• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 153
  • 139
  • 1
  • Tagged with
  • 299
  • 299
  • 299
  • 199
  • 47
  • 35
  • 33
  • 31
  • 30
  • 29
  • 27
  • 26
  • 25
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Design and performance simulation of a hybrid sounding rocket.

Chowdhury, Seffat Mohammad. January 2012 (has links)
Sounding rockets find applications in multiple fields of scientific research including meteorology, astronomy and microgravity. Indigenous sounding rocket technologies are absent on the African continent despite a potential market in the local aerospace industries. The UKZN Phoenix Sounding Rocket Programme was initiated to fill this void by developing inexpensive medium altitude sounding rocket modeling, design and manufacturing capacities. This dissertation describes the development of the Hybrid Rocket Performance Simulator (HYROPS) software tool and its application towards the structural design of the reusable, 10 km apogee capable Phoenix-1A hybrid sounding rocket, as part of the UKZN Phoenix programme. HYROPS is an integrated 6–Degree of Freedom (6-DOF) flight performance predictor for atmospheric and near-Earth spaceflight, geared towards single-staged and multi-staged hybrid sounding rockets. HYROPS is based on a generic kinematics and Newtonian dynamics core. Integrated with these are numerical methods for solving differential equations, Monte Carlo uncertainty modeling, genetic-algorithm driven design optimization, analytical vehicle structural modeling, a spherical, rotating geodetic model and a standard atmospheric model, forming a software framework for sounding rocket optimization and flight performance prediction. This framework was implemented within a graphical user interface, aiming for rapid input of model parameters, intuitive results visualization and efficient data handling. The HYROPS software was validated using flight data from various existing sounding rocket configurations and found satisfactory over a range of input conditions. An iterative process was employed in the aerostructural design of the 1 kg payload capable Phoenix-1A vehicle and CFD and FEA numerical techniques were used to verify its aerodynamic and thermo-structural performance. The design and integration of the Phoenix-1A‟s hybrid power-plant and onboard electromechanical systems for recovery parachute deployment and motor oxidizer flow control are also discussed. It was noted that use of HYROPS in the design loop led to improved materials selection and vehicle structural design processes. It was also found that a combination of suitable mathematical techniques, design know-how, human-interaction and numerical computational power are effective in overcoming the many coupled technical challenges present in the engineering of hybrid sounding rockets. / Thesis (M.Sc.)-University of KwaZulu-Natal, Durban, 2012.
292

Virtual prototyping of an articulated dump truck.

Govender, Deena. January 2003 (has links)
In the modem automotive industry product times to market are being increasingly compressed. In the earthmoving and construction machine industry this is also true with the manufacturer having to respond to new customer requirements quickly and decisively. Virtual prototyping is a vital tool in the vehicle engineer's armoury, allowing a large portion of developmental investigation to be done on the virtual model with the attendant savings in time and cost and allowing often dangerous manoeuvres to be predicted and investigated prior to actual physical prototype testing. The University of Natal BELL Equipment collaborative effort involves the vehicle dynamics modelling and model validation of a BELL Equipment manufactured B40C Articulated Dump Truck (ADT). The modelling was completed using the multibody system (MBS) simulation software package, ADAMS. Initial modelling and simulation results are presented with specific attention paid to the introduction of valid data for compliant joints in the MBS as well as modelling of the tire. The physical testing of the ADT is also presented as well as a discussion of the data acquisition system. Key results from the physical testing of the ADT are also presented and discussed. / Thesis (M.Sc.Eng.)-University of Natal,Durban, 2003.
293

Autonomous sea craft for search and rescue operations : marine vehicle modelling and analysis.

Onunka, Chiemela. January 2011 (has links)
Marine search and rescue activities have been plagued with the problem of risking the lives of rescuers in rescue operations. With increasing developments in sensor technologies, it became a necessity in the marine search and rescue community to develop an autonomous marine craft to assist in rescue operations. Autonomy of marine craft requires a robust localization technique and process. To apply robust localization to marine craft, GPS technology was used to determine the position of the marine craft at any given point in time. Given that the operational environment of the marine was at open air, river, sea etc. GPS signal was always available to the marine craft as there are no obstructions to GPS signal. Adequate cognizance of the current position and states of an unmanned marine craft was a critical requirement for navigation of an unmanned surface vehicle (USV). The unmanned surface vehicle uses GPS in conjunction with state estimated solution provided by inertial sensors. In the absence of the GPS signal, navigation is resumed with a digital compass and inertial sensors to such a time when the GPS signal becomes accessible. GPS based navigation can be used for an unmanned marine craft with the mathematical modelling of the craft meeting the functional requirements of an unmanned marine craft. A low cost GPS unit was used in conjunction with a low cost inertial measurement unit (IMU) with sonar for obstacle detection. The use of sonar in navigation algorithm of marine craft was aimed at surveillance of the operational environment of the marine craft to detect obstacles on its path of motion. Inertial sensors were used to determine the attitude of the marine craft in motion. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2011.
294

