• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 36
  • 36
  • 15
  • 14
  • 13
  • 11
  • 9
  • 9
  • 8
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Compréhension et modélisation de l'emballement thermique de batteries Li-ion neuves et vieillies / Understanding and modeling of thermal runaway events pertaining to new and aged Li-ion batteries

Abada, Sara 14 December 2016 (has links)
Les batteries lithium-ion s'affichent comme de bons candidats pour assurer le stockage réversible de l'énergie électrique sous forme électrochimique. Toutefois, elles sont à l'origine d'un certain nombre d'incidents aux conséquences plus ou moins dramatiques. Ces incidents sont souvent liés au phénomène d'emballement thermique. La sécurité des batteries Li-ion représente par conséquent un enjeu technique et sociétal très important. C'est dans ce contexte que vient s'inscrire ce travail de thèse dans le cadre d'une collaboration entre IFPEN, l'INERIS et le LISE. Une double approche de modélisation et expérimentation a été retenue. Un modèle 3D du comportement thermique a été développé à l'échelle de la cellule, couplant les phénomènes thermiques et chimiques, et prenant en compte le vieillissement par croissance de la SEI sur l'électrode négative. Le modèle a été calibré pour la chimie LFP/C sur deux technologies A123s (2,3 Ah) et LifeBatt (15 Ah), puis validé expérimentalement. Le modèle permet d'identifier les paramètres critiques d'emballement de cellules, il permet également de discuter l'effet du vieillissement sur l'emballement thermique. Grâce à l'expérimentation, les connaissances en termes d'amorçage et de déroulement d'un emballement thermique d'une batterie Li-ion, ont pu être enrichies, en particulier pour les cellules commerciales LFP/C cylindriques A123s, LifeBatt, et pour les cellules NMC/C prismatiques en sachet souple PurePower (30 Ah). Cette étude ouvre de nouvelles possibilités pour améliorer la prédiction des différents événements qui ont lieu lors de l'emballement thermique des batteries Li-ion, à différentes échelles. / Li-ion secondary batteries are currently the preferred solution to store energy since a decade for stationary applications or electrical traction. However, because of their safety issues, Li-ion batteries are still considered as a critical part. Thermal runaway has been identified as a major concern with Li-ion battery safety. In this context, IFPEN, INERIS and LISE launched a collaboration to promote a PhD thesis so called « understanding and modeling of thermal runaway events pertaining to new and aged Li-ion batteries ». To achieve this goal, a double approach with modeling and experimental investigation is used. A 3D thermal runaway model is developed at cell level, coupling thermal and chemical phenomena, and taking into account the growth of the SEI layer as main ageing mechanism on negative electrode. Advanced knowledge of cells thermal behavior in over-heated conditions is obtained particularly for commercial LFP / C cylindrical cells: A123s (2,3Ah), LifeBatt (15Ah), and NMC / C pouch cells: PurePower (30 Ah). The model was calibrated for LFP / C cells, and then it was validated with thermal abuse tests on A123s and LifeBatt cells. This model is helpful to study the influence of cell geometry, external conditions, and even ageing on the thermal runaway initiation and propagation. This study opens up new possibilities for improving the prediction of various events taking place during Li-ion batteries thermal runaway, at various scales for further practical applications for safety management of LIBs.
22

Analýza teplotních dějů uvnitř článku olověného akumulátoru v režimu kyslíkového cyklu / Analysis of thermal processes inside of lead acid battery cell in oxygen cycle regime

Vondrák, Michal January 2013 (has links)
The aim of this thesis is the analysis of thermal processes in lead accumulators with oxygen cycle. The work is explaining the structure and principle of operation of the standard lead-acid battery and lead-acid battery with oxygen cycle. Generally are described thermal action inside a lead battery with oxygen cycle and the different types of heat generated during operation of the battery are discussed in detail. One chapter describes the practical experiments and their results.
23

