• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 6
  • 3
  • Tagged with
  • 18
  • 13
  • 12
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Synthesis Of Conducting Polymers Of Terepthalic Acid Bis-(2-thiophen-3-yl-ethyl)ester And Investigation Of Their Electrochromic Properties

Coskun, Yelda 01 June 2004 (has links) (PDF)
Terepthalic acid bis-(2-thiophen-3-yl-ethyl)ester (TATE) was synthesized through the reaction of 2-thiophen-3-yl-ethanol and terepthaloyl chloride. Electrochemical behavior of the TATE and TATE in the presence of thiophene were studied by cyclic voltammetry (CV). The chemical structure of monomer is characterized via Nuclear Magnetic Resonance Spectroscopy (NMR) and Fourier Transform Infrared Spectroscopy (FTIR). Homopolymer of TATE was synthesized by galvanostatic and potentiostatic methods, and copolymerization of TATE with thiophene was achieved via potentiostatic method. Both homopolymer (PTATE) and copolymer [P(TATE-co-Th)] were characterized by various techniques including cyclic voltammetry, FTIR, Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DSC), Thermal Gravimetry Analysis (TGA) and UV-VIS Spectrophotometer. Conductivities of samples were measured by four probe technique. Electronic band gap of polymers measured as the onset of the &amp / #960 / -&amp / #960 / * transition using spectroelectrochemical analysis and colorimetry studies were investigated. Dual type polymer electrochromic devices (ECDs) based on PTATE, P(TATE-co-Th) and poly(3,4-ethylenedioxythiophene) (PEDOT) have been constructed. Spectroelectrochemistry, switching ability and stability of the devices were investigated by UV-Vis Spectrophotometer and Cyclic Voltammetry.
12

Untersuchungen an Quinquethiophenen zur Verwendung als Donator in Organischen Solarzellen

Schulze, Kerstin 04 July 2008 (has links)
Organische Photovoltaik könnte zukünftig eine Möglichkeit zur Energiegewinnung aus erneuerbaren Energiequellen darstellen. Der Vorteil besteht hier vor allen Dingen in dem Potential einer sehr kostengünstigen Herstellung, zum Beispiel einer Produktion im Rolle-zu-Rolle-Verfahren, welche so auf flexiblen Substraten wie beispielsweise Folien erfolgen kann. Obwohl die Materialkosten gering sind, ist bis zu einer Kommerzialisierung Organischer Solarzellen unter anderem eine Erhöhung ihrer Leistungseffizienz notwendig. Vorzugsweise sollten in Organischen Solarzellen Donator- und Akzeptormaterialien verwendet werden, deren Absorptionsspektren und Energieniveaus ideal aufeinander abgestimmt sind, da so zum Beispiel hohe Leerlaufspannungen erreicht werden können. Zusätzlich können hohe Absorptionskoeffizienten der Materialien über einen großen spektralen Bereich zu hohen Stromdichten in diesen photovoltaischen Bauelementen führen. In dieser Arbeit werden neuartige Quinquethiophene als Donatormaterial in Organischen Solarzellen untersucht, welche als Grundeinheit aus fünf Thiophenringen sowie Dicyanovinylendgruppen und Alkylseitenketten bestehen. Die untersuchten Materialien besitzen einen hohen Absorptionskoeffizienten und erreichten auf Grund des hohen Ionisationspotentials hohe Leerlaufspannungen in Organischen Solarzellen unter Verwendung des Fullerens C60 als Akzeptor. Gleichzeitig tritt eine effiziente Trennung der Exzitonen an der Akzeptor-Donator-Grenzfläche auf. Jedoch stellt das hohe Ionisationspotential der Quinquethiophene spezielle Anforderungen an die weitere Solarzellenstruktur. Innerhalb dieser Arbeit wird gezeigt, dass ein Unterschied von eingebauter Spannung und Leerlaufspannung die Form der Solarzellen-Kennlinie entscheidend beeinflusst und eine S-Form in der Nähe der Leerlaufspannung erzeugen kann. Die eingebaute Spannung wird hierbei durch die Kontaktierung der photoaktiven Schichten bestimmt. Eine Erhöhung der eingebauten Spannung der Solarzelle kann durch eine entsprechende Materialwahl erreicht werden. So wird in dieser Arbeit gezeigt, dass Organische Solarzellen basierend auf diesen Quinquethiophenen ohne energetische Barrieren für freie Ladungsträger innerhalb des Bauelements keine S-Form der Kennlinie aufweisen. Ebenfalls wird der Einfluss der unterschiedlichen Quinquethiophenderivate auf die Solarzellen-Charakteristik untersucht. Hierbei wird gezeigt, dass die Länge der Alkylseitenketten einen Einfluss auf die Löcherinjektion sowie die Löcherbeweglichkeit auf dem Oligothiophen hat, welches unter anderem auch die Form der Strom-Spannungs-Kennlinie beeinflusst. Abschließend wird die Möglichkeit der Verwendung dieser Materialklasse in Tandemsolarzellen gezeigt sowie der Vergleich von zwei unterschiedlichen Anodenmaterialien, beides wichtige Aspekte für eine kommerzielle Umsetzung.
13