Simulating the effect of wind on the performance of axial flow fans in air-cooled steam condenser systems

Fourie, Neil 12 1900 (has links)
Thesis (MEng) -- Stellenbosch University, 2014. / ENGLISH ABSTRACT: The use of air-cooled steam condensers (ACSCs) is the preferred cooling method in the chemical and power industry due to stringent environmental and water use regulations. The performance of ACSCs is however highly dependent on the influence of windy conditions. Research has shown that the presence of wind reduces the performance of ACSCs. It has been found that cross-winds (wind perpendicular to the longest side of the ACSC) cause distorted inlet flow conditions, particularly at the upstream peripheral fans near the symmetry plane of the ACSC. These fans are subjected to what is referred to as '2-D' wind conditions, which are characterised by flow separation on the upstream edge of the fan inlets. Experimental investigations into inlet flow distortion have simulated these conditions by varying the fan platform height. Low platform heights resulted in higher levels of inlet flow distortion, as also found to exist with high cross-wind speeds. This investigation determines the performance of various fan configurations (representative of configurations used in the South- African power industry) subjected to distorted inlet flow conditions through experimental and numerical investigations. The similarity between platform height and cross-wind effects is also investigated and a correlation between system volumetric effectiveness, platform height and cross-wind velocity is found. / AFRIKAANSE OPSOMMING: Die gebruik van lugverkoelde stoom kondensors (LVSK's) word verkies as 'n verkoelingsmetode in die chemiese- en kragvoorsieningsindustrie as gevolg van streng omgewings- en waterverbruiksregulasies. Die werkverrigting van LVSK's word egter grootliks beïnvloed deur die teenwoordigheid van wind. Navorsing het gewys dat die teenwoordigheid van wind die werkverrigting van LVSK's verminder. Daar was gevind dat kruiswinde (wind loodreg tot die langste sy van die LVSK) versteurde inlaat vloeitoestande veroorsaak, veral by waaiers wat aan die stroomop kant van die LVSK naby die simmetrievlak geleë is. Hierdie waaiers word blootgestel aan na wat verwys word as '2-D' windtoestande wat gekenmerk word deur vloeiwegbreking wat plaasvind by die stroomop rand van die waaierinlate. Eksperimentele ondersoeke van inlaat vloeiversteurings het hierdie toestande gesimuleer deur die waaier platformhoogte te verstel. Lae platform hoogtes het gelei tot hoër vlakke van inlaat vloeiversteuring, soortgelyk aan wat gevind word met hoë kruiswindsnelhede. Hierdie ondersoek gebruik numeriese en eksperimentele metodes om die werkverrigting van verskeie waaierkon gurasies (verteenwoordigend van kon- gurasies wat gebruik word in die Suid-Afrikaanse kragvoorsieningsindustrie) wat blootgestel word aan versteurde inlaat vloeitoestande te bepaal. Die ooreenkoms tussen platformhoogte en kruiswind e ekte word ook ondersoek en 'n korrelasie tussen die sisteem volumetriese e ektiwiteit, platformhoogte en kruiswindsnelheid word bepaal.
295

Performance modelling and simulation of a 100km hybrid sounding rocket.