Ventilering av brännbara gaser vid batteribränder

Gahm, Fredrik January 2021 (has links)
The use of lithium-ion batteries is something that is becoming more common in today’s society. They are found in a variety of electronic equipment such as mobile phones, laptops and tools. Several incidents have been reported due to lithium-ion batteries ending up in a state called thermal runaway. This in combination with the increasing demands for environmentally friendly and sustainable energy in the form of e.g. wind turbines and solar panels, can therefore lead to unforeseen consequences. Residual energy from wind or solar power can be stored in an energy storage, often a battery system of several interconnected lithium-ion batteries. In case of an incident in these storages where a large quantity of these batteries is located, there is a risk that an explosion will occur. This further leads to the interest if it’s possible to prevent an explosion with the help of mechanical ventilation.  The purpose of this report has been to investigate the reasons why these batteries are being able to cause an explosion, what gases are emitted in the event of a thermal runaway and how explosive they are. With the results given it’s possible to then perform calculations on ventilation capacity needed to maintain a non-explosive atmosphere. This was carried out through a literature study of currently available research combined with information from various authorities, hand calculations and calculations in Excel.  With the results of the literature study, it can be stated that the battery cell consisting of the cathode material lithium-nickel-manganese-cobalt oxide (NMC) is most reactive. The most common gases emitted from these cells during thermal runaway are hydrogen, carbon monoxide, carbon dioxide, methane, ethylene and ethane. These gases are also the most common gases during thermal runaway when the battery consists of a different cathode material, but the distribution may look different. All of these gases, with the exception of carbon dioxide, are flammable and can contribute to an explosive atmosphere.  Three different scenarios are developed where thermal runaway is assumed to take place at a battery cell inside battery storages of different sizes: two container-based energy storage and one battery storage for home use located in a garage space. In these respective scenarios, a certain number of cells are assumed to be in thermal runaway. The lower flammability limit for the ventilated gas mixture is determined to 8,53% based on the amount of emitted gas and the distribution of it due to thermal runaway. With the knowledge of the lower flammability limit of the emitted gas mixture, as well as other available data from each scenario, the desired capacity for ventilation is calculated at 0,23 m3/s for the two container-based battery storages and at 0,035 m3/s for the battery storage located in the garage space. If this capacity of the ventilation is present when thermal runaway occurs, it means that the concentration of combustible gases should remain below the lower flammability limit. It is worth noting that these calculations were performed to some extent based on assumptions and may therefore be judged more as approximate rather than exact.  The conclusions drawn by the performed calculations are that mechanical ventilation is a potential alternative to ensure that the atmosphere in a battery storage doesn’t become explosive if a thermal runaway occurs in the battery cells.
24