Thienothiophene-Based Liquid Crystals: Synthesis and Comparative Evaluation of Mesophase Properties

Jonathan, Tietz I. 24 July 2012 (has links)
No description available.
14

Ferrocenyl-substituted Thiophenes – Electrochemical Behavior and Charge Transfer

Speck, J. Matthäus 20 June 2016 (has links)
Die vorliegende Dissertation beschäftigt sich mit dem elektrochemischen Verhalten verschiedener Ferrocenyl-substituierter Thiophene. Dabei wird sich zunächst mit dem elektrochemischen Verhalten der Serie der Ferrocenylthiophene beschäftigt, die Anzahl der Ferrocenyleinheiten variiert von n = 1 – 4. Die Abhängigkeit der elektronischen Eigenschaften von numerischen und konstitutionellen Veränderungen der redox-aktiven Gruppen wird evaluiert. Daraus resultierend wird sich einer eingehenderen Untersuchung und Modifikation des 2,5-Diferrocenylthiophen-Motivs zugewandt. Diese Modifikationen werden im Kontext möglicher Ladungstransferprozesse zwischen den Ferrocenyleinheiten in den verschiedenen Redoxzuständen und unter Beeinflussung durch den Thiophen-Brückenliganden diskutiert. Es folgen des Weiteren Ausführungen zu Substitutionen an den Ferrocenylen (Einführung elektronen-ziehender Funktionalitäten) sowie der Vergleich zwischen einer Thiophen- und der Ethylendioxythiophen-Brückeneinheit. Anschließend wird sich mit der elektronischen Variation des Brückenliganden durch die Einführung von N-haltigen Substituenten befasst. In den abschließenden Kapiteln wird der Einfluss zusätzlicher σ- (Fischercarben-Komplexe) oder π-gebundener ([Ru(η5-C5H5)]+/[Ru(η5-C5Me5)]+) Übergangsmetallkomplexfragmente auf Ladungstransferwechselwirkungen im 2,5-Diferrocenylthiophen in verschiedenen Redoxzuständen beleuchtet.
15

Ferrocenylsubstituierte Thiophene

Claus, Ron 11 January 2012 (has links) (PDF)
Ferrocenylsubstituierte Thiophene: Synthese, Charakterisierung und Polymerisation Technische Universität Chemnitz, Fakultät für Naturwissenschaften Dissertation 2011, 140 Seiten Die Vorliegende Arbeit beschäftigt sich mit der Synthese und dem Reaktionsverhalten von metallocenylhaltigen Thiophenen. Dabei wurden die erhaltenen Metallocenylthiophene mittels Eisen(III)salzen oxidativ polymerisiert und copolymerisiert. Für eine gezielte Synthese von polymeren Verbindungen wurden oligomere Modellverbindungen dargestellt und die erhaltenen Ergebnisse auf eine vielfältig Funktionalisierung in 2- und/oder 5-Position der Thiophenmonomere angewendet. Die somit erhaltenen neuen Monomere lassen verschiedene Polymerisationen und Copolymerisationen, z. B. über eine Negishi-Kreuzkupplungsreaktion zu. Die somit erhaltenen Polymere und Copolymere liegen in der neutralen Form vor und weisen eine regioselektive Kopf-Schwanz-Verknüpfung auf. Es ist damit ein verarbeitbares Polymer zugänglich, welches sowohl im oxidierten Zustand als auch im neutralen Zustand als Polymer-CNT-Hybridmaterial Leitfähig ist.
16

