• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 4
  • Tagged with
  • 35
  • 35
  • 35
  • 13
  • 11
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Earth Abundant Alternate Energy Materials for Thin Film Photovoltaics

Banavoth, Murali January 2013 (has links) (PDF)
Inexhaustible solar energy, which provides a clean, economic and green energy, seems to be an alternative solution, for current and future energy demands. Harvesting solar energy presents a challenge in using eco-friendly, earth abundant and inexpensive materials. Although present CdTe and Cu (In, Ga)Se2 (CIGS) technologies, provide light-to-electricity comparable to silicon technology, toxicity of Cd and scarcity of In limits the widespread utilization. Future tera-watt level module capacity would then be feasible by the low-cost technologies. The chalcogenide thin film technology would therefore provide the exceptional utilization in the large-area module monolithic integrations benefitting from the low material consumption owing to the direct band gap. The current thesis presents the results obtained from the quest of other thin film materials and their utilization to an unconventional Cd-free buffer layer. The films suitability for the future applications was assessed through photovoltaics device studies in a comparative manner. Chapter-1 deals with the motivation for the solar energy and the importance of thin film photovoltaics. Alternative materials which are abundantly available would help to reach the future tera watt level production, where the conventional silicon technology alone cannot satisfy the global energy demand. The utilization of non-conventional thin film based solar cells and their working principles were elucidated. The histories of the copper based alternative materials were introduced. Chapter-2 deals with the versatile thin film growth technique that has been designed fabricated and installed further which can handle the growth of the absorber and the top TCO layers with insitu sulphurisation. The methodology of the absorber deposition was discussed in detail. The experimental details for the co-sputtering of CuInAl alloy were presented. A novel selenization method, assisted by the combination of inert gases was developed for the annealing of CuInAl alloyed precursor films. Chapter-3 deals with the presentation of the results obtained on buffer and window layers. Chemical Bath deposition technique was employed for the growth and optimization of the conventional CdS and non-toxic buffer ZnS buffer layers. A) Cadmium sulphide thin films suitable for the utilization of high efficiency solar cells were optimized. Optimization of the buffer involved the effects of cadmium precursors, ammonia concentration and buffer capsule effect. A green route was presented so as to consume the precursors to the maximum extent possible. B) The alternative non-toxic buffer Zinc Sulphide (ZnS) thin films were successfully grown using the above optimized conditions. Moreover the window layer was also optimized for better device partner. Zinc Oxide was used as a n-type partner for the p-type CIS films. The ZnO films were grown by the RF-sputtering from the single cathode exhibited good crystallinity with Zincite structure (hexagonal ZnS, a= 3.249A0 and c= 5.205A0). All the grown films showed high resistivity. Al: ZnO thin films were optimized in two methods 1) by dc co-sputtering from the elemental cathodes, Zinc and Aluminum, 2) dc-sputtering from the single 2% Al-doped ZnO cathode. Low resistivity Al:ZnO thin films were deposited in both the cases. Effect of Aluminum doping into ZnO crystal lattice upon the optical and electrical properties were discussed. Chapter-4 deals with the synthesis of various absorber materials, characterizations and some properties. Briefly the A) Optimization of the CuIn1-xAlxSe2 phase with better adhesion and better crystallinity. Aluminum doping into the crystal lattice of CuInSe2 aided the wide band gap tuning of CIAS thin films. Morphological investigations were carried out for the different set of thin films before and after selenization. Effects of copper and Aluminum concentrations on the lattice parameter of the selenized thin films were addressed. The present chapter deals with the A) electrical properties of CIAS films and its heterojunction partners. Resistivity measurements and effects of Cu/In ratio and the effect of Al doping were described in detail. The CIAS/ZnO heterostructure, CIAS/Al:ZnO heterostructure junction properties as a function of different sun illuminations were discussed. B) The alternative earth abundant, eco-friendly, non-toxic elements Cu2ZnSnS4, absorber thin films synthesis and characterizations. Photo conductive photo measurements showed CZTS a potential candidate for near infra-red photodectection. C) Cu2CoSnS4 (CCTS) nanostructures and quantum dots were synthesized via simple chemical routes. CCTS quantum dots were tuned to exhibit the red edge effect and cold white phosphors. D) Cu3BiS3 nano rods were synthesized and characterized structurally and optically. The transport properties of Cu3BiS3 nanorods were tailored for showing the metallic to semiconducting transitions. Chapter-5 Discusses the A) Efforts made in understanding the CIAS based solar cells through interfaces such as CIAS/ZnO, Mo/CIAS, CIAS/CdS/i-ZnO/Al:ZnO and improving the open circuit voltage VOC upon a rotating substrate, involving the inline and in situ processes, for fabricating the cell/ module were discussed. The device statistics for various set of cells were analyzed. B) Solar cells of CTS absorber with the non-toxic buffer ZnS were fabricated and device properties were analyzed. C) CCTS quantum dots embedded in the polymer matrix were utilized for making the inverted hybrid solar devices in combination of ITO/AZnO bilayered contact replacing the acidic PEDOT: PSS. D) The solar cells made of CCTS hollow spheres by spin coating the absorber in the configuration SLG/Mo/CCTS/CdS/ iZno-AZnO/Ni-Al-Al showed a lower efficiency of 0.02%. Chapter-6 concludes with the summary of present investigations and the scope for future work.