THE THERMAL SAFETY UNDERSTANDING OF MXENE ANODES IN LITHIUM-ION BATTERIES

Lirong Cai (9174149) 29 July 2020 (has links)
<p>Rechargeable lithium ion batteries (LIBs) are widely used in various daily life applications including electronic portable devices, cell phones, military applications, and electric vehicles throughout the world. The demand for building a safer and higher volumetric/gravimetric energy density LIBs has increased exponentially for electronic devices and electric vehicles. With the high energy density and longer cycle life, the LIBs are the most prominent energy storage system for electric vehicles. Researchers are further exploring for new materials with a high specific capacity, the MXene has been a promising new anode material for LIBs. The typical MXene material Ti<sub>3</sub>C<sub>2</sub>T<sub>z</sub> has 447mAh/g theoretical capacity, which is higher than traditional graphite (372 mAh/g for LiC<sub>6</sub>) based anode.</p> <p>Though LIBs are used in most of the portable energy storage devices, LIBs are still having thermal runaway safety concern, which is caused by three main reasons: mechanical, electrical, and thermal abuse. The thermal runaway is caused by the initiation of solid electrolyte interface (SEI) degradation above 80 °C on the anode surface, generating exothermic heat, and further increasing battery temperature. The SEI is a thin layer formed on anode due to electrolyte decomposition during first few charging cycles. Its degradation at low temperature generates heat inside the LIBs and triggers the thermal runaway. The thermal runaway follows SEI degradation, electrolyte reactions, polypropylene separator melting, cathode decomposition and finally leads to combustion. The thermal runaway mechanism of graphite, which is the most common and commercialized anode material of LIBs, has been studied for years. However, the thermal safety aspects of the new MXene material has not been investigated yet. </p> <p>In this thesis, we primarily used differential scanning calorimetry (DSC) and specially designed multi module calorimetry (MMC) to measure exothermic and endothermic heat generated at <a>Ti<sub>3</sub>C<sub>2</sub>T<sub>z</sub> </a>anode, associated with multiple chemical reactions as the temperature increases. The <i>in-situ</i> MMC technique is employed to study the interactions and chemical reactions of all the components (separator, electrolyte, cathode and MXene anode) in the coin cell for the first time, while the <i>ex-situ</i> DSC is used to investigate the reactions happened on anode side, including electrolyte, PVDF binder, MXene, SEI and intercalated Li. Along with other <a>complementary </a>instruments and methods, the morphological, structural and compositional studies are carried out using X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET) surface area measurement and electrochemical measurement to support the thermal analysis. The electrochemical and thermal runaway mechanism of conventional graphitic anode is studied and used for comparison with MXene<sub> </sub>anodes.</p> <p>The Ti<sub>3</sub>C<sub>2</sub>T<sub>z</sub> thermal runaway is triggered by SEI decomposition around 120 °C analogous to conventional graphite. The thermal behavior of Ti<sub>3</sub>C<sub>2</sub>T<sub>z</sub> anode is highly dependent on electrode material, surface area, lithiation states, surface morphology, structure and surface-terminating functional groups on Ti<sub>3</sub>C<sub>2</sub>T<sub>z</sub>, which provides more active lithium sites for exothermic reactions with the electrolyte. Especially the terminal groups (-OH, -F, =O, etc.) from the etching process affect the lithium ion intercalation and thermal runaway mechanism. With annealing treatment, the surface-terminating functional groups are modified and can achieve less exothermic heat release. By normalizing the total heat generation by specific capacities of the anode materials, it is observed that Ti<sub>3</sub>C<sub>2</sub>T<sub>z</sub> (2.68 J/mAh) generates slightly less exothermic heat than graphite (2.72 J/mAh) indicating slightly safer nature of Ti<sub>3</sub>C<sub>2</sub>T<sub>z</sub> anode. The <i>in-situ</i> thermal analysis results on the Ti<sub>3</sub>C<sub>2</sub>T<sub>z</sub> half-cell exhibited less total heat generation per mass (1.56 kJ/g) compared to graphite (1.59 kJ/g) half-cell. </p><br>
25

Ignition and Burning Behavior of Modern Fire Hazards: Firebrand Induced Ignition and Thermal Runaway of Lithium-Ion Batteries