Ferrocenylsubstituierte Thiophene: Synthese, Charakterisierung und Polymerisation

Claus, Ron 04 January 2012 (has links)
Ferrocenylsubstituierte Thiophene: Synthese, Charakterisierung und Polymerisation Technische Universität Chemnitz, Fakultät für Naturwissenschaften Dissertation 2011, 140 Seiten Die Vorliegende Arbeit beschäftigt sich mit der Synthese und dem Reaktionsverhalten von metallocenylhaltigen Thiophenen. Dabei wurden die erhaltenen Metallocenylthiophene mittels Eisen(III)salzen oxidativ polymerisiert und copolymerisiert. Für eine gezielte Synthese von polymeren Verbindungen wurden oligomere Modellverbindungen dargestellt und die erhaltenen Ergebnisse auf eine vielfältig Funktionalisierung in 2- und/oder 5-Position der Thiophenmonomere angewendet. Die somit erhaltenen neuen Monomere lassen verschiedene Polymerisationen und Copolymerisationen, z. B. über eine Negishi-Kreuzkupplungsreaktion zu. Die somit erhaltenen Polymere und Copolymere liegen in der neutralen Form vor und weisen eine regioselektive Kopf-Schwanz-Verknüpfung auf. Es ist damit ein verarbeitbares Polymer zugänglich, welches sowohl im oxidierten Zustand als auch im neutralen Zustand als Polymer-CNT-Hybridmaterial Leitfähig ist.:Inhaltsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Abkürzungen 1.Einleitung 2.Kenntnisstand 2.1 Leitfähige Polymere 2.1.1 Leitfähigkeit in Kunststoffen 2.1.2 Polymere auf Basis von Heterocyclen 2.1.3 Poly(3-alkylthiophene) 2.1.4 Poly(3,4-ethylendioxythiopen) 2.1.5 Übergangsmetall-Polythiophen-Hybridmaterialien 2.1.5.1 Metallhaltige Polythiophene des Typ I 2.1.5.2 Metallhaltige Polythiophene Typ II 2.1.5.3 Metallhaltige Polythiophene des Typs III 3.Ergebnisse und Diskussion 3.1 Metallocenyfunktionalisierte Thiophene 3.1.1 Synthese und Charakterisierung 3-metallocenylsubstituierter Thiophene 3.1.2 Polymerisation von 3-Metallocenylthiophenen 3.1.3 Synthese und Chrakterisierung von 3-(4-(ferrocenyl)phenyl)thiophen (15) 3.1.4 Optimierung der oxidativen Polymerisation von 3-Ferrocenylthiophen (5) 3.2 Copolymerisationen von 3-Ferrocenylthiophen (5) 3.2.1 Copolymerisation von 5 mit 3-Hexylthiophen (17) 3.2.2 Copolymerisation von 5 mit 3,4-Ethylendioxythiophen (19) 3.2.3 Leitfähigkeitsuntersuchungen von Poly(3-metallocenylthiophenen) 3.3 Synthese und Charakterisierung von in 2- und / oder 5- Position substituierten 3-Ferrocenylthiophenen 3.3.1 Bromierung von 