Spelling suggestions: "subject:"thinwalled"" "subject:"thickwalled""
41 |
Vigas de concreto com taxas reduzidas de armadura de cisalhamento: influência do emprego de fibras curtas e de protensão / Concrete beams with reduced shear reinforcement ratios: effect of prestressing and short fibersSydney Furlan Junior 27 June 1995 (has links)
Neste trabalho investiga-se o comportamento resistente de vigas de concreto com taxas reduzidas de armadura transversal, analisando-se as possibilidades de melhoria de desempenho pelo reforço do concreto com fibras curtas de aço e polipropileno e pela aplicação da protensão, através de ensaios em vigas de seção quadrada e vigas protendidas de seção duplo-T. Apresenta-se também uma revisão de conhecimentos sobre o comportamento estrutural de elementos de concreto armado ou protendido, com ênfase nas solicitações por força cortante e os principais conceitos sobre os compósitos constituídos de matriz de cimento reforçada com fibras. As principais alterações decorrentes da introdução das fibras foram o aumento da resistência ao cisalhamento, da rigidez após a fissuração e da dutilidade. A protensão aumenta a resistência ao cisalhamento, a resistência à fissuração e a extensão da zona não fissurada, e torna as bielas mais abatidas. Tanto as fibras quanto a protensão proporcionam alívio da tensão nos estribos. / This thesis presents an experimental analysis of the structural behavior of concrete beams with reduced shear reinforcement ratios. Improvements on performance due to prestressing and steel and polypropilene fibers are analized in rectangular and T beam models. A state-of-the-art is presented on shear strength of reinforced and prestressed concrete beams and on fiber reinforced cement-based composites. The main effects due to fiber addition are the increasing of the shear strength, post-cracking stiffiness and ductility. Prestressing helps to increase the shear strength, cracking strength and extension of the non-cracked zone and it turns the struts less inclined. Fibers as well prestressing reduce the stresses on stirrups.
|
42 |
Thin-walled tubular connections under fatigue loadingMashiri, Fidelis Rutendo, 1968- January 2001 (has links)
Abstract not available
|
43 |
Fracture of ductile polymersBeh, Henry,1970- January 2001 (has links)
Abstract not available
|
44 |
Three-dimensional crack analysis in aeronautical structures using the substructured finite element / extended finite element methodWyart, Eric 29 March 2007 (has links)
In this thesis, we have developed a Subtructured Finite Element / eXtended Finite Element (S-FE/XFE) method. The S-FE/XFE method consists in decomposing the geometry into safe FE-domains and cracked XFE-domains, and solving the interface problem with the Finite Element Tearing and Interconnecting method (FETI).This method allows for handling complex crack configurations in 3D structures with common commercial FE software that do not feature the XFEM.
The method is also extended to a mixed dimensional formulation, where the FE-domain is discretised with shell elements while the XFE-domain is modelled with three-dimensional solid elements. This is the so-called S-FE Shell/XFE 3D method. The mixed dimensional formulation is more convenient than a full XFE-3D formulation because it significantly reduces the computational cost and it is more accurate compared to a full shell model because it includes three-dimensional local features such as three-dimensional crack. The compatibility of the displacements through the interface is ensured using the Reissner-Mindlin equation.
The method has been extensively validated towards both academic problems and semi-industrial benchmarks in order to demonstrate the benefits of this approach. Among them, the S-FE/XFE method is applied to a crack analysis in a section of a compressor drum of a turbofan engine. The results obtained with the S-FE/XFE method are compared with those obtained with a standard FE computation. Furthermore, two applications of the S-FE shell/XFE 3D approach are proposed. First the load carrying capacity of a section of stiffened panel containing a through-the-thickness crack is investigated (this is the one-bay crack configuration). Second, the ability of the method for handling small surface cracks in large finite element models is addressed by looking at a generic 'large pressure panel' presenting realistic crack configurations.
|
45 |
Steady State Response of Thin-walled Members Under Harmonic ForcesMohammed Ali, Hjaji 12 April 2013 (has links)
The steady state response of thin-walled members subjected to harmonic forces is investigated in the present study. The governing differential equations of motion and associated boundary conditions are derived from the Hamilton variational principle. The harmonic form of the applied forces is exploited to eliminate the need to discretize the problem in the time domain, resulting in computational efficiency.
The formulation is based on a generalization of the Timoshenko-Vlasov beam theory and accounts for warping effects, shear deformation effects due to bending and non-uniform warping, translational and rotary inertial effects and captures flexural-torsional coupling arising in asymmetric cross-sections.
Six of the resulting seven field equations are observed to be fully coupled for asymmetric cross-sections while the equation of longitudinal motion is observed to be uncoupled. Separate closed form solutions are provided for the cases of (i) doubly symmetric cross sections, (ii) monosymmetric cross-sections, and (iii) asymmetric cross-sections. The closed-form solutions are provided for cantilever and simply-supported boundary conditions.
A family of shape functions is then developed based on the exact solution of the homogeneous field equations and then used to formulate a series of super-convergent finite beam elements. The resulting two-noded beam elements are shown to successfully capture the static and dynamic responses of thin-walled members. The finite elements developed involve no special discretization errors normally encountered in other finite element formulations and provide results in excellent agreement with those based on other established finite elements with a minimal number of degrees of freedom. The formulation is also capable to predict the natural frequencies and mode-shapes of the structural members.
Comparisons with non-shear deformable beam solutions demonstrate the importance of shear deformation effects within short-span members subjected to harmonic loads with higher exciting frequencies. Comparisons with shell element solution results demonstrate that distortional effects are more pronounced in cantilevers with short spans.