Leverone, Fiona Kay. January 2013 (has links)
The University of KwaZulu-Natal (UKZN) Phoenix Hybrid Sounding Rocket Programme was established in 2010. The programme’s main objective is to develop a sounding rocket launch capability for the African scientific community, which currently lacks the ability to fly research payloads to the upper atmosphere. In this dissertation, UKZN’s in-house Hybrid Rocket Performance Simulator (HYROPS) software is used to improve the design of the Phoenix-2A vehicle, which is intended to deliver a 5 kg instrumentation payload to an apogee altitude of 100 km. As a benchmarking exercise, HYROPS was first validated by modelling the performance of existing sub-orbital sounding rockets similar in apogee to Phoenix-2A. The software was found to approximate the performance of the published flight data within 10%. A generic methodology was then proposed for applying HYROPS to the design of hybrid propellant sounding rockets. An initial vehicle configuration was developed and formed the base design on which parametric trade studies were conducted. The performance sensitivity for varying propulsion and aerodynamic parameters was investigated. The selection of parameters was based on improving performance, minimising cost, safety and ease of manufacturability. The purpose of these simulations was to form a foundation for the development of the Phoenix-2A vehicle as well as other large-scale hybrid rockets. Design chamber pressure, oxidiser-to-fuel ratio, nozzle design altitude, and fin geometry were some of the parameters investigated. The change in the rocket’s propellant mass fraction was the parameter which was found to have the largest effect on performance. The fin and oxidiser tank geometries were designed to avoid fin flutter and buckling respectively. The oxidiser mass flux was kept below 650 kg/m2s and the pressure drop across the injector relative to the chamber pressure was maintained above 15% to mitigate the presence of combustion instability. The trade studies resulted in an improved design of the Phoenix-2A rocket. The propellant mass of the final vehicle was 30 kg less than the initial conceptual design and the overall mass was reduced by 25 kg. The Phoenix-2A vehicle was 12 m in length with a total mass of 1006 kg. The fuel grain length of Phoenix-2A was 1.27 m which is approximately 3 times that of Phoenix-1A. The benefit of aluminised paraffin wax as a fuel was also investigated. The results indicated that more inert mass can be delivered to the target apogee of 100 km when using a 40% aluminised paraffin wax. / M.Sc.Eng. University of KwaZulu-Natal, Durban 2013.
296

The specification of a small commercial wind energy conversion system for the South African Antarctic Research Base SANAE IV

Stander, Johan Nico 12 1900 (has links)
Thesis (MScEng (Mechanical and Mechatronic Engineering))--Stellenbosch University, 2008. / The sustainability and economy of the current South African National Antarctic Expedition IV (SANAE IV) base diesel-electric power system are threatened by the current high fuel prices and the environmental pollution reduction obligations. This thesis presents the potential technical, environmental and economical challenges associated with the integration of small wind energy conversion system (WECS) with the current SANAE IV diesel fuelled power system. Criteria derived from technical, environmental and economic assessments are applied in the evaluation of eight commercially available wind turbines as to determine the most technically and economically feasible candidates. Results of the coastal Dronning Maud Land and the local Vesleskarvet cold climate assessments based on long term meteorological data and field data are presented. Field experiments were performed during the 2007-2008 austral summer. These results are applied in the generation of a wind energy resource map and in the derivation of technical wind turbine evaluation criteria. The SANAE IV energy system and the electrical grid assessments performed are based on long term fuel consumption records and 2008 logged data. Assessment results led to the identification of SANAE IV specific avoidable wind turbine grid integration issues. Furthermore, electro-technical criteria derived from these results are applied in the evaluation of the eight selected wind turbines. Conceptual wind turbine integration options and operation modes are also suggested. Wind turbine micro-siting incorporating Vesleskarvet specific climatological, environmental and technical related issues are performed. Issues focusing on wind turbine visual impact, air traffic interference and the spatial Vesleskarvet wind distribution are analysed. Three potential sites suited for the deployment of a single or, in the near future, a cluster of small wind turbines are specified. Economics of the current SANAE IV power system based on the South African economy (May 2008) are analysed. The life cycle economic impact associated with the integration of a small wind turbine with the current SANAE IV power system is quantified. Results of an economic sensitivity analysis are used to predict the performance of the proposed wind-diesel power systems. All wind turbines initially considered will recover their investment costs within 20 years and will yield desirable saving as a result of diesel fuel savings, once integrated with the SANAE IV diesel fuelled power system. Finally, results of the technical and economical evaluation of the selected commercially available wind turbines indicated that the Proven 6 kWrated, Bergey 10 kWrated and Fortis 10 kWrated wind turbines are the most robust and will yield feasible savings.
297