32

Organic Small Molecules: Correlation between Molecular Structure, Thin Film Growth, and Solar Cell Performance

Schünemann, Christoph 09 January 2013 (has links)
Das wesentliche Ziel dieser Doktorarbeit ist es, die Zusammenhänge zwischen der Struktur von kleinen organischen Molekülen, deren Anordnung in der Dünnschicht und der Effizienz organischer Solarzellen zu beleuchten. Die Kombination der komplementären Methoden spektroskopischer Ellipsometrie (VASE) und Röntgenstreuung, vor allem der unter streifendem Einfall (GIXRD), hat sich als sehr effiient für die Strukturuntersuchungen organischer Dünnschichten erwiesen. Zusammen geben sie einen detailreichen Einblick in die intermolekulare Anordnung, die Kristallinität, die molekulare Orientierung, die optischen Konstanten n und k und die Phasenseparation von organischen Schichten. Zusätzlich wird die Topografie der organischen Dünnschicht mit Rasterkraftmikroskopie untersucht. Der erste Fokus liegt auf der Analyse des Dünnschichtwachstums von Zink-Phthalocyanin (ZnPc) Einzelschichten. Für alle untersuchten Schichtdicken (5, 10, 25, 50 nm) und Substrattemperaturen (Tsub=30°C, 60°C, 90°C) zeigt ZnPc ein kristallines Schichtwachstum mit aufrecht stehenden ZnPc Molekülen. Um effiziente organische Solarzellen herzustellen, werden Donor- und Akzeptormoleküle üblicherweise koverdampft. Bei der Mischung von Donor- und Akzeptormolekülen bildet sich eine gewisse Phasenseparation aus, deren Form wesentlich für die Ladungsträgerextraktion entlang der Perkolationpfade ist. Der Ursprung dieser Phasenseparation wird innerhalb dieser Arbeit experimentell für ZnPc:C60 Absorber-Mischschichten untersucht. Um die Ausprägung der Phasenseparation zu variieren, werden verschiedene Tsub (30°C, 100°C, 140°C) und Mischverhältnisse (6:1, 3:1, 2:1, 1:1, 1:2, 1:3, 1:6) bei der Koverdampfung von ZnPc und C60 angewendet. GIXRD Messungen zeigen, dass hier der bevorzugte Kristallisationsprozess von C60 Molekülen die treibende Kraft für eine effiziente Phasenseparation ist. Solarzellen, die ZnPc:C60 Mischschichten mit verbesserter Phasenseparation enthalten (Tsub=140°C, 1:1), zeigen eine verbesserte Ladungsträgerextraktion und somit eine höhere Effizienz von 3,0% im Vergleich zu 2,5% für die entsprechende Referenzsolarzelle (Tsub=30°C, 1:1). Im zweiten Teil der Arbeit wird der Einfluss der Molekülorientierung auf die Dünnschichtabsorption beispielhaft an ZnPc und Diindenoperylen (DIP) untersucht. DIP und ZnPc Moleküle, die auf schwach wechselwirkenden Substraten wie Glas, SiO2, amorphen organischen Transportschichten oder C60 aufgedampft sind, zeigen eine eher stehende Orientierung innerhalb der Dünnschicht in Bezug zur Substratoberfläche. Im Gegensatz dazu führt die Abscheidung auf stark wechselwirkenden Substraten, wie z.B. einer Gold- oder Silberschicht oder 0.5 nm bis 2 nm dünnen PTCDA (3,4,9,10-Perylentetracarbonsäuredianhydrid) Templatschichten laut GIXRD und VASE Messungen dazu, dass sich die ZnPc und DIP Moleküle eher flach liegend orientieren. Dies führt zu einer wesentlich besseren Dünnschichtabsorption da das molekulare Übergangsdipolmoment jeweils innerhalb der Ebene des ZnPc und des DIP Moleküls liegt. Ein Einbetten von Gold- oder Silberzwischenschichten in organischen Solarzellen führt leider zu keinen klaren Abhängigkeiten, da die verbesserte Absorption durch die flach liegenden Moleküle von Mikrokavitäts- und plasmonischen Effekten überlagert wird. Ebenso wenig führte das Einfügen einer PTCDA-Zwischenschicht in organischen Solarzellen zum Erfolg, da hier Transportbarrieren den Effekt der verbesserten Absorption überlagern. Das letzte Kapitel konzentriert sich auf den Einfluss der Molekülstruktur auf das Dünnschichtwachstum am Beispiel von DIP und dessen Derivaten Ph4-DIP und P4-Ph4-DIP, Isoviolanthron und Bis-nFl-NTCDI (N,N-Bis(fluorene-2-yl)-naphthalenetetra-carboxylic Diimid) Derivaten. GIXRD Messungen belegen deutlich, dass die sterischen Behinderungen, hervorgerufen durch die Phenylringe (für Ph4-DIP und P4-Ph4-DIP) und Seitenketten (für Bis-nFl-NTCDI), ein amorphes Schichtwachstum induzieren. Im Vergleich sind die Dünnschichten von DIP und Bis-HFl-NTCDI kristallin. Bezüglich der Molekülorientierung und folglich der Absorption von DIP und dessen Derivaten kann ein starker Einfluss des Schichtwachstums beobachtet werden. In