Spelling suggestions: "subject:"thermodynamic data"" "subject:"hermodynamic data""
1 |
The redox speciation and biogeochemistry of iron in aquatic systemsAldrich, Annette Patrizia January 1999 (has links)
No description available.
|
2 |
Development of a method to determine vapor pressure data of low volatile chemicals from a Knudsen effusion techniqueHarshman, Andrew R 01 June 2007 (has links)
Vapor pressure data are vital to understanding impacts that substances, specifically pesticides, may exert on the environment. They enter into atmospheric deposition models for such chemicals which determine the fate and transport of these species in the environment. At normal application temperatures (i.e. room temperature) the vapor pressures of many of these chemicals are too low to be determined by conventional means. An isothermal Knudsen effusion technique was designed and developed in our laboratory for such measurements. The effusion mass as a function of time is measured in our technique using a thickness shear mode (TSM) acoustic wave sensor, which allows for extremely high (few nanograms) sensitivity. This sensitivity allows for much more rapid determination of low vapor pressures (10-1 to 10-5 Pa) than is possible by other Knudsen effusion techniques. Basing the effusion mass measurement on the TSM sensor as in our apparatus eliminates the typically seen dependence on vibration in conventional microbalance-based effusion techniques. Full design details of our apparatus and specifically the Knudsen cell, based on original equations derived by Knudsen, and many corrections that have been noted in the literature for cell and effusion-hole dimensions, are presented. The accuracy of our methodwas tested by a comparison of published vapor pressure data to vapor pressure data acquired in our laboratory with measurements on naphthalene and catechol.
|
3 |
Fate of Cu, Cr, As and some other trace elements during combustion of recovered waste fuelsLundholm, Karin January 2007 (has links)
<p>The increased use of biomass and recovered waste fuels in favor of fossil fuels for heat and power production is an important step towards a sustainable future. Combustion of waste fuels also offers several advantages over traditional landfilling, such as substantial volume reduction, detoxification of pathological wastes, and reduction of toxic leaches and greenhouse gas (methane) formation from landfills. However, combustion of recovered waste fuels emits more harmful trace elements than combustion of other fuels. These elements are distributed between bottom ash, fly ash and flue gas, depending on the elements partitioning and enrichment behavior. Volatilized harmful trace elements are mainly enriched in the submicron fly ash fraction. If emitted to the atmosphere, submicron particles can penetrate deep into the alveoli of the lungs, causing severe impacts on human health. Consequently, to reduce ash related problems and to control the emissions to the atmosphere, there is an increased need for understanding the physicochemical processes involved in ash transformation, including particle formation.</p><p>The objective of this thesis was to carefully and systematically study the fate of trace elements during combustion, i.e. the chemical form of the elements and the partitioning behavior, by means of chemical equilibrium model calculations, X-ray diffraction, microscopy techniques and various spectroscopy methods. The influence of some fuel additives was also analyzed. Primarily, the elements copper, chromium and arsenic were studied.</p><p>An initial review and evaluation of the content of thermodynamical data in commercial thermochemical databases used for chemical equilibrium model calculations showed that there was a significant difference in number of included phases and species between databases. Thermodynamical data also differed between databases, although in general less for condensed phases than for gaseous species. A state-of-the-art database for Cu, Cr and As was compiled and used for further chemical equilibrium model calculations. The fate of Cu, Cr and As was determined in combustion experiments on wood impregnated with copper, chromium and arsenic (CCA) in a bench scale reactor (15 kW). The results showed that global chemical equilibrium model calculations predicted the overall fate of Cu, Cr and As in bottom ash and ash particles quite well. However, compared to the experimental results the global model overpredicted the formation of refractory calcium arsenates, thus the arsenic volatilization was found to be higher then the predicted volatilization. In terms of chromium volatility, copper was found to be an important refractory element forming stable CuCrO<sub>2</sub>(s) and CuCr<sub>2</sub>O<sub>4</sub>(s) that suppressed the formation of CrO<sub>2</sub>(OH)<sub>2</sub>(g). The retention and