Optimization and control of a large-scale solar chimney power plant

Pretorius, Johannes Petrus 03 1900 (has links)
Thesis (PhD (Mechanical and Mechatronic Engineering))-- University of Stellenbosch, 2007. / ENGLISH ABSTRACT: The dissertation builds on previous research (Pretorius, 2004) and investigates the optimization and control of a large-scale solar chimney power plant. Performance results are based on a reference location near Sishen in South Africa and a so-called reference solar chimney power plant, with a 5000 m collector diameter and a 1000 m high, 210 m diameter chimney. The numerical simulation model is refined and used to perform a sensitivity analysis on the most prominent operating and technical plant specifications. Thermo-economically optimal plant configurations are established from simulation results and calculations according to an approximate plant cost model. The effects of ambient wind, temperature lapse rates and nocturnal temperature inversions on plant performance are examined. Various new technologies are investigated for the purpose of controlling plant output according to specific demand patterns. The incorporation of vegetation under the collector roof of the plant and the influence thereof on plant performance is also explored. Results indicate that, through the modification of the collector roof reflectance, collector roof emissivity, ground surface absorptivity or ground surface emissivity, major improvements on plant performance are possible. Introducing thermal insulation or double glazing of the collector roof also facilitates substantial enhancements on plant yield. Simulations predict a notable sensitivity to the ground surface absorptivity value, while variable atmospheric temperature lapse rates and windy ambient conditions may impair plant performance significantly. Furthermore, sand is found to be unsuitable as plant ground type and thermoeconomically optimal solar chimney plant dimensions are determined to be generally larger than plant dimensions employed in previous studies. Good dynamic control of solar chimney power output is established, suggesting that a solar chimney power plant can be implemented as a base or peak load electricity generating facility. Lastly, results predict that vegetation, when provided with sufficient water, will be able to survive under the collector roof but the inclusion of vegetation will however cause major reductions in plant performance. / AFRIKAANSE OPSOMMING: Die proefskrif bou op vorige navorsing (Pretorius, 2004) en ondersoek die optimering en beheer van 'n grootskaalse sonskoorsteen-kragstasie. Uitsetresultate word baseer op 'n verwysingsligging naby Sishen in Suid-Afrika en 'n sogenaamde verwysingskragstasie, met 'n kollektor deursnee van 5000 m en 'n 1000 m hoë, 210 m deursnee skoorsteen. Die numeriese rekenaarmodel is verbeter en gebruik vir die uitvoering van 'n sensitiwiteits-analise op die belangrikste bedryfs- en tegniese kragstasie spesifikasies. Termo-ekonomiese optimale aanlegkonfigurasies is bepaal volgens die uitsetresultate van die rekenaarmodel en benaderde aanleg-kosteberekeninge volgens 'n eenvoudige kostemodel. Die invloed van wind, atmosferiese temperatuur gradiënte en nagtelike temperatuur inversies op kragstasie uitset word beskou. Verskeie nuwe tegnologië word ondersoek met die doel om aanleg uitset te kan beheer volgens spesifieke elektrisiteit aanvraagspatrone. Die inkorporasie van plantegroei onder die kollektordak, en die invloed daarvan op kragstasie uitset, word ook beskou. Bevindings dui aan dat, deur die wysiging van die kollektordak refleksie, kollektordak emissiwiteit, grondoppervlak absorptiwiteit of grondoppervlak emissiwiteit, groot verbeterings op aanleg uitset moontlik is. Die implementering van termiese isolasie of 'n dubbelglaslaag vir die kollektordak veroorsaak ook 'n beduidende verheffing in kragstasie uitset. Simulasies voorspel 'n merkbare sensitiwiteit teenoor die grondoppervlak absorptiwiteitswaarde, terwyl veranderlike atmosferiese temperatuur daaltempos en winderige omgewingstoestande aanleg uitset beduidend mag belemmer. Verder is bevind dat sand ongeskik is as aanleg grond tipe en dat termo-ekonomiese optimale sonskoorsteen-kragstasie dimensies in die algemeen groter is as die aanvaarde aanlegdimensies van vorige studies. Goeie dinamiese beheer van sonskoorsteen-kragstasie uitset is bevestig, wat suggereer dat die sonskoorsteenkragstasie as 'n basis of pieklas elektrisiteitopwekkings-aanleg ingespan kan word. Ten laaste voorspel resultate dat plantegroei, mits dit voorsien word van genoegsame water, sal kan oorleef onder die kollektordak maar dat die inkorporasie van plantegroei die aanleg uitset beduidend sal benadeel. / Sponsored by the Centre for Renewable and Sustainable Energy Studies
298

