• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 879
  • 177
  • 107
  • 68
  • 57
  • 32
  • 31
  • 26
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 1677
  • 1677
  • 220
  • 213
  • 209
  • 183
  • 178
  • 166
  • 156
  • 141
  • 137
  • 134
  • 132
  • 128
  • 126
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
531

A study of hydrogenated nanocrystalline silicon thin films deposited by hot-wire chemical vapour deposition (HWCVD).

Halindintwali, Sylvain January 2005 (has links)
In this thesis, intrinsic hydrogenated nanocrystalline silicon thin films for solar cells application have been deposited by means of the hot &ndash / wire chemical vapour deposition (HWCVD) technique and have been characterised for their performance. It is noticed that&nbsp / hydrogenated nanocrystalline silicon is similar in some aspects (mainly optical) to its counterpart amorphous silicon actually used as the intrinsic layer in the photovoltaic industry. Substantial differences between the two materials have been found however in their respective structural and electronic properties.<br /> <br /> We show that hydrogenated nanocrystalline silicon retains good absorption coefficients known for amorphous silicon in the visible region. The order improvement and a reduced content of the bonded hydrogen in the films are linked to their good stability. We argue that provided a moderate hydrogen dilution ratio in the monosilane gas and efficient process pressure in the deposition chamber, intrinsic hydrogenated nanocrystalline silicon with photosensitivity better than 102 and most importantly resistant to the Staebler Wronski effect (SWE) can be produced. <br /> <br /> This work explores the optical, structural and electronic properties of this promising material whose study &ndash / samples have been exclusively produced in the HWCVD reactors based in the Solar Cells laboratory of the Physics department at the University of the Western Cape.
532

CHEMICAL DETECTION AND SENSING USING OPTICAL INTERFEROMETRY

Chen, Weijian 20 September 2013 (has links)
Chemical detection, including analysis of gases and liquids, is a large field in environmental research and industry. It requires sensitive, rapid, and inexpensive chemical sensors. Many industrial materials such as coatings and adhesives readily absorb chemical analytes, which may result in changes of their chemical, mechanical, and optical properties. This uptake of volatile organic compounds either from the gas phase or from an aqueous solution into a thin film is frequently accompanied by a change in material refractive index and film thickness. While the undesired swelling of thin film coatings and their refractive index changes affect their use in harsh environments, the sensitivity of some polymers to solvent vapours can also be exploited for sensing applications. In this project, a method is reported for real-time monitoring of vapour uptake by simultaneous detection of the refractive index, n, and thickness, d, of thin transparent films with a precision of 10-4 for refractive index and 100 nm for thickness. The setup combines a total internal reflection refractometer with an interferometric imaging method. Two setups using 1550 nm and 635 nm measurement wavelengths were developed, with a detection rate of 1 second per measurement. Two processing methods using a fast Fourier transform algorithm to calculate n and d are applied to the experimental results and compared. Both methods could extract n and d simultaneously from each image captured by the refractometer. The results show that the setup is capable of monitoring film RI and thickness change in real-time. The partitioning of volatile organic compound vapours into polydimethylsiloxane (PDMS) and PDMS-polydiphenylsiloxane (PDPS) copolymers is described. The system is also suited for characterization of other solid and liquid films like SU-8 photoresist and crude oil. It shows great potential in commercial applications of thin film characterization. / Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2013-09-19 22:21:38.836
533

An investigation of the performance and stability of zinc oxide thin-film transistors and the role of high-k dielectrics