3-Ferrocenylthiophen (5) 3.3.2 Formylierung von 3-Ferrocenylthiophen (5) 3.3.2.1 Synthese von 3-Ferrocenylthiophen-2-carbaldehyd (29) 3.3.2.2 Synthese von 3-Ferrocenylthiophen-5-carbaldehyd (30) 3.3.2.3 Synthese von 2-Dimethoxymethyl-3-ferrocenylthiophen (31) 3.3.2.4 Synthese von 3-Ferrocenylthiophen-2,5-dicarbaldehyd (34) 3.3.2.5 Synthese von 5-Methyl-3-ferrocenylthiophen (35) 3.3.2.6 Synthese von 5-Methyl-3-ferrocenylthiophen-2-carbaldehyd (40) 3.3.2.7 Charakterisierung der aldehydfunktionalisierten 3-Ferrocenylthiophene 3.3.3 Hydroxymethylierung von 3-Ferrocenylthiophen (5) 3.3.3.1 Synthese von hydroxymethylierten 3-Ferrocenylthiophenen 42-44 3.3.4 Synthese von metallocenylhaltigen oligomeren Modellsystemen 3.3.4.1 Synthese von Trimeren unter Verwendung verschiedener Dibromthiophene 3.3.4.2 Synthese von 1,4-bis(2-(3-ferrocenylthiophen-2-yl)vinyl)benzen (55) 3.3.5 Charakterisierung der oligomeren Modellsysteme 50, 51 und 55 3.4 Einführung löslichkeitsvermittelnder Gruppen in 3-Ferrocenylthiophen (5) 3.4.1 Synthese von 3-(1’-Butylferrocenyl)thiophen (60) 3.4.2 Synthese von 2-Brom-4-(1’-butylferrocenyl)thiophen (62) 3.4.3 Charakterisierung der Butylferrocenylthiophene 60 und 62 3.5 Polymerisation und Copolymerisation der synthetisierten Monomere 3.5.1 Polymerisation von 2-Brom-4-ferrocenylthiophen (22) zu 64 3.5.2 Polymerisation von 3-Ferrocenyl-5-methylthiophen-2-carbaldehyd (40) zu 67. 3.5.3 Polymerisation von 3-Ferrocenylthiophen-2,5-dicarbaldehyd (34) zu 70 3.5.4 Polymerisation von 3-Ferrocenyl-5-hydroxymethylthiophen (43) zu 75 3.5.5 Polymerisation von 2-Brom-4-(1’-butylferrocenyl)thiophen (62) zu 77 3.5.6 Copolymerisation von 3-Ferrocenylthiophen-2,5-dicarbaldehyd (34) mit 52 zu 78 3.5.7 Copolymerisation von 3-Ferrocenylthiophen (5) und 2,5-Dibrom-3,4-ethylendioxythiophen (48) zu 81 3.5.8 Copolymerisation von 3-(1’-Butylferrocenyl)thiophen (60) und 2,5-Dibrom-3,4- ethylendioxythiophen (48) zu 85 3.5.9 Dotierung und Leitfähigkeitsuntersuchungen der synthetisierten Polymere 10, 64, 67, 75, 77, 78, 81 und 85 3.6 Cyclovoltammetrische Untersuchungen 3.6.1 Cyclovoltammetrische Untersuchungen ausgewählter Verbindungen 3.7 UV-Vis-spektroskopische Eigenschaften ausgewählter Verbindungen 3.8 Einbettung von Carbonanotubes (CNTs) in Polythiophen-Filme 3.8.1 Herstellung der Polymer-CNT-Hybridmaterialien und verwendete Geräte 3.8.2 Charakterisierung der Polymer-CNT-Hybridmaterialien 