Thermal energy storage in metallic phase change materials

Kotze, Johannes Paulus 12 1900 (has links)
Thesis (PhD) -- Stellenbosch University, 2014. / ENGLISH ABSTRACT: Currently the reduction of the levelised cost of electricity (LCOE) is the main goal of concentrating solar power (CSP) research. Central to a cost reduction strategy proposed by the American Department of Energy is the use of advanced power cycles like supercritical steam Rankine cycles to increase the efficiency of the CSP plant. A supercritical steam cycle requires source temperatures in excess of 620°C, which is above the maximum storage temperature of the current two-tank molten nitrate salt storage, which stores thermal energy at 565°C. Metallic phase change materials (PCM) can store thermal energy at higher temperatures, and do not have the drawbacks of salt based PCMs. A thermal energy storage (TES) concept is developed that uses both metallic PCMs and liquid metal heat transfer fluids (HTF). The concept was proposed in two iterations, one where steam is generated directly from the PCM – direct steam generation (DSG), and another where a separate liquid metal/water heat exchanger is used – indirect steam generation, (ISG). Eutectic aluminium-silicon alloy (AlSi12) was selected as the ideal metallic PCM for research, and eutectic sodium-potassium alloy (NaK) as the most suitable heat transfer fluid. Thermal energy storage in PCMs results in moving boundary heat transfer problems, which has design implications. The heat transfer analysis of the heat transfer surfaces is significantly simplified if quasi-steady state heat transfer analysis can be assumed, and this is true if the Stefan condition is met. To validate the simplifying assumptions and to prove the concept, a prototype heat storage unit was built. During testing, it was shown that the simplifying assumptions are valid, and that the prototype worked, validating the concept. Unfortunately unexpected corrosion issues limited the experimental work, but highlighted an important aspect of metallic PCM TES. Liquid aluminium based alloys are highly corrosive to most materials and this is a topic for future investigation. To demonstrate the practicality of the concept and to come to terms with the control strategy of both proposed concepts, a storage unit was designed for a 100 MW power plant with 15 hours of thermal storage. Only AlSi12 was used in the design, limiting the power cycle to a subcritical power block. This demonstrated some practicalities about the concept and shed some light on control issues regarding the DSG concept. A techno-economic evaluation of metallic PCM storage concluded that metallic PCMs can be used in conjunction with liquid metal heat transfer fluids to achieve high temperature storage and it should be economically viable if the corrosion issues of aluminium alloys can be resolved. The use of advanced power cycles, metallic PCM storage and liquid metal heat transfer is only merited if significant reduction in LCOE in the whole plant is achieved and only forms part of the solution. Cascading of multiple PCMs across a range of temperatures is required to minimize entropy generation. Two-tank molten salt storage can also be used in conjunction with cascaded metallic PCM storage to minimize cost, but this also needs further investigation. / AFRIKAANSE OPSOMMING: Tans is die minimering van die gemiddelde leeftydkoste van elektrisiteit (GLVE) die hoofdoel van gekonsentreerde son-energie navorsing. In die kosteverminderingsplan wat voorgestel is deur die Amerikaanse Departement van Energie, word die gebruik van gevorderde kragsiklusse aanbeveel. 'n Superkritiese stoom-siklus vereis bron temperature hoër as 620 °C, wat bo die 565 °C maksimum stoor temperatuur van die huidige twee-tenk gesmelte nitraatsout termiese energiestoor (TES) is. Metaal fase veranderingsmateriale (FVMe) kan termiese energie stoor by hoër temperature, en het nie die nadele van soutgebaseerde FVMe nie. ʼn TES konsep word ontwikkel wat gebruik maak van metaal FVM en vloeibare metaal warmteoordrag vloeistof. Die konsep is voorgestel in twee iterasies; een waar stoom direk gegenereer word uit die FVM (direkte stoomopwekking (DSO)), en 'n ander waar 'n afsonderlike vloeibare metaal/water warmteruiler gebruik word (indirekte stoomopwekking (ISO)). Eutektiese aluminium-silikon allooi (AlSi12) is gekies as die mees geskikte metaal FVM vir navorsingsdoeleindes, en eutektiese natrium – kalium allooi (NaK) as die mees geskikte warmteoordrag vloeistof. Termiese energie stoor in FVMe lei tot bewegende grens warmteoordrag berekeninge, wat ontwerps-implikasies het. Die warmteoordrag ontleding van die warmteruilers word aansienlik vereenvoudig indien kwasi-bestendige toestand warmteoordrag ontledings gebruik kan word en dit is geldig indien daar aan die Stefan toestand voldoen word. Om vereenvoudigende aannames te bevestig en om die konsep te bewys is 'n prototipe warmte stoor eenheid gebou. Gedurende toetse is daar bewys dat die vereenvoudigende aannames geldig is, dat die prototipe werk en dien as ʼn bevestiging van die konsep. Ongelukkig het onverwagte korrosie die eksperimentele werk kortgeknip, maar dit het klem op 'n belangrike aspek van metaal FVM TES geplaas. Vloeibare aluminium allooie is hoogs korrosief en dit is 'n onderwerp vir toekomstige navorsing. Om die praktiese uitvoerbaarheid van die konsep te demonstreer en om die beheerstrategie van beide voorgestelde konsepte te bevestig is 'n stoor-eenheid ontwerp vir 'n 100 MW kragstasie met 15 uur van 'n TES. Slegs AlSi12 is gebruik in die ontwerp, wat die kragsiklus beperk het tot 'n subkritiese stoomsiklus. Dit het praktiese aspekte van die konsep onderteken, en beheerkwessies rakende die DSO konsep in die kollig geplaas. In 'n tegno-ekonomiese analise van metaal FVM TES word die gevolgtrekking gemaak dat metaal FVMe gebruik kan word in samewerking met 'n vloeibare metaal warmteoordrag vloeistof om hoë temperatuur stoor moontlik te maak en dat dit ekonomies lewensvatbaar is indien die korrosie kwessies van aluminium allooi opgelos kan word. Die gebruik van gevorderde kragsiklusse, metaal FVM stoor en vloeibare metaal warmteoordrag word net geregverdig indien beduidende vermindering in GLVE van die hele kragsentrale bereik is, en dit vorm slegs 'n deel van die oplossing. ʼn Kaskade van verskeie FVMe oor 'n reeks van temperature word vereis om entropie generasie te minimeer. Twee-tenk gesmelte soutstoor kan ook gebruik word in samewerking met kaskade metaal FVM stoor om koste te verminder, maar dit moet ook verder ondersoek word.
299