Solarzellen verhindert die Präsenz der Phenylringe eine effiziente Phasenseparation der Mischschichten aus (P4-)Ph4-DIP:C60, was zu einer verschlechterten Ladungsträgerextraktion und damit zu einem reduzierten Füllfaktor (FF) von 52% im Vergleich zu dem entsprechender DIP:C60 Solarzellen mit FF=62% führt Die Untersuchungen an der Bis-nFl-NTICDI Serie zeigen ein ähnliches Ergebnis: Auch hier zeichnen sich die amorphen Schichten aus Bis-nFl-NTCDI Molekülen mit Seitenketten durch schlechtere Transporteigenschaften aus als nanokristalline Bis-HFl-NTCDI Schichten. / The aim of this thesis is to demonstrate correlations between the molecular structure of small organic molecules, their arrangement in thin films, and the solar cell performance. For structure analysis of the organic thin films, the combination of variable angle spectroscopic ellipsometry (VASE) and grazing incidence X-ray diffraction (GIXRD) as complementary methods turned out to be a powerful combination. Using both methods, it is possible to obtain information about the crystallinity, crystallite size, intermolecular arrangement, mean molecular orientation, optical constants n and k, and phase separation within thin films. In addition, the topography of thin films is analyzed by atomic force microscopy. First, the thin film morphology of pristine zinc-phthalocyanine (ZnPc) films deposited at different substrate temperatures (Tsub=30°C, 60°C, 90°C) and for varying film thicknesses (5, 10, 25, 50 nm) is investigated. The ZnPc films grow highly crystalline with an upright standing molecular orientation with respect to the substrate surface for all investigated Tsub and all film thicknesses. In effcient organic solar cells, donor and acceptor molecules are commonly co-deposited to form a blend absorber film. This is usually accompanied by a certain phase separation between donor and acceptor molecules leads to a formation of percolation paths necessary to extract electrons and holes towards the electrodes. For ZnPc:C60 blends the origin of this phase separation process is analyzed by investigating different degrees of phase separation induced by film deposition at different Tsub (30°C, 100°C, 140°C) and for different blend ratios (6:1, ... , 1:6 (vol%)). GIXRD measurements indicate that the preferred crystallization of C60 is the driving force for good phase separation. Solar cells with improved phase separation of ZnPc:C60 blends (Tsub=140°C, 1:1) reveal a better charge carrier extraction and thus enhanced effciencies of 3.0% in comparison to 2.5% for the reference device (Tsub=30°C, 1:1). In the second part, the impact of molecular orientation within the absorber thin films on light harvesting is examined for pristine ZnPc and diindenoperylene (DIP) films. For film deposition on weakly interacting substrates like glass, SiO2, amorphous organic transport films, or C60, the orientation of DIP and ZnPc molecules is found to be upright standing. In contrast, GIXRD and VASE measurements show that films deposited onto strongly interacting substrates like Au and Ag, as well as on thin PTCDA templating layers lead to nearly flat-lying ZnPc and DIP molecules. Since the molecular transition dipole moment is oriented in the plane of the DIP and ZnPc molecules, the light absorption in films with flat-lying molecules is strongly improved. Unfortunately, an implementation of Au or Ag sublayers in organic solar cells does not result in reliable dependencies since the enhanced absorption by an improved molecular orientation is superimposed by different effects like microcavity and plasmonic effects. The implementation of PTCDA interlayers leads to transport barriers making the solar cell data interpretation difficult. In the last part, the influence of molecular structure on thin film growth is studied for DIP and its derivatives Ph4-DIP and P4-Ph4-DIP, isoviolanthrone, and Bis-nFl-NTCDI derivatives. GIXRD measurements reveal that steric hindrance is induced by the addition of side chains (for Bis-nFl-NTCDI) and phenyl rings (for Ph4-DIP and P4-Ph4-DIP) (N,N-Bis(fluorene-2-yl)-naphthalenetetra-carboxylic diimide) leading to an amorphous thin film growth. In contrast, DIP films and Bis-HFl-NTCDI films are found to be crystalline. The mean molecular orientation and hence the absorption is strongly affected by the different growth modes of DIP and its derivatives. In OSC, the presence of the phenyl rings prevents an effcient phase separation for (P4-)Ph4-DIP:C60 blends which causes diminished charge extraction in comparison to the crystalline DIP:C60 blends. For the Bis-nFl-NTCDI series, the transport properties are significantly worse in the amorphous films composed of Bis-nFl-NTCDI derivatives with alkyl chains in comparison to the nanocrystalline films made of the bare Bis-HFl-NTCDI.