Khan, Ngwashi Divine January 2010 (has links)
Transparent oxide semiconducting films have continued to receive considerable attention, from a fundamental and application-based point of view, primarily because of their useful fundamental properties. Of particular interest is zinc oxide (ZnO), an n-type semiconductor that exhibits excellent optical, electrical, catalytic and gas-sensing properties, and has many applications in various fields. In this work, thin film transistor (TFT) arrays based on ZnO have been prepared by reactive radio frequency (RF) magnetron sputtering. Prior to the TFT fabrication, ZnO layers were sputtered on to glass and silicon substrates, and the deposition parameters optimised for electrical resistivities suitable for TFT applications. The sputtering process was carried out at room temperature with no intentional heating. The aim of this work is to prepare ZnO thin films with stable semiconducting electrical properties to be used as the active channel in TFTs; and to understand the role of intrinsic point defects in device performance and stability. The effect of oxygen (O2) adsorption on TFT device characteristics is also investigated. The structural quality of the material (defect type and concentration), electrical and optical properties (transmission/absorption) of semiconductor materials are usually closely correlated. Using the Vienna ab-initio simulation package (VASP), it is predicted that O2 adsorption may influence film transport properties only within a few atomic layers beneath the adsorption site. These findings were exploited to deposit thin films that are relatively stable in atmospheric ambient with improved TFT applications. TFTs incorporating the optimised layer were fabricated and demonstrated very impressive performance metrics, with effective channel mobilities as high as 30 cm2/V-1s-1, on-off current ratios of 107 and sub-threshold slopes of 0.9 – 3.2 V/dec. These were found to be dependent on film thickness (~15 – 60 nm) and the underlying dielectric (silicon dioxide (SiO2), gadolinium oxide (Gd2O3), yttrium oxide (Y2O3) and hafnium oxide (HfO2)). In this work, prior to sputtering the ZnO layer (using a ZnO target of 99.999 % purity), the sputtering chamber was evacuated to a base pressure ~4 x 10-6 Torr. Oxygen (O2) and argon (Ar) gas (with O2/Ar ratio of varying proportions) were then pumped into the chamber and the deposition process optimised by varying the RF power between 25 and 500 W and the O2/Ar ratio between 0.010 to 0.375. A two-level factorial design technique was implemented to test specific parameter combinations (i.e. RF power and O2/Ar ratio) and then statistical analysis was utilised to map out the responses. The ZnO films were sputtered on glass and silicon substrates for transparency and resistivity measurements, and TFT fabrication respectively. For TFT device fabrication, ZnO films were deposited onto thermally-grown silicon dioxide (SiO2) or a high-k dielectric layer (HfO2, Gd2O3 and Y2O3) deposited by a metal-organic chemical deposition (MOCVD) process. Also, by using ab initio simulation as implemented in the “Vienna ab initio simulation package (VASP)”, the role of oxygen adsorption on the electrical stability of ZnO thin film is also investigated. The results indicate that O2 adsorption on ZnO layers could modify both the electronic density of states in the vicinity of the Fermi level and the band gap of the film. This study is complemented by studying the effects of low temperature annealing in air on the properties of ZnO films. It is speculated that O2 adsorption/desorption at low temperatures (150 – 350 0C) induces variations in the electrical resistance, band gap and Urbach energy of the film, consistent with the trends predicted from DFT results.
534

Spatially resolved measurement of thin film silicon solar modules by laser beam induced current (LBIC) system

Vorasayan, Pongpan January 2010 (has links)
This thesis presents the development of innovative tools to investigate spatially distributed properties of thin film photovoltaic devices. They are required to gain a better understanding of device behaviour driven by how such properties affect the performance of commercial-scale devices. The tools developed for this are a distributed 3D model (D3DM) as simulation software and a laser beam induced current (LBIC) system as a platform for characterisation. The D3DM was developed utilising standard circuit analysis software. It is constructed to simulate realistic device structures and current flows in thin film PV devices. Diode parameters are truly distributed and can be varied independently. The model includes a voltage dependent photocurrent which is a key characteristic of amorphous silicon based solar cells. The D3DM has been used for the investigation of spatial variation in performance due to the distributed nature and non-uniformity of diode parameters and solar cell properties. It is shown that distributed series resistance contributed from the contact layers has a significant impact on solar cell performance and efficiency. The LBIC system is an optical scanning based characterisation tool. Unlike most existing systems, this has been developed specifically for large area, module-size thin film applications. The system provides a detailed photocurrent map which reveals spatial non-uniformity and allows investigation of localised performance variation of the investigated PV devices. System development, components and their characterisation as well as different measurement techniques are described. The model is also applied to LBIC measurements where it is used for a sensitivity analysis of measurement signal with respect to certain cell parameters in cells and modules under different measurement conditions. A new limiting illuminated LBIC (li-LBIC) measurement technique was developed. It is a measurement where the laser-probed cell is brought into limiting condition by means of shading. The signal thus generated is a linear response which was previously unobtainable by typical LBIC measurements. It is unaffected by non-uniform illumination allowing the real properties of investigated cells in a monolithic series connected module to be measured non-destructively.
535

