experimental data at different oven temperatures.</p>
18

Simulation of dry matter loss in biomass storage / Simulering av förluster av torrt material vid lagring av biomassa

Bjervås, Jens January 2019 (has links)
Material degradation and a decrease of fuel quality are common phenomena when storing biomass. A magnitude of 7.8% has been reported to degrade over five months when storing spruce wood chips in the winter in Central Europe. This thesis presents a theoretical study of biomass storage. It includes investigations of bio-chemical, chemical and physical processes that occur during storage of chipped woody biomass. These processes lead to degradation caused by micro-activity, chemical oxidation reactions and physical transformation of water. Micro-activity was modeled with Monod kinetics which are Michaelis-Menten type of expressions. The rate expressions were complemented with dependency functions describing the impact of oxygen, moisture and temperature. The woody biomass was divided into three fractions. These fractions represent how hard different components of the wood are to degrade by microorganisms. Chemical oxidation was modeled as a first order rate expression with respect to the active components of the wood. Two different cases have been simulated during the project. Firstly, an isolated system with an initial oxygen concentration of air was considered. This case displayed a temperature increase of approximately 2˚C and a material degradation less than 1%. The second case considered an isolated system with an endless depot of oxygen. This case resulted in degradation losses around 0.45-0.95% in the temperature range between 65-80˚C during approximately 300 days of storage. The temperature increased slowly due to chemical oxidation.
19

Quenching runaway reactions : hydrodynamics and jet injection studies for agitated reactors with a deformed free-surface

Torré, Jean-Philippe 06 December 2007 (has links) (PDF)
To quench a thermal runaway reaction in a chemical rector, an efficient approach is the introduction of a small quantity of a liquid inhibiting agent, named a “killer”, into the mixing vessel. In this thesis, an experimental approach has been coupled tightly with numerical modelling using Computational Fluid Dynamics (CFD). The first part of this thesis is devoted to a study of the hydrodynamics of partially-baffled mixing vessels, including the free-surface deformation caused by the central vortex. The use of an inhomogeneous, multiphase approach allowed simulation of the free-surface deformation. The capability of this novel method was demonstrated by very good agreement between the numerical predictions and experimental data. In the second part, liquid jet injection at the free-surface was coupled with the vessel hydrodynamics. Numerical results, obtained using an Eulerian-Lagrangian approach, have again shown good agreement with experimental data. These results allowed the jet trajectory to be modelled and its penetration into the agitated vessel was quantified. New mixing criteria were introduced that are specific to this application. Finally, the numerical methods validated at the pilot scale were applied at the industrial scale and allowed the proposal of practical improvements to the safety of the synthesis reactors studied
20

Estudo numérico, implementação computacional e verificação experimental do fenômeno da fuga térmica em materiais viscoelásticos / A numerical study computational implementation and experimental verification of the thermal runaway phenomenon in viscoelastic materials

Rodovalho, Luiz Fernando Ferreira 05 September 2014 (has links)
Fundação de Amparo a Pesquisa do Estado de Minas Gerais / This work is dedicated to the development of a strategy for numerical-computational modeling and experimental verification of the self-heating phenomenon in viscoelastic materials with emphasis on the thermal runaway phenomenon taking into account the combined effects of dynamic loads and static preloads. The methodology of modeling by finite element allows us to consider the influence of frequency, temperature and static preload on the self-heating phenomenon of the linear viscoelastic materials. For this purpose, modifications are made that allow thermomechanical analysis of more complex viscoelastic structures, in addition the evaluation of introducing metal inserts in bulk material for reducing effects of self-heating. The validation of the proposed model and the identification of the physical parameters of thermal efficiency and heat transfer by natural convection, initially unknown, are obtained by comparison of the results of numerical simulations with the corresponding obtained through experimental tests for a specimen formed by a translational viscoelastic joint. The curve-fitting procedure is formulated as an inverse optimization problem through use of the Firefly Algorithm for minimizing the objective function defined as the square difference between the temperatures obtained from the simulations and the corresponding generated by the tests for each time instant. The accuracy and limitations of the model are evaluated by comparing the experimental and simulated temperature profile, allowing to verify the numerical evidence and the qualitative consistence of the results obtained with reported in the literature for the thermal runaway phenomenon for simple devices without effect preload. / Este trabalho é dedicado ao desenvolvimento de uma estratégia de modelagem numéricocomputacional e verificação experimental do fenômeno do autoaquecimento de materiais viscoelásticos com ênfase no fenômeno da fuga térmica levando-se em conta os efeitos combinados de cargas dinâmicas e pré-cargas estáticas. A metodologia de modelagem por elementos finitos permite considerar a influência da frequência, da temperatura e da pré-carga estática no fenômeno do autoaquecimento de materiais viscoelástico lineares. Para tanto, são feitas modificações que permitem a análise termomecânica de estruturas viscoelásticas mais complexas, além da avaliação da introdução de insertos metálicos no volume do material para a redução dos efeitos do autoaquecimento. A validação do modelo proposto e a identificação dos parâmetros físicos de rendimento térmico e de transferência de calor por convecção natural incialmente desconhecidos, são obtidos através da confrontação dos resultados das simulações numéricas com os correspondentes obtidos via ensaios experimentais para um corpo de prova formado por uma junta viscoelástica translacional. O procedimento de ajuste de curvas é formulado como um problema inverso de otimização via emprego da técnica Colônia de Vagalumes para a minimização da função objetivo definida como sendo a diferença quadrática entre as temperaturas obtidas das simulações e as correspondentes geradas pelos ensaios para cada instante de tempo. A precisão e as limitações do modelo são avaliadas pela comparação dos perfis simulados e experimentais de temperatura, possibilitando confirmar as evidências numéricas e a consistência qualitativa dos resultados obtidos com o reportado na literatura para o fenômeno da fuga térmica para dispositivos mais simples e sem o efeito da pré-carga. / Mestre em Engenharia Mecânica

Page generated in 0.0729 seconds