33

Level set methods for higher order evolution laws

Stöcker, Christina 20 February 2008 (has links)
A numerical treatment of non-linear higher-order geometric evolution equations with the level set and the finite element method is presented. The isotropic, weak anisotropic and strong anisotropic situation is discussed. Most of the equations considered in this work arise from the field of thin film growth. A short introduction to the subject is given. Four different models are discussed: mean curvature flow, surface diffusion, a kinetic model, which combines the effects of mean curvature flow and surface diffusion and includes a further kinetic component, and an adatom model, which incorporates in addition free adatoms. As an introduction to the numerical schemes, first the isotropic and weak anisotropic situation is considered. Then strong anisotropies (non-convex anisotropies) are used to simulate the phenomena of faceting and coarsening. The experimentally observed effect of corner and edge roundings is reached in the simulation through the regularization of the strong anisotropy with a higher-order curvature term. The curvature regularization leads to an increase by two in the order of the equations, which results in highly non-linear equations of up to 6th order. For the numerical solution, the equations are transformed into systems of second order equations, which are solved with a Schur complement approach. The adatom model constitutes a diffusion equation on a moving surface. An operator splitting approach is used for the numerical solution. In difference to other works, which restrict to the isotropic situation, also the anisotropic situation is discussed and solved numerically. Furthermore, a treatment of geometric evolution equations on implicitly given curved surfaces with the level set method is given. In particular, the numerical solution of surface diffusion on curved surfaces is presented. The equations are discretized in space by standard linear finite elements. For the time discretization a semi-implicit discretization scheme is employed. The derivation of the numerical schemes is presented in detail, and numerous computational results are given for the 2D and 3D situation. To keep computational costs low, the finite element grid is adaptively refined near the moving curves and surfaces resp. A redistancing algorithm based on a local Hopf-Lax formula is used. The algorithm has been extended by the authors to the 3D case. A detailed description of the algorithm in 3D is presented in this work. / In der Arbeit geht es um die numerische Behandlung nicht-linearer geometrischer Evolutionsgleichungen höherer Ordnung mit Levelset- und Finite-Elemente-Verfahren. Der isotrope, schwach anisotrope und stark anisotrope Fall wird diskutiert. Die meisten in dieser Arbeit betrachteten Gleichungen entstammen dem Gebiet des Dünnschicht-Wachstums. Eine kurze Einführung in dieses Gebiet wird gegeben. Es werden vier verschiedene Modelle diskutiert: mittlerer Krümmungsfluss, Oberflächendiffusion, ein kinetisches Modell, welches die Effekte des mittleren Krümmungsflusses und der Oberflächendiffusion kombiniert und zusätzlich eine kinetische Komponente beinhaltet, und ein Adatom-Modell, welches außerdem freie Adatome berücksichtigt. Als Einführung in die numerischen Schemata, wird zuerst der isotrope und schwach anisotrope Fall betrachtet. Anschließend werden starke Anisotropien (nicht-konvexe Anisotropien) benutzt, um Facettierungs- und Vergröberungsphänomene zu simulieren. Der in Experimenten beobachtete Effekt der Ecken- und Kanten-Abrundung wird in der Simulation durch die Regularisierung der starken Anisotropie durch einen Krümmungsterm höherer Ordnung erreicht. Die Krümmungsregularisierung führt zu einer Erhöhung der Ordnung der Gleichung um zwei, was hochgradig nicht-lineare Gleichungen