Study of film formation in EHD contacts using a novel method based on electrical capacitance

Furtuna, Marian Dumitru January 2011 (has links)
The elastohydrodynamic lubrication regime (EHD) is found in many machine elements, such as rolling element bearings, gears, cam/tappet, where a combination of hydrodynamic effect, elastic deformation of the surfaces and an increase of the lubricant’s viscosity with pressure create a continuous lubricant film which is capable of supporting pressures of the order of tens of thousands of atmospheres. One of the most important features of these films is their thickness, as this determines whether the bounding surfaces are completely separated, thus avoiding premature wear and failure of the contact. Consequently for many years scientists were interested in finding methods for measuring the lubricant film thickness in elastohydrodynamic conditions. One of the most versatile and widely used techniques for measuring lubricant film thickness in EHD contacts is the optical interferometry method. Apart from numerous advantages, this method has the limitation in the fact that one of the contacting surfaces must be transparent, usually glass or sapphire, thus it does not replicate real conditions found in machine elements contacts. On the other hand, the other group of methods used for studying the behaviour of elastohydrodynamic films includes a variety of electrical methods. Historically, these appeared before the optical methods, but gradually lost importance with the success of the later. Most capacitive, resistive, inductance methods developed so far use specially designed sensors for monitoring the lubricant film thickness. In the case of electrical techniques, both elements of the contact are metallic, which means that these can be used for measuring film thickness in real machine elements. One of the main disadvantages of electrical methods though, is the difficulty with which the calibration of various electrical quantities, against lubricant film thickness is obtained. This thesis describes the work carried out by the author on the application of a capacitive method for studying lubrication of elastohydrodynamic contacts. The novelty of the method used consists in the calibration of the capacitance of the contact with optical interferometry. This project started from the premises that a thicker Chromium layer will supply the phase change needed to precisely measure the lubricant film thickness by eliminating the fragile silica layer, and it has been shown that an increase in Cr thickness results in a increase in reflection of the glass–Cr interface making the resulting images hard to process. Modifications to the existing experimental rig were carried out in order to apply/collect an electrical signal from both the disc and the ball. Signal collection from the disc was quite straightforward and a graphite brush paired with a copper nut was used, as this is the oldest method of collecting/applying and electrical signal from a rotating element. Collecting an electrical signal from the ball presented quite a challenge as the ball is submerged in oil. A number of brushes was designed, made and tested and the one that provided the most stable results chosen. For calibration purposes a base oil and two additives were chosen, the additives were chosen in such a way that the improvement made to the lubrication process to be very different from one additive to the other. The chosen additives were a Viscosity Index Improver [VII] and an Organic Friction Modifier [OFM]. The VII is used by many researchers in order to obtain multigrade lubricants using the same base oil by varying its percentage in the mix. The OFM is used to provide protection between the two contacting bodies when EHD film fails and EHD lubrication is replaced by mixed lubrication by forming a boundary layer on the contacting surfaces. Optical measurements were carried out on the base oil and the two resulting lubricants from the additive mixes using the Ultra Thin Film Interferometry [UTFI] method. The measurements were used as a benchmark against which the capacitive measurements were calibrated. Tests were conducted in a number of controlled conditions for speed, temperature, load and sliding conditions. Results showed that the highest influence on the lubrication process was given by the speed, an increase in speed results in an increase in optically measured film thickness and a decrease in electrically measured film thickness. Phenomenon explained by a large amount of lubricant pushed into the contact. Another parameter that influenced the results quite significantly was temperature, a rise in temperature supplies a decrease in optically measured film thickness and an increase in capacitive measured film thickness which was explained by lubricant viscosity dropping with a rise in temperature. Three different sliding conditions were employed and a small drop in optically measured film thickness followed by a small rise in electrically measured film thickness was recorded due to a local increase in contact temperature when sliding was employed. The capacitive method developed in this project is precise enough to accurately measure lubricant film thickness down to 100nm; a model for thicknesses lower that 100nm was proposed Results from the optical and capacitive methods were compared and a good correlation was found, indicating that the developed capacitive method can be used as a tool for measuring metal on metal contacts without further calibration.
536