Kwon, Byoungchul 26 May 2023 (has links)
No description available.
26

PHYSICS BASED DEGRADATION ANALYTICS IN ENERGY STORAGE

Venkatesh Kabra (10531817) 04 December 2023 (has links)
<p dir="ltr">Li-ion batteries are ubiquitous in today’s world with portable electronics, EVs making inroads into daily lives, and electric aircraft at the cusp of becoming reality. These and many more applications revolutionize the world with improvements in batteries at scales from materials, manufacturing, electrode architectures, cell design, and protocols. The various challenges associated with the current generation of batteries include the fast-charging capabilities, economic return of the longevity of the battery, and thermal safety characteristics. The aging and degradation of LIBs appears to be a key pain point particularly when exposed to harsh operating temperature and fast charging conditions. LIBs undergo aging due to numerous chemical and physical degradation processes throughout their lifetime owing to their operation. These challenges are exacerbated by the presence of stringent operating conditions including extreme fast charging, and sub-zero temperature resulting in severe degradation and short cycle life. The LIBs also face challenges in their thermal stability characteristics, failing catastrophically when exposed to high temperature or mechanical abuse conditions. The onset and intensity of these thermal runaway behaviors are further modified when batteries undergo varied aging leading to increased heat and gas generation potentially causing fire or explosions. Overall, a comprehensive characterization to delineate the interconnected role and implications of operating extremes and electrode design on electrochemical performance, cell aging, and thermal runaway behavior is critical for better batteries. </p><p dir="ltr">To this end, the role of electrode microstructure in mitigating lithium plating behavior under various operating conditions, including extreme fast charging has been examined. Further, these multi-length scale characteristics of the electrode microstructure are explored via data-driven approaches to study the complex interaction of transport and kinetic limitations on the microstructure designs. A third study is undertaken for in-operando characterization of the LIB degradation, probing the multi-length scale degradation using pulse voltammetry. Here an accurate degradation descriptors dataset is identified and accurately parametrized, throughout its cycling lifespan. These aging behaviors are translated to physio-chemical degradation mechanisms via a reduced-order coupled electrochemical-thermal-aging interactions model. Lastly, the implication of aging behavior on thermal-safety interactions is delineated. Overall the dissertation is focused on developing a fundamental understanding of the LIB performance, degradation, and safety interactions.</p>
27

Investigation and Application of Safety Parameters for Lithium-ion Battery Systems / Undersökning och tillämpning av säkerhetsparametrar för litiumjonbatterisystem

Relefors, Axel January 2020 (has links)
The Swedish Armed Forces are investigating high-risk applications where lithium-ion batteries (LIB) can replace traditional lead-acid batteries. Understanding the potential safety risks and evaluating a battery's instability is crucial for military applications. This report aimed to identify critical safety parameters (temperature, potential, and impedance) in commercial batteries with NMC and LFP electrode chemistries, and to investigate how surrounding cells are affected when a battery suffers from thermal runaway (TR) in a battery module developed by FOI. Accelerated rate calorimetry (ARC) experiments on NMC-based Samsung SDI INR21700-40T and INR21700-50E and LFP-based A123 Systems ANR26650m1-B batteries were conducted to identify critical onset conditions of TR. ARC experiments were conducted with continuous electrochemical impedance spectroscopy (EIS) measurements to correlate thermal behavior with electrochemical changes in the cell impedance and voltage. The NMC-based batteries showed a distinct endothermic reaction between 116 °C and 121 °C, an onset temperature of exothermic self-heating at around 120 °C, which progressed to an explosive decomposition at about 170 °C and resulted in an adiabatic temperature rise of 250 °C to 290 °C. A significant increase in the cell’s impedance at around 100 °C indicated that the current interrupt device (CID) was triggered due to gas formation and critical pressure build-up within the cell. The LFP-based battery demonstrated improved thermal stability during ARC measurements and did not suffer from TR when heated to 300 °C. Thermal runaway propagation experiments were conducted in a battery module developed by FOI. The identified onset temperatures and electrochemical markers were then used to evaluate the stability of the module cells. Cell temperature increases between 16 °C and 48 °C was observed in cells directly adjacent to the trigger cell. Cells further from the trigger cell experienced uniform temperature increases of between 8 °C and 30 °C. EIS measurements of the module cells revealed no significant changes in their impedance spectra. The insulating polymer wrap around each cell was found to be crucial in preventing TR propagation. TR propagated from cell-to-cell in the module when the insulating wraps were removed, and cells were in direct contact with the thermally conductive heat sink. / Försvarsmakten undersöker högriskapplikationer där litiumjonbatterier kan ersätta traditionella blysyrabatterier. Att förstå säkerhetsrisker och utvärdera ett batteris instabilitet är särskilt viktigt för militära tillämpningar. Denna rapport syftar till att identifiera kritiska säkerhetsparametrar (temperatur, spänning och impedans) för kommersiella batterier med NMC- och LFP-elektrodkemier samt undersöka hur omkringliggande celler påverkas när ett batteri termiskt rusar (TR) i en batterimodul utvecklad av FOI. ARC-experiment genomfördes på NMC-baserad Samsung SDI INR21700-40T och INR21700-50E och A123 Systems ANR26650m1-B batterier för att karakterisera förloppet av termisk rusning (TR). ARC-experiment utfördes med kontinuerliga elektrokemisk impedansspektroskopi (EIS) för att korrelera termiskt beteende med elektrokemiska förändringar i cellimpedansen och spänningen. Det NMC-baserade batterierna uppvisade en tydlig endotermisk reaktion mellan 116 °C och 121 °C, exotermiska reaktioner påbörjades vid 120 °C och ledde till explosiv termisk rusning vid cirka 170 °C, vilket gav upphov till en adiabatisk temperaturökning på 250 °C till 290 °C. En signifikant ökning av cellens impedans vid cirka 100 °C indikerade att den inre säkerhetsventilen utlöstes på grund av gasbildning och kritisk tryckuppbyggnad i cellen. Det LFP-baserade batteriet visade förbättrad termisk stabilitet under ARC-mätningar och drabbades inte av TR vid uppvärmning till 300 °C. Termiska rusningsförsök genomfördes på en batterimodul utvecklad av FOI. De identifierade starttemperaturerna och elektrokemiska markörerna användes för att utvärdera modulcellernas stabilitet. Celltemperaturökningar mellan 16 °C och 48 °C observerades i celler direkt intill triggcellen. Celler längre från triggcellen upplevde likformiga temperaturökningar mellan 8 °C och 30 °C. EIS-mätningar av modulcellerna avslöjade inga signifikanta förändringar i deras impedansspektra. Det isolerande polymeromslaget runt varje cell var avgörande för att förhindra propagering av termisk rusning i modulen. Termisk rusning propagerade från cell till cell i modulen när de isolerande omslagen togs bort och cellerna var i direkt kontakt med den värmeledande kylflänsen.
28

Dynamik des Ladungsträgerplasmas während des Ausschaltens bipolarer Leistungsdioden / Charge-carrier plasma dynamics during the reverse-recovery process of bipolar power diodes

Baburske, Roman 20 October 2011 (has links) (PDF)
Diese Arbeit beschäftigt sich mit dem besonders kritischen Ausschaltvorgang bipolarer Leistungsdioden, bei dem das im Durchlass vorhandene Ladungsträgerplasma abgebaut wird. Schwerpunkt ist dabei die Untersuchung von zwei ungewollten Phänomenen, die während des Ausschaltens auftreten können. Diese sind ein plötzliches Abreißen des Rückstroms während der Kommutierung und eine Zerstörung der Diode mit einem lokalen Aufschmelzen in der aktiven Fläche. Betrachtet wird dazu der Ladungsträgerberg, der sich während des Schaltvorgangs bildet. Durch die Analyse des Verhaltens der Ladungsträgerbergfronten, lässt sich sowohl der Einfluss von Schaltbedingungen auf den Plasmaabbau als auch der Unterschied von anodenseitigen und kathodenseitigen Stromfilamenten erklären. Die Erkenntnisse werden auf das moderne Diodenkonzept CIBH (Controlled Injection of Backside Holes) angewandt. Das Potential von CIBH-Dioden zur Verbesserung der Höhenstrahlfestigkeit und Stoßstromfestigkeit wird aufgezeigt. Schließlich wird das neue Anodenemitterkonzept IDEE (Inverse Injection Dependency of Emitter Efficiency) vorgestellt, welches in Kombination mit CIBH die Gesamteigenschaften von Dioden maßgeblich verbessert. Die aktuelle Version Dissertation_Roman_Baburske_2011_11_21.pdf ist um einige Tippfehler bereinigt. / This work concerns the reverse-recovery process of bipolar power diodes. The focus is the investigation of two undesirable phenomena. These are the sudden strong reverse-current decay and the destruction of the diode with a local melting of the chip in the active area. The plasma layer, which arises during the switching period, is considered. An analysis of the plasma-layer front dynamics allows an understanding of the influence of switching parameters on the plasma extraction and the different behavior of anode-side and cathode-side filaments. The results of the analysis are used to describe the operation of the modern diode concept CIBH (Controlled Injection of Backside Holes). The potential of CIBH diodes to improve cosmic-ray stability and surge-current ruggedness is investigated. Finally, a new anode-emitter concept called IDEE (Inverse Injection Dependency of Emitter Efficiency) is introduced, which improves in combination with CIBH the overall performance of a power diode.
29

Etude de la stabilité thermique dans les réacteurs chimiques.

Elia, Marc 14 March 2013 (has links)
La sécurité des procédés est une préoccupation majeure dans l'industrie du raffinage et de pétrochimie. Pour les procédés très exothermiques, l'emballement thermique doit être évité. Ainsi, l'objectif de la thèse est la mise en place d'une méthodologie d'étude de la stabilité thermique dans les réacteurs chimiques qui permet de déterminer les zones opératoires de fonctionnement stable du réacteur. Après le développement d'un modèle dynamique de réacteur, la méthodologie consiste à cartographier les zones de stabilité et d'instabilité du système réactionnel en régime stationnaire et dynamique. Le critère de Van Heerden (régime stationnaire) à été généralisé pour application à des systèmes réactionnels complexes. La méthode de perturbation des états stationnaires (régime dynamique) a aussi été intégrée à la méthodologie avec l'analyse des valeurs propres.Cette méthodologie a été appliquée au procédé d'hydroconversion en lit bouillonnant de charges pétrolières lourdes, ceci à l'échelle pilote et industrielle. Des modèles dynamiques adaptés au procédé pilote et industriel ont été développés. Ils tiennent en compte la complexité de la charge ainsi que le schéma des deux procédés. L'étude de la stabilité stationnaire et dynamique a été réalisée. Des cartographies de stabilité/instabilité en fonction des principaux paramètres du procédé ont été tracées. D'après les résultats obtenus, la plage stable pour réacteur pilote est plus large que pour le réacteur industriel. La variation des paramètres du procédé ont le même effet sur les deux réacteurs. Les cartographies de stabilité obtenues sont un outil indispensable pour l'ingénieur lors du design des procédés ou leur opération. / In refining and petrochemistry process safety is a major issue. For highly exothermic processes it is necessary to ensure in a rigorous way the safe that the process operates in safe conditions, hence avoiding thermal runaway. The objective of this thesis was to develop a methodology to determine the operating conditions of reliable operation of chemical reactors. The methodology relies on stationary and dynamic analysis. The stationary stability analysis based on the Van Heerden criterion was generalized to complex chemical systems. The dynamic analysis applies the perturbation theory to definitely determine if a stationary point is stable according to eigenvalue analysis.The methodology was applied to ebullated-bed technology for residue hydroconversion at pilot and industrial scale. Two comprehensive dynamic models that accurately represent the ebullated-bed pilot plant and industrial process were developed for the study. The models take into account a detailed description of the reactive system and the configuration of the pilot and industrial plants: three phases, kinetics and flow characterization. A stationary and dynamic thermal stability analysis was carried out for both configurations and stable/unstable operating regions were identified. The study showed that the pilot plant reactor can operate in a larger domain of operating conditions compared to the industrial reactor while the parameters have the same effect on both reactors. The resulting reactor operation diagrams are a essential guide for engineers in the reactor design and operation practice.
30

Zkoumání teplotních změn vlastností olověného akumulátoru v režimu hybridních vozidel / Investigation of temperature change in lead-acid accumulator for HEV

Tošer, Pavel January 2010 (has links)
The oldest and also most used type of secondary cells is lead-acid accumulator. Basic functional principle stayed same as in foundation time, only operation parameters are still improving (for example one of the most important is lifetime). Significant technical problem is temperature of lead-acid battery and her influence on functionality and running reactions. Master thesis is focused on this section, when is necessary to evaluate new pieces of knowledge in development. The work deals with description existing types of accumulators, further deals with theory of temperature balance and in the end by measured datas and theirs analyzing.

Page generated in 0.0412 seconds