von bis zu sechster Ordnung ergibt. Für die numerische Lösung werden die Gleichungen auf Systeme zweiter Ordnungsgleichungen transformiert, welche mit einem Schurkomplement-Ansatz gelöst werden. Das Adatom-Modell bildet eine Diffusionsgleichung auf einer bewegten Fläche. Zur numerischen Lösung wird ein Operatorsplitting-Ansatz verwendet. Im Unterschied zu anderen Arbeiten, die sich auf den isotropen Fall beschränken, wird auch der anisotrope Fall diskutiert und numerisch gelöst. Außerdem werden geometrische Evolutionsgleichungen auf implizit gegebenen gekrümmten Flächen mit Levelset-Verfahren behandelt. Insbesondere wird die numerische Lösung von Oberflächendiffusion auf gekrümmten Flächen dargestellt. Die Gleichungen werden im Ort mit linearen Standard-Finiten-Elementen diskretisiert. Als Zeitdiskretisierung wird ein semi-implizites Diskretisierungsschema verwendet. Die Herleitung der numerischen Schemata wird detailliert dargestellt, und zahlreiche numerische Ergebnisse für den 2D und 3D Fall sind gegeben. Um den Rechenaufwand gering zu halten, wird das Finite-Elemente-Gitter adaptiv an den bewegten Kurven bzw. den bewegten Flächen verfeinert. Es wird ein Redistancing-Algorithmus basierend auf einer lokalen Hopf-Lax Formel benutzt. Der Algorithmus wurde von den Autoren auf den 3D Fall erweitert. In dieser Arbeit wird der Algorithmus für den 3D Fall detailliert beschrieben.
34

Growth, Structural, Electronic, and Magnetic Characterization of GaN, CrN, Fe Islands on CrN, and Fe/CrN Bilayer Thin Films

Alam, Khan January 2016 (has links)
No description available.
35

Group III-Nitride Epitaxial Heterostructures By Plasma-Assisted Molecular Beam Epitaxy

Roul, Basanta Kumar 08 1900 (has links) (PDF)
Group III-nitride semiconductors have received much research attention and witnessed a significant development due to their ample applications in solid-state lighting and high-power/high-frequency electronics. Numerous growth methods were explored to achieve device quality epitaxial III-nitride semiconductors. Among the growth methods for III-nitride semiconductors, molecular beam epitaxy provides advantages such as formation of abrupt interfaces and in-situ monitoring of growth. The present research work focuses on the growth and characterizations of III-nitride based epitaxial films, nanostructures and heterostructures on c-sapphire substrate using plasma-assisted molecular beam epitaxy system. The correlation between structural, optical and electrical properties of III-nitride semiconductors would be extremely useful. The interfaces of the metal/semiconductor and semiconductor heterostructures are very important in the performance of semiconductor devices. In this regard, the electrical transport studies of metal/semiconductor and semiconductor heterostructures have been carried out. Besides, studies involved with the defect induced room temperature ferromagnetism of GaN films and InN nano-structures have also been carried out. The thesis is organized in eight different chapters and a brief overview of each chapter is given below. Chapter 1 provides a brief introduction on physical properties of group III-nitride semiconductors. It also describes the importance of III-nitride heterostructures in the operation of optoelectronic devices. In addition, it also includes the current strategy of the emergence of room temperature ferromagnetism in III-nitride semiconductors. Chapter 2 deals with the basic working principles of molecular beam epitaxy system and different characterization tools employed in the present work. Chapter 3 describes the growth of GaN films on c-sapphire by plasma-assisted molecular beam epitaxy. The effects of N/Ga flux ratio on structural, morphological and optical properties have been studied. The flux ratio plays a major role in controlling crystal quality, morphology and emission properties of GaN films. The dislocation density is found to increase with increase in N/Ga flux ratio. The surface morphologies of the films as seen by scanning electron microscopy show pits on the surface and found that the pit density on the surface increases with flux ratio. The room temperature photoluminescence study reveals the shift in band-edge emission towards the lower energy with increase in N/Ga flux ratio. This is believed to arise from the reduction