Spin-dependent electron transport in nanomagnetic thin film devices

Zhou, Yun January 2011 (has links)
Spin-dependent electron transport in submicron/nano sized magnetic thin film devices fabricated using the optical lithography, e-beam lithography and focused ion beam (FIB) was investigated with the primary aim to find the ballistic magnetoresistance (BMR) in thin film nanoconstrictions. All experimental results were analysed in combination with micromagnetic simulations. The magnetisation reversal processes were investigated in a submicron half-pinned NiFe stripe with a microconstriction. An asymmetric MR curve was observed, and micromagnetic simulations verified it was due to the exchange-bias on the left side, which changed the magnetic switching mechanism. The effects of different pinning sites on the magnetisation switching and domain wall displacement were studied in NiFe film and spin-valve based nanodevices. A sign of domain wall MR was seen on the transversal MR curve of the NiFe nanodevice due to the domain wall induced electron scattering. The size effect on the magnetisation switching and interlayer magnetostatic coupling was demonstrated and characterised in synthetic antiferromagnet (SAF)-pinned spin-valve nanorings. It has been clarified by micromagnetic simulations that these nanorings exhibit a double or single magnetisation switching process, which is determined by the magnetostatic coupling as a function of the ring diameter. The interlayer magnetostatic coupling was efficiently reduced in large SAF-pinned nanorings, resulting in a small shift of the minor MR curve, which is beneficial to the magnetic memory applications. In-situ MR measurements and the investigation of domain wall properties have been carried out in FIB patterned NiFe film nanoconstrictions. Spin-valve like sharp transitions were observed on the MR curves in the 80 nm/130 nm wide nanoconstriction devices. However, our analysis of the results by micromagnetic simulations and domain observations with scanning electron microscopy with polarisation analysis (SEMPA) concluded that these sharp MR transitions originated from the anisotropic magnetoresistance (AMR) effect, due to the fast magnetisation rotation in the nanoconstriction, and not from BMR. The numerical investigation has proved that a further reduction of the constriction width/length is necessary for large MR values.
537