3.8.2.1 Optische Charakterisierung 3.8.2.2 Leitfähigkeitsmessungen 4.Experimenteller Teil 4.1 Arbeitstechniken und verwendete Geräte 4.1.1 Arbeitstechniken 4.1.2 NMR-Spektroskopie 4.1.3 Elementaranalyse 4.1.4 Schmelzpunktbestimmung 4.1.5 IR-Spektroskopie 4.1.6 UV-Vis-Spektroskopie 4.1.7 ESI-TOF-Massenspektrometrie 4.1.8 Cyclovoltammetrie 4.1.9 Einkristallröntgenstrukturanalyse 4.2 Verwendete Ausgangsverbindungen 4.3 Synthesevorschriften 4.3.1 Synthese von 3-Ferrocenylthiophen (5) 4.3.2 Synthese von 3-Ruthenocenylthiophen (9) 4.3.3 Synthese von Poly(3-ferrocenylthiophen) (10) 4.3.4 Synthese von Poly(3-ruthenocenylthiophen) (11) 4.3.5 Synthese von (1-Ferrocenyl-4-thienylbenzen) (15) 4.3.6 Synthese von Oligo(1-Ferrocenyl-4-thienylbenzen) (16) 4.3.7 Synthese des Copolymers aus EDOT und 3-Ferrocenylthiophen (20) 4.3.8 Synthese von 2-Brom-4-ferrocenylthiopen (22) 4.3.9 Synthese von 3-Ferrocenylthiophen-2-carbaldehyd (29) 4.3.10 Synthese von 3-Ferrocenylthiophen-5-carbaldehyd (30) 4.3.11 Synthese der Dimethoxymethyl-3-ferrocenylthiophene 31 und 32 4.3.12 Synthese von 3-Ferrocenylthiophen-2,5-dicarbaldehyd (34) 4.3.13 Synthese von 3-Ferrocenyl-5-methylthiophen (35) 4.3.14 Synthese von 3-Ferrocenyl-5-methylthiophen-2-carbaldehyd) (40) 4.3.15 Allgemeine Synthesevorschrift für Hydroxymethyl-funktionalisierte 3-ferrocenylthiophene (42, 43 und 44) 4.3.16 Allgemeine Synthesevorschrift für die Herstellung der Terthiophene 49, 50 und 51 4.3.17 Synthese von 1,4-Bis((E)-2-(3-ferrocenylthiophen-2-yl)vinyl)-benzen) (55) 4.3.18 Synthese von 3-(1’-Butylferrocenyl)thiophen (60) 4.3.19 Synthese von 2-Brom-4-(1’-Butylferrocenyl)thiophen (62) 4.3.20 Polymerisationen von 2-Brom-4-ferrocenylthiophen (64) 4.3.21 Polymerisationen von 3-Ferrocenyl-5-methylthiophen-2-carbaldehyd (67) 4.3.22 Polymerisationen von 3-ferrocenyl-2,5-dicarbaldehyd (70) 4.3.23 Polymerisationen von 5-Hydroxymethyl-3-ferrocenylthiophen (75) 4.3.24 Polymerisationen von 2-Brom-4-(1’-Butylferrocenyl)thiophen (77) 4.3.25 Copolymerisationen von 3-ferrocenyl-2,5-dicarbaldehyd (34) mit 52 zu 78 4.3.26 Copolymerisationen von 3-(Ferrocenyl)thiophen mit EDOT (81) 4.3.27 Copolymerisationen von 3-(1’-Butylferrocenyl)thiophen mit EDOT zu 85 4.4 Meßdaten zu den Röntgenstrukturanalysen 5.Zusammenfassung und Ausblick 6 Dank Literaturverzeichnis Selbstständigkeitserklärung Lebenslauf Liste der Publikationen, Poster und Vorträge
17