in compressive stress in the GaN films as it is evidenced by room temperature Raman study. The transport studies on the Pt/GaN Schottky diodes showed a significant increase in leakage current with an increase in N/Ga ratio and is found to be caused by the increase in dislocation density in the GaN films. Chapter 4 deals with the fabrication and characterization of Au/GaN Schottky diodes. The temperature dependent current–voltage measurements have been used to determine the current transport mechanism in Schottky diodes. The barrier height (φb) and the ideality factor (η) are estimated from the thermionic emission model and are found to be temperature dependent in nature, indicating the existence of barrier height inhomogeneities at the Au/GaN interface. The conventional Richardson plot of ln(Is/T2) versus 1/kT gives Richardson constant value of 3.23×10-5 Acm-2 K-2, which is much lower than the known value of 26.4 Acm-2 K-2 for GaN. Such discrepancy of Richardson constant value was attributed to the existence of barrier height inhomogeneities at the Au/GaN interface. The modified Richardson plot of ln(Is/T2)-q2σs2/2k2T2 versus q/kT, by assuming a Gaussian distribution of barrier heights at the Au/GaN interface, provides the Schottky barrier height of 1.47 eV and Richardson constant value of 38.8 Acm-2 K-2 which is very close to the theatrical value of Richardson constant. The temperature dependence of barrier height is interpreted on the basis of existence of the Gaussian distribution of the barrier heights due to the barrier height inhomogeneities at the Au/GaN interface. Chapter 5 addresses on the influence of GaN underlayer thickness on structural, electrical and optical properties of InN thin films grown using plasma-assisted molecular beam epitaxy. The high resolution X-ray diffraction study reveals superior crystalline quality for the InN film grown on thicker GaN film. The electronic and optical properties seem to be greatly influenced by the structural quality of the films, as can be evidenced from Hall measurement and optical absorption spectroscopy. Also, we present the studies involving the dependence of structural, electrical and optical properties of InN films, grown on thicker GaN films, on growth temperature. The optical absorption edge of InN film is found to be strongly dependent on carrier concentration. Kane’s k.p model is used to describe the dependence of optical absorption edge on carrier concentration by considering the non-parabolic dispersion relation for carrier in the conduction band. Chapter 6 deals with the analysis of the temperature dependent current transport mechanisms in InN/GaN heterostructure based Schottky junctions. The barrier height (φb) and the ideality factor (η) of the InN/GaN Schottky junctions are found to be temperature dependent. The temperature dependence of the barrier height indicates that the Schottky barrier height is inhomogeneous in nature at the heterostructure interface. The higher value of the ideality factor and its temperature dependence suggest that the current transport is primarily dominated by thermionic field emission (TFE) other than thermionic emission (TE). The room temperature barrier height and the ideality factor obtained by TFE model are 1.43 eV and 1.21, respectively. Chapter 7 focuses on the defect induced room temperature ferromagnetism in Ga deficient GaN epitaxial films and InN nano-structures grown on c-sapphire substrate by using plasma-assisted molecular beam epitaxy. The observed yellow emission peak in room temperature photoluminescence spectra and the peak positioning at 300 cm-1 in Raman spectra confirms the existence of Ga vacancies in GaN films. The ferromagnetism in Ga deficient GaN films is believed to originate from the polarization of the unpaired 2p electrons of nitrogen surrounding the Ga vacancy. The InN nano-structures of different size are grown on sapphire substrate, the structural and magnetic properties are studied. The room temperature magnetization measurement of InN nano-structures exhibits the ferromagnetic behavior. The saturation magnetization is found to be strongly dependent on the size of the nano-structures. Finally, Chapter 8 gives the summary of the present work and the scope for future work in this area of research.

Page generated in 0.0449 seconds