Thin film studies of planar transition metal complexes

Whyte, Alex January 2013 (has links)
At present the field of molecular electronics - also known as molecular semiconductors, organic semiconductors, plastic electronics or organic electronics - is dominated by organic materials, both polymeric and molecular, with much less attention being focused on transition metal based complexes despite the advantages they can offer. Such advantages include tuneable frontier orbitals through the ligand/metal interaction and the ability to generate stable paramagnetic species. Devices containing radical materials are particularly interesting in order to examine the interplay between conduction and spin - an effect which is not yet properly understood but can give rise to exotic behaviour. A series of homoleptic, bis-ligand Ni(II) and Cu(II) complexes were prepared using three structurally related phenolic oxime ligands, 2-hydroxy-5-t-octylacetophenone oxime (t-OctsaoH), 2-hydroxy-5-n-propylacetophenone oxime (n-PrsaoH) and 2- hydroxyacetophenone oxime (HsaoH). The complexes were characterised by single-crystal X-ray diffraction, cyclic voltammetry, UV/Vis spectroscopy, field-effect-transistor measurements, DFT/TD-DFT calculations and in the case of the paramagnetic species, EPR and magnetic susceptibility. Variation of the substituent on the ligand from t-octyl to n-propyl to H enabled electronic isolation of the complexes in the crystal structures of M(t-OctsaoH)2, which contrasted with π-stacking interactions observed in the crystal packing of M(n-PrsaoH)2 and of M(HsaoH) (M = Ni, Cu). This was further evidenced by comparing the antiferromagnetic interactions observed in samples of Cu(n-PrsaoH)2 and Cu(HsaoH)2 with the ideal paramagnetic behaviour for Cu(t-OctsaoH)2 down to 1.8 K. Despite isostructural single crystal structures for M(n-PrsaoH)2, thin-film X-ray diffraction and SEM revealed different morphologies depending on the metal and the deposition method employed. However, the complexes of M(n-PrsaoH)2 and M(HsaoH) failed to demonstrate significant charge transport in an FET device despite displaying the ability to form π- stacking structures. A series of planar Ni(II), Cu(II) and Co(II) dibenzotetraaza[14]annulenes (dbtaa) and dinapthotetraaza[14]annulenes (dntaa) were synthesised and studied crystallographically, optically, electrochemically and magnetically. Thin films of each of these complexes have been prepared by vacuum deposition to evaluate the field-effect transistor (FET) performance as well as the morphology and crystallinity of the film formed. Single crystal data revealed that Ni(dbtaa) and Cu(dbtaa) are isomorphous to each other, with Co(dbtaa) displaying a different crystallographic packing. The electrochemistry and UV/Vis absorption studies indicate the materials are redox active and highly coloured, with molar extinction coefficients as large as 80,000 M-1cm-1 in the visible region. The paramagnetic Cu(II) and Co(II) complexes display weak 1-dimensional antiferromagnetic interactions and were fit to the Bonner-Fisher chain model. The data revealed that the Co(II) species possesses much stronger magnetic exchange interactions compared with the Cu(II) complex. Each of the materials formed polycrystalline films when vacuum deposited and all showed ptype field-effect transistor behaviour, with modest charge carrier mobilities in the range of 10-5 to 10-9 cm2 V-1 s-1 . SEM imaging of the substrates indicates that the central metal ion, and its sublimation temperature, has a crucial role in defining the morphology of the resulting film. Structurally related Cu(II) and Ni(II) dithiadiazoletetraaza[14]annulene (dttaa) macrocycles were synthesised and studied in the context of their thin film electrochemical, conducting and morphological properties. Both the Ni(II) and Cu(II) complexes were found to be volatile under reduced pressure, which allowed crystals of both materials to be grown and the single crystal structures solved. Interestingly, the crystal packing of these heterocyclic macrocycles varies depending on whether the central metal ion is Cu(II) or Ni(II), which is in contrast to the analogous dibenzotetrazaannulenes complexes. Soluble Ni(II) analogues containing benzoyl groups on the meso- positions of the macrocycle (dttaaBzOR) were also prepared and contrasted with the insoluble Ni(dttaa) complexes in terms of their solution optical and electrochemical properties. Thin film electrochemical studies of Cu(dttaa) and Ni(dttaa) showed chemically reversible oxidative processes but on scanning to reductive potentials the films disintegrated almost immediately as the bulky counter tetrabutylammonium cation entered the thin film. FET studies undertaken on polycrystalline films of both complexes, using various device configurations and surface treatments, failed to realise any gate effect. Thin film XRD measurements indicate that films of both complexes formed by vacuum deposition are crystalline and contain a mixture of molecular alignments, with molecules aligning “edge on” and “face down” to the substrate. SEM imaging failed to effectively resolve the morphology of the films implying the sizes of the crystallites are small, which may help to explain the lack of FET effect. A series of bis-ligand diimine Ni, Cu and Pd complexes have been synthesised from the ligand 4,5-bis(dodecyloxy)benzene-1,2-diamine (dbdaH2). The same ligand was also used to prepare a series of soluble Cu(II) and Ni(II) tetraaza[14]annulene macrocycles. All the bis-ligand diimine complexes were found to suffer from instability in air due to the ease at which the complexes are oxidised. The Ni complex, Ni(dbda)2, was found to display a NIR transition in the region of 971 to 1024 nm depending on the polarity of the solvent that the molecule is dissolved in. Solution electrochemistry studies of Ni(dbda)2 reaffirmed the facile nature of the first oxidative process, with the HOMO energy calculated at -4 eV by hybrid-DFT. This compound failed to yield semiconducting behaviour in an FET device despite the use of surface treatments aimed at promoting suitable molecular alignment across the conducting channel.
538