Oligothiophene Materials for Organic Solar Cells - Photophysics and Device Properties / Oligothiophenmoleküle für Organische Solarzellen - Photophysik und Solarzelleigenschaften

Körner, Christian 25 September 2013 (has links) (PDF)
The rapidly increasing power conversion efficiencies (PCEs) of organic solar cells (OSCs) above 10% were made possible by concerted international research activities in the last few years, aiming to understand the processes that lead to the generation of free charge carriers following photon absorption. Despite these efforts, many details are still unknown, especially how these processes can be improved already at the drawing board of molecular design. To unveil this information, dicyanovinyl end-capped oligothiophene derivatives (DCVnTs) are used as a model system in this thesis, allowing to investigate the impact of small structural changes on the molecular properties and the final solar cells. On thin films of a methylated DCV4T derivative, the influence of the measurement temperature on the charge carrier generation process is investigated. The observed temperature activation in photoinduced absorption (PIA) measurements is attributed to an increased charge carrier mobility, increasing the distance between the charges at the donor/acceptor (D/A) interface and, thus, facilitating their final dissociation. The correlation between the activation energy and the mobility is confirmed using a DCV6T derivative with lower mobility , exhibiting a higher activation energy for charge carrier generation. Another parameter to influence the charge carrier generation process is the molecular structure. Here, alkyl side chains with varying length are introduced and their influence on the intramolecular energy levels as well as the absorption and emission properties in pristine and blend films with the acceptor C60 are examined. The observed differences in intermolecular order (higher order for shorter side chains) and phase separation in blend layers (larger phase separation for shorter side chains) are confirmed in PIA measurements upon comparing the temperature dependence of the triplet exciton lifetimes. A proposed correlation between the side chain length and the coupling between D and A, which is crucial for efficient charge transfer, is not confirmed. The presented flat heterojunction solar cells underline this conclusion, giving similar photocurrent densities for all compounds. Differences in PCE are related to shifts of the energy levels and the morphology of the blend layer in bulk heterojunction devices. Furthermore, the impact of the electric field on the charge carrier generation yield is investigated in a proof-of-principle study, introducing PIA measurements in transmission geometry realized using semitransparent solar cells. The recombination analysis of the photogenerated charge carriers reveals two recombination components. Trapped charge carriers or bound charge pairs at the D/A interface are proposed as an explanation for this result. The miscibility of D and A, which can be influenced by heating the substrate during layer deposition, is of crucial importance to obtain high PCEs. In this work, the unusual negative influence of the substrate temperature on DCV4T:C60 blend layers in solar cells is investigated. By using optical measurements and structure determination tools, a rearrangement of the DCV4T crystallites is found to be responsible for the reduced absorption and, therefore, photocurrent at higher substrate temperature. The proposed blend morphology at a substrate temperature of 90° C is characterized by a nearly complete demixing of the D and A phases. This investigation is of particular relevance, because it shows the microscopic origins of a behavior that is contrary to the increase of the PCE upon substrate heating usually reported in literature. Finally, the optimization steps to achieve a record PCE of 7.7% using a DCV5T derivative as donor material are presented, including the optimization of the substrate temperature, the active layer thickness, and the transport layers. / Der rasante Anstieg des Wirkungsgrads von organischen Solarzellen über die Marke von 10% war nur durch länderübergreifende Forschungsaktivitäten während der letzten Jahre möglich. Trotz der gemeinsamen Anstrengungen, die Prozesse, die zwischen der Absorption der Photonen und der Ladungsträgererzeugung liegen, genauer zu verstehen, sind einige Fragen jedoch immer noch ungelöst, z.B. wie diese Prozesse schon auf dem Reißbrett durch die gezielte Änderung bestimmter Molekülstrukturen optimiert werden können. Um dieses Ziel zu erreichen, werden in dieser Arbeit Dicyanovinyl-substituierte Oligothiophene (DCVnTs) verwendet. Diese Materialien bieten die Möglichkeit, kleine strukturelle Änderungen vorzunehmen, deren Einfluss auf die molekularen und auf die Solarzelleneigenschaften untersucht werden soll. Der Einfluss der Messtemperatur auf den Prozess der Ladungsträgertrennung wird hier an einer methylierten DCV4T-Verbindung in einer dünnen Schicht untersucht. Die bei photoinduzierter Absorptionsspektroskopie (PIA) beobachtete Aktivierung dieses Prozesses mit zunehmender Temperatur wird auf eine erhöhte Ladungsträgerbeweglichkeit zurückgeführt. Der dadurch erhöhte effektive Abstand der Ladungen an der Grenzfläche zwischen Donator (D) und Akzeptor (A) erleichtert die endgültige Trennung der Ladungsträger. Durch den Vergleich mit einer DCV6T-Verbindung wird der Zusammenhang zwischen der Aktivierungsenergie und der Beweglichkeit bekräftigt. Die kleinere Beweglichkeit äußert sich dabei in einer größeren Aktivierungsenergie. Darüber