speciation of Cu, Cr and As in bottom ash was further determined from combustion experiments of CCA wood fuel particles in a single particle reactor. Local chemical equilibrium model calculations were performed to simulate the combustion stages of a burning CCA treated wood fuel particle: drying, devolatilization, char burning and post-combustion. The results from the work showed that a mix of global and local chemical equilibrium model calculations is needed to describe the reality and that the combustion stages are partially overlapping. The fate of harmful trace elements, including Cu, Cr and As, was finally studied in full scale (65 MW) combustion experiments. Particles from the raw flue gas emissions were sampled and analyzed. The comparison with chemical equilibrium model calculations showed that the model explained the results well, but due to lack of thermodynamic data for K<sub>2</sub>ZnCl<sub>4</sub>(s), the formation of this phase could not be predicted.</p>
|
4 |
Fate of Cu, Cr, As and some other trace elements during combustion of recovered waste fuelsLundholm, Karin January 2007 (has links)
The increased use of biomass and recovered waste fuels in favor of fossil fuels for heat and power production is an important step towards a sustainable future. Combustion of waste fuels also offers several advantages over traditional landfilling, such as substantial volume reduction, detoxification of pathological wastes, and reduction of toxic leaches and greenhouse gas (methane) formation from landfills. However, combustion of recovered waste fuels emits more harmful trace elements than combustion of other fuels. These elements are distributed between bottom ash, fly ash and flue gas, depending on the elements partitioning and enrichment behavior. Volatilized harmful trace elements are mainly enriched in the submicron fly ash fraction. If emitted to the atmosphere, submicron particles can penetrate deep into the alveoli of the lungs, causing severe impacts on human health. Consequently, to reduce ash related problems and to control the emissions to the atmosphere, there is an increased need for understanding the physicochemical processes involved in ash transformation, including particle formation. The objective of this thesis was to carefully and systematically study the fate of trace elements during combustion, i.e. the chemical form of the elements and the partitioning behavior, by means of chemical equilibrium model calculations, X-ray diffraction, microscopy techniques and various spectroscopy methods. The influence of some fuel additives was also analyzed. Primarily, the elements copper, chromium and arsenic were studied. An initial review and evaluation of the content of thermodynamical data in commercial thermochemical databases used for chemical equilibrium model calculations showed that there was a significant difference in number of included phases and species between databases. Thermodynamical data also differed between databases, although in general less for condensed phases than for gaseous species. A state-of-the-art database for Cu, Cr and As was compiled and used for further chemical equilibrium model calculations. The fate of Cu, Cr and As was determined in combustion experiments on wood impregnated with copper, chromium and arsenic (CCA) in a bench scale reactor (15 kW). The results showed that global chemical equilibrium model calculations predicted the overall fate of Cu, Cr and As in bottom ash and ash particles quite well. However, compared to the experimental results the global model overpredicted the formation of refractory calcium arsenates, thus the arsenic volatilization was found to be higher then the predicted volatilization. In terms of chromium volatility, copper was found to be an important refractory element forming stable CuCrO2(s) and CuCr2O4(s) that suppressed the formation of CrO2(OH)2(g). The retention and speciation of Cu, Cr and As in bottom ash was further determined from combustion experiments of CCA wood fuel particles in a single particle reactor. Local chemical equilibrium model calculations were performed to simulate the combustion stages of a burning CCA treated wood fuel particle: drying, devolatilization, char burning and post-combustion. The results from the work showed that a mix of global and local chemical equilibrium model calculations is needed to describe the reality and that the combustion stages are partially overlapping. The fate of harmful trace elements, including Cu, Cr and As, was finally studied in full scale (65 MW) combustion experiments. Particles from the raw flue gas emissions were sampled and analyzed. The comparison with chemical equilibrium model calculations showed that the model explained the results well, but due to lack of thermodynamic data for K2ZnCl4(s), the formation of this phase could not be predicted.