Etude de la structure électronique des films minces de magnétite Fe304 (001)/MgO par photoémission résolue en angle / Electronic structure studies of magnetite thin films Fe3O4 (001)/MgO using angle resolved photoemission

Sabra, Maher 13 July 2011 (has links)
La thèse présente l'élaboration et l'étude des films minces (35 nm) cristallins et stœchiométriques de la magnétite Fe304(001)/MgO. La qualité de ces films est étudiée par différentes techniques (DEL, XPS, XMCD, Effet Kerr, Auger). Nous supposons que les films se recouvrent partiellement, même sous ultra vide, par de Fe2O3. Pour la première fois, l'étude de la structure électronique de la bande t2g de ces films est réalisée par photoémission résolue en angle (ARPES)à température ambiante et à 75 K, en utilisant des photons à basses énergies (6eV - 21 eV). Nous avons constaté que le signal de la photoémission est composé des états électroniques de deux périodicités liées à la zone de Brillouin primitive de la surface (a=4.2 Å) et à la zone de Brillouin de la reconstruction de la surface (a=8.4 Å). Nous pensons que la présence des états liés à la reconstruction sont probablement responsables de la chute de la densité d'état à EF. Une signature de Verwey est observée par ARPES à basse température. Nous estimons que la réalisation des films ultra minces de magnétite est difficilement aboutie. / With its half-metallic behavior predicted theoretically, the magnetic oxideFe3O4 (TC = 863 K) is promising for applications in spintronics as thin films.High quality films and the electronic band structure are still a challenge to faceexperimentally. We managed to develop single crystalline Fe3O4(0 0 1) films(35 nm) on MgO. Analysis by XPS, XAS and XMCD allowed to characterizethe quality of the films prepared. The magnetic study shows a perfect XMCDsignal and a form magnetic anisotropy which lays down the axis of easy magnetizationin the film plane. Our samples are stable during the photoemissionmeasurements. The photoemission measurements of the t2g band show thatthe electronic bands cannot be described by a DFT calculation. Indeed, spinpolarons due to strong electron-phonon coupling mechanism are involved inthe electronic transport. Angle-resolved photoemission shows a dispersion ofthe t2g band in the ����M direction corresponding to two periodicities [the unitcell of the surface reconstruction a = 8,4 Å (30% of the signal) and the simpleunit cell of the surface a = 4;2 Å]. At a temperature T < TV (TV = 120 K,Verwey temperature), the angle-resolved photoemission shows the opening ofa 100 meV band gap, with a rigid shift of the spectral weight of the t2g bandto the high binding energy side.
539