A generalized stress extraction scheme from the finite element formulation is then developed. Also, a generalization of the analysis procedure to accommodate multiple loads with distinct exciting frequencies is established. The study is concluded with design examples which illustrate the applicability of the formulation, in conjunction with established principles of fatigue design, in determining the fatigue life of steel members subjected to multiple harmonic forces.
|
46 |
Studies of a full-scale horizontally curved steel I-girder bridge system under self-weightLinzell, Daniel Gattner 07 1900 (has links)
No description available.
|
47 |
Vibrations of elastic bodies of revolution containing imperfections: a theory of imperfectionTobias, S. A. January 1950 (has links)
No description available.
|
48 |
Elasto-plastic torsion of thin-walled membersDesautels, Pierre. January 1980 (has links)
No description available.
|
49 |
Crashworthiness modelling of thin-walled composite structures.Morozov, Konstantin E. January 2003 (has links)
This thesis is concerned with the study of the crashworthiness of thin-walled composite structures. Composites are being used more and more in different fields of engineering, particularly, in aerospace and automotive industries because of their high strength-to-weight and stiffness-to-weight ratios, quality and cost advantages. More and more metal parts in cars for instance become or are already replaced by new advanced materials. Composite materials are included in these new advanced materials with the following advantages: weight reduction, corrosion resistance, aesthetics and style, isolation and the ability to integrate several parts into one single structural component. The introduction of new composite structural components (body
panels, bumpers, crash absorbers, etc.) requires the development and implementation of new approaches to structural analysis and design. Crashworthiness is one of the foremost goals of aircraft and automotive design. It depends very much on the response of various components which
absorb the energy of the crash. In order to design components for crashworthy structures, it is necessary to understand the effects of loading conditions, material behaviour, and structural response. Due to the complexity of the material structure (matrix reinforced with fibres) and specific mechanical properties the nature of transforming the collision kinetic energy into material deformation energy differs from that of conventional metal alloys. The energy absorption mechanics are different for the advanced composites and depend on the material structure (type of reinforcement) and structural design. The primary function of the energy absorption for the composites belongs to the progressive crushing of the materials themselves and structural
components (beams, tubes, etc.) made of such materials. Since the mechanics of composite materials and structural components differs substantially from the conventional applications there is a need to develop an appropriate way of modelling and analysis relevant to this problem. Currently there are a large variety of design approaches, test results, and research investigations into the problem under consideration depending on the type of composite material and design geometry of the parts. It has been found that in general an application of fibre reinforced plastics (FRP) to vehicle compartments can satisfy the structural requirements of the passenger
compartment including high strength and light weight. Implementation of new advanced composite materials provides the opportunity to develop designs of reliable structural composite parts in high volume for improved automotive fuel economy. Structural optimisation and crashworthiness of composite components should be incorporated into design calculations to control the mechanical performance. The introduction which follows describes the aims of the present study of the crashworthiness modelling and simulation of the structural response of thin-walled composite components which are subjected to various loading conditions relevant to vehicle design. The
research programme undertaken within the framework of this project includes development and validation of the modelling and simulation methodology applicable to the crashworthiness analysis of thin-walled composite structures. Development of computerised dynamic modelling of structural
components offers the capability of investigating the design parameters without building the actual physical prototypes. In this approach, the dynamic behaviour of the structure is simulated for specified external inputs, and from the corresponding response data the designer is able to determine its dynamic response characteristics, and estimate the crashworthiness of the structure in
vehicle engineering applications. / Thesis (Ph.D.)-University of Natal, Durban, 2003.
|
50 |
Steady State Response of Thin-walled Members Under Harmonic ForcesMohammed Ali, Hjaji 12 April 2013 (has links)
The steady state response of thin-walled members subjected to harmonic forces is investigated in the present study. The governing differential equations of motion and associated boundary conditions are derived from the Hamilton variational principle. The harmonic form of the applied forces is exploited to eliminate the need to discretize the problem in the time domain, resulting in computational efficiency.
The formulation is based on a generalization of the Timoshenko-Vlasov beam theory and accounts for warping effects, shear deformation effects due to bending and non-uniform warping, translational and rotary inertial effects and captures flexural-torsional coupling arising in asymmetric cross-sections.
Six of the resulting seven field equations are observed to be fully coupled for asymmetric cross-sections while the equation of longitudinal motion is observed to be uncoupled. Separate closed form solutions are provided for the cases of (i) doubly symmetric cross sections, (ii) monosymmetric cross-sections, and (iii) asymmetric cross-sections. The closed-form solutions are provided for cantilever and simply-supported boundary conditions.
A family of shape functions is then developed based on the exact solution of the homogeneous field equations and then used to formulate a series of super-convergent finite beam elements. The resulting two-noded beam elements are shown to successfully capture the static and dynamic responses of thin-walled members. The finite elements developed involve no special discretization errors normally encountered in other finite element formulations and provide results in excellent agreement with those based on other established finite elements with a minimal number of degrees of freedom. The formulation is also capable to predict the natural frequencies and mode-shapes of the structural members.
Comparisons with non-shear deformable beam solutions demonstrate the importance of shear deformation effects within short-span members subjected to harmonic loads with higher exciting frequencies. Comparisons with shell element solution results demonstrate that distortional effects are more pronounced in cantilevers with short spans.
A generalized stress extraction scheme from the finite element formulation is then developed. Also, a generalization of the analysis procedure to accommodate multiple loads with distinct exciting frequencies is established. The study is concluded with design examples which illustrate the applicability of the formulation, in conjunction with established principles of fatigue design, in determining the fatigue life of steel members subjected to multiple harmonic forces.
|
Page generated in 0.0463 seconds