|
5 |
Etude de la solubilité et des cinétiques de dissolution des phosphates et vanadates d'uranium : implications pour l'amont du cycle électronucléaire / Study of solubility and kinetics of dissolution of phosphates and vanadates of uranium : implications for front-end of nuclear fuel cycleCrétaz, Fanny 06 December 2013 (has links)
De manière à répondre à l'accroissement des besoins en uranium, l'exploitation de nouvelles ressources de composition minéralogique variée devient une nécessité. De plus, dans une perspective de développement durable, les procédés d'exploitation et de traitement des minerais d'uranium requièrent une optimisation afin de réduire leur empreinte environnementale. Dans ce but, il est nécessaire d'acquérir des données thermodynamiques fiables relatives aux systèmes d'intérêt, dont en particulier les phosphates et les vanadates d'uranium (VI). Dans ce contexte, une étude multiparamétrique de la dissolution de la méta-torbernite Cu0,8(H3O)0,2(UO2)2(PO4)2,8H2O, de la méta-autunite Ca(UO2)2(PO4)2,6H2O, de la méta-ankoleïte K2(UO2)2(PO4)2,6H2O et de la carnotite K2(UO2)2(VO4)2,3H2O a été entreprise. Dans un premier temps, des analogues à ces quatre phases minérales ont été préparés par différentes méthode, basées sur une voie sèche pour la carnotite et sur des voies humides pour les trois phases phosphatées. Elles ont ensuite été caractérisées d'un point de vue structural, microstructural et chimique. Des structures cristallographiques similaires ont ainsi été mises en évidence au sein desquelles les polyoxoanions (PO43- ou V2O86-) et les groupements uranyle forment des feuillets parallèles entre lesquels s'insèrent les contres cations (Cu2+, Ca2+ ou K+) et les molécules d'eau. Hormis pour la méta-ankoleïte, les analogues synthétiques ont également été comparées à des minerais naturels. Il a ainsi été possible de mettre en évidence des différences d'ordre chimique (présence d'impuretés dans les échantillons naturels) et morphologique (tailles de grains, notamment). La dissolution de ces phases a ensuite été étudiée, tant d'un point de vue cinétique que thermodynamique, à travers des études menées en conditions statiques et dynamiques, dans différents milieux acides (H2SO4, HNO3 et HCl) et à plusieurs températures. Les vitesses de dissolution mesurées sont proches de 1 g.m-2.j-1 pour les quatre phases. Dans les conditions utilisées, la dissolution de la méta-autunite s'est avérée incongruente (précipitation de phosphates d'uranyle), empêchant la détermination des constantes de solubilité. En outre, la dissolution de la méta-ankoleïte a conduit à un échange cationique aboutissant à la formation de solutions solides (H3O)2xK2x-2(UO2)2(PO4)2, 6H2O (0 < x < 2) dont les constantes de solubilité ont pu être calculées. Enfin, les expériences menées sur la méta-torbernite et la carnotite ont conduit à des réactions de dissolution congruentes qui ont permis d'accéder aux données thermodynamiquement d'intérêt telles que leur produit de solubilité et leurs grandeurs standards associées à la dissolution (DrH°, DrG° et DrS°) ou à la formation (DfG° = -6100 ± 5 kJ.mol-1 pour la méta-torbernite et DfG° = -4632 ± 7 kJ.mol-1 pour la carnotite) de chacune de ces phases. Les résultats obtenus montrent que les constantes de solubilité des trois phases phosphatées sont très faibles (10-53 < Ks,0° < 10-45) et ont des valeurs qui diffèrent peu selon la nature du contre cation, en bon accord avec leurs similitudes structurales. D'autre part, la comparaison des grandeurs thermodynamiques déterminées dans ce travail, montre que la carnotite (Ks,0° = 10-63) est plus stable que les phases phosphatées étudiées. La différence observée peut s'expliquer par la structure des feuillets à base de vanadates. Cette étude a ainsi permis d'obtenir des premières valeurs de solubilité pour les phosphates et les vanadates d'uranium(VI) présents dans les gisements d'intérêt économique et d'établir un premier modèle d'estimation de la solubilité pour des phases similaires. Ces données ont également été utilisées lors d'une modélisation en conditions environnementales afin de déterminer la nature des phases susceptibles de se former dans un cas réel (eaux d'un lac proche d'un gisement d'uranium). / In the current context of restart of the nuclear energy, the needs in uranium are expected to increase significantly. Moreover, in a perspective of sustainable development, the exploitation, the treatment and the purification of uranium ores need to be optimized. It is thus necessary to determine reliable thermodynamic data (and especially solubility constants) for the systems of interest, especially uranium(VI) phosphates and vanadates. In this aim, a multiparametric study of the dissolution of meta-torbernite Cu0.8(H3O)0.2(UO2)2(PO4)2.8H2O, meta-autunite Ca(UO2)2(PO4)2.6H2O, meta-ankoleïte K2(UO2)2(PO4)2.6H2O and carnotite K2(UO2)2(VO4)2.3H2O was undertaken.First, analogues of these four minerals were synthesized, based only on dry chemistry process for carnotite or on wet chemistry methods for the phosphate phases. They were then extensively characterized (in terms of structure, microstructure and chemical composition). It particularly highlighted the similar structures of such compounds. The anionic groups (PO43- or V2O86-) and uranyl form parallel