Magnetostrukturelle Transformation in epitaktischen Ni-Co-Mn-In-Schichten

Niemann, Robert Ingo 20 October 2015 (has links) (PDF)
In der magnetischen Formgedächtnislegierung Ni-Co-Mn-In kann eine reversible Umwandlung von einer niedrigsymmetrischen, para- oder antiferromagnetischen Phase (Martensit) in eine hochsymmetrische ferromagnetische Phase (Austenit) sowohl durch eine Temperaturerhöhung als auch durch das Anlegen eines Magnetfelds induziert werden. Da dünne Schichten sich als interessantes Modellsystem für magnetische Formgedächtnislegierungen erwiesen haben, wird diese Umwandlung und der mit ihr verbundene inverse magnetokalorische Effekt an epitaktischen Ni-Co-Mn-In-Schichten untersucht. Die Temperatur des Substrats während der Herstellung wird als entscheidender Parameter für die Zusammensetzung und chemische Ordnung der Schicht identifiziert. Untersuchungen der Struktur mittels Röntgenbeugung zeigten, in Übereinstimmung mit dem Konzept des adaptiven Martensits, die Koexistenz von Austenit, moduliertem und nichtmoduliertem Martensit bei Raumtemperatur. Dieses Ergebnis wird durch Gefügeabbildungen untermauert. Die Transformation wird sowohl durch temperaturabhängige Röntgenbeugung als auch durch temperatur- und feldabhängige Magnetisierungsmessungen untersucht. Die berechnete Änderung der magnetischen Entropie ist etwa halb so groß wie in massivem Ni-Co-Mn-In. Schließlich wird bei tiefen Temperaturen eine unidirektionale Austauschkopplung zwischen Restaustenit und Martensit nachgewiesen, die auf einen antiferromagnetischen Martensit schließen lässt. / The magnetic shape memory alloy (MSMA) Ni-Co-Mn-In shows a reversible transformation from a para- or antiferromagnetic low symmetry phase (martensite) into a ferromagnetic phase of high symmetry (austenite). This transformation can either be induced by raising the temperature or applying a magnetic field. Since thin films have be shown to be an interesting model system for MSMAs, this transformation and the associated inverse magnetcaloric effect are investigated in epitaxial Ni-Co-Mn-In films. The temperature of the substrate during deposition is identified as the essential parameter controlling both composition and chemical order. By studying structure using x-ray diffraction (XRD) the coexistence of austenite and modulated (14M) as well as nonmodulated martensite (NM) is shown. Coexistence of NM and 14M is also visible in micrographs of the films surface. This confirms results obtained for epitaxial Ni-Mn-Ga and validates the concept of adaptive martensite in this alloy. The transformation is investigated by temperature-dependent XRD and temperature- and field-dependent magnetometry. A positive change in entropy is calculated which is about half compared to bulk. Finally, an exchange bias between residual austenite and martensite is observed, which suggests an antiferromagnetic order in the martensitic state.
540

Electrolyte-Gated Organic Thin-Film Transistors

Herlogsson, Lars January 2011 (has links)
There has been a remarkable progress in the development of organic electronic materials since the discovery of conducting polymers more than three decades ago. Many of these materials can be processed from solution, in the form as inks. This allows for using traditional high-volume printing techniques for manufacturing of organic electronic devices on various flexible surfaces at low cost. Many of the envisioned applications will use printed batteries, organic solar cells or electromagnetic coupling for powering. This requires that the included devices are power efficient and can operate at low voltages. This thesis is focused on organic thin-film transistors that employ electrolytes as gate insulators. The high capacitance of the electrolyte layers allows the transistors to operate at very low voltages, at only 1 V. Polyanion-gated p-channel transistors and polycation-gated n-channel transistors are demonstrated. The mobile ions in the respective polyelectrolyte are attracted towards the gate electrode during transistor operation, while the polymer ions create a stable interface with the charged semiconductor channel. This suppresses electrochemical doping of the semiconductor bulk, which enables the transistors to fully operate in the field-effect mode. As a result, the transistors display relatively fast switching (≤ 100 µs). Interestingly, the switching speed of the transistors saturates as the channel length is reduced. This deviation from the downscaling rule is explained by that the ionic relaxation in the electrolyte limits the channel formation rather than the electronic transport in the semiconductor. Moreover, both unipolar and complementary integrated circuits based on polyelectrolyte-gated transistors are demonstrated. The complementary circuits operate at supply voltages down to 0.2 V, have a static power consumption of less than 2.5 nW per gate and display signal propagation delays down to 0.26 ms per stage. Hence, polyelectrolyte-gated circuits hold great promise for printed electronics applications driven by low-voltage and low-capacity power sources.

Page generated in 0.0491 seconds