Power efficiency of industrial equipment.

Veale, Kirsty Lynn. January 2011 (has links)
Power conservation has become a high priority to South African industries due to recent environmental assessments and electricity price hikes. This research aims to demonstrate to Industry the many simple and cost effective ways to increase their industrial efficiency with simple modifications, as well as making them more aware of common assembly errors that significantly increase power consumption. This has been accomplished with the design, construction and testing of a test rig capable of producing the desired test results which simulate Industry usage. A test rig was required to test certain energy efficient equipment. This dissertation contains an explanation of the tests required, as well as how they were conducted. These test requirements directed the design outcomes of the test rig. Due to the variety of equipment to be tested, and the accuracy required, the test rig had to be fully adjustable. The design process is explained in this dissertation, along with relevant theory with regard to the testing procedures. The testing procedures were designed to be as accurate as possible. The setup equipment and procedure is briefly explained to ensure an understanding of the capabilities of the test rig. This dissertation contains the results obtained from testing a variety of couplings, belts and motors under different conditions. The results obtained show the difference between the efficiency of a standard motor and that of a high efficiency motor. The efficiency comparison of the Poly V TM, Poly Chain® and SPB V-belts showed very distinct advantages and disadvantages of each belt. The coupling testing was conducted under conditions of misalignment, and resulted in distinct differences in the efficiencies of each coupling at different degrees of misalignments. The couplings tested were the Fenaflex®, the Quick-Flex®, and the Fenagrid® coupling. All results obtained were analyzed and discussed in the relevant sections. The results obtained showed that the high efficiency motor is significantly more efficient than the standard motor at full load, although at low loading, the motor efficiencies were very similar. The coupling tests showed the negative effects misalignment has on the efficiency of the Quick-Flex® and Fenagrid® coupling as well as the capability of the Fenaflex® coupling to withstand the effects of large misalignments without significant efficiency loss. v The belt testing revealed the advantages and disadvantages of each type of belt used. This showed that although the synchronous belt did not lose efficiency with decreased tension, it became unstable, and was difficult to keep on the pulley if not aligned correctly. The V-belts can handle low tension well. Prolonged use of the belts can cause them to stretch, lowering the tension into a “danger zone” that will cause the belts to slip. This slip can damage the belt and pulley. At the lower tension of the V-belt, although the efficiency increases slightly, the vibration of the slack side of the belt is significant, and can be dangerous as the belt could jump off the pulley. The Poly V TM belt has some of the advantages of the V-belt, except that it is unable to maintain its friction at low tension, as the belt width prevents it from being wedged into the grooves like the V-belt. The fluid coupling tests showed that the shock loading on a high inertia system can be significantly reduced with the aid of a fluid coupling. The reduced shock loading can reduce energy consumption, and increase the life of electric motors and the equipment that they drive by preventing excessive overloading. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2011.

Page generated in 0.1285 seconds