layers between which counter cations (Cu2+, Ca2+ or K+) and water molecules are inserted. However, the counter cations present in the interlayer space of the three phosphate phases present different lability. The synthetic phases were also compared to their natural analogues, except for meta-ankoleïte, which allowed us to point out significant differences in the composition (presence of impurities in natural samples) and the morphology (grain size).The dissolution of these phases was then studied from a kinetic and thermodynamic point of view, through leaching tests in static and dynamic conditions, in various acid media (sulfuric, nitric and hydrochloric) and at different temperatures. In these conditions, the dissolution of meta-autunite was found to be uncongruent due to the precipitation of uranyl phosphate then avoidinf the determination of solubility constants. Similarly, the dissolution of meta-ankoleite was preceded by a cation exchange step between K+ and H3O+ leading to the formation of (H3O)2xK2x-2(UO2)2(PO4)2.6H2O (0 < x < 2) solid solutions, whose solubility constant have been evaluated. Finally, meta-torbernite and carnotite presented congruent dissolutions which allowed the determination of thermodynamic data of interest such as solubility products and standard enthalpy, Gibbs free energy and entropy associated with the dissolution reaction (DrH°, DrG° and DrS°) and formation of each phase (DfH°, DfG° and DfS°).The results obtained evidenced very low and similar solubility constants for the three phosphate phases studied (10-53 < Ks,0° < 10-45). Such small variation directly came from the closely related crystal structures previously described. In addition, the difference in composition of the sheets between phosphate and vanadate phases led to greater stability of carnotite (Ks,0° = 10-63) compared to phosphates phases. The solubility values derived from this study for phosphates and vanadates uranium(VI) allowed estimating values for similar phases. These data were also used in a geochemical model for the prediction of neoformed phases in a real case (water of a lake near an uranium deposit).
|
6 |
THEREDA-Journal20 April 2022 (has links)
Das THEREDA-Journal ist die Zeitschrift zur „Thermodynamischen Referenz-Datenbasis“ (THEREDA). Die Datenbasis erlaubt in Verbindung mit geeigneten Programmen die Berechnung von Löslichkeiten und Mineralumwandlungen in wässrigen Elektrolytlösungen bis zu hohen Konzentrationen. Im Mittelpunkt der Arbeit stehen geochemische Randbedingungen, wie sie für die Bewertung von Nah- und Fernfeldprozessen in verschiedenen Gesteinsformationen, welche als potenzielle Endlager für radioaktive Abfälle in der Diskussion stehen, relevant sind. THEREDA stellt derzeit für das Wirtsgestein Salz die weltweit einzige polytherme Datenbasis dar. Sie wird mit dem Stand von Wissenschaft und Technik kontinuierlich von etablierten Forschungsinstitutionen, welche auf dem Gebiet der Endlagerung von radioaktiven Abfällen bzw. den potenziellen Wirtsgesteinen arbeiten, weiterentwickelt. Das THEREDA-Journal beinhaltet Beiträge zu Datensituation und Datenbestand, Neuanpassungen, Weiterentwicklungen sowie auch Bewertungen zur Anwendbarkeit. Alle Beiträge durchlaufen einen Review-Prozess innerhalb des THEREDA-Verbundes. Auch Gastbeiträge externer THEREDA-Nutzer sind willkommen.
Die Datenbasis ist frei zugänglich unter www.thereda.de.
|
7 |
Measurement of thermodynamic data at elevated pressure and temperature conditions with a microfluidic setupFechter, Michael Hubertus Horst 06 November 2023 (has links)
With this thesis, I present an experimental study focusing on the provision of thermodynamic data of fluids at elevated pressure and temperature conditions. Hereby a microcapillary setup that is equipped with an in situ Raman Spectroscopy unit as well as with a high-speed camera, was further improved within the scientific employment of the author. The setup consists in principle of a fused-silica microcapillary embedded in a heating block, which is furthermore connected to high pressure syringe pumps.
Pure compounds and mixtures were studied with the microfluidic setup and different thermodynamic properties were determined. For instance, vapor pressures of Poly(oxymethylene) Dimethyl Ethers (OME3 and OME4), a potential class of renewable diesel fuels, were the first time measured for temperatures exceeding the atmospheric boiling temperature. Hereby the regarded compound is pressurized at constant temperature, from what the vapor pressure is determined optically by detecting bubble or film formation, indicating the transition from vapor to liquid state.
The main results of this thesis were however the vapor-liquid equilibria (VLE) of fuel/air-systems that were determined by in situ Raman Spectroscopy, whereby the Stokes-scattered Raman signal can be successfully separated phase-dependently by light barrier technology. A further task was the determination of saturated mixture densities of the validation system ethanol/CO2.
With this study, I intend to contribute to the scarce literature data for the studied systems and properties. Therewith I want to help to enhance the understanding of microprocesses such as the evaporation and mixing formation in diesel combustion engines.
|
Page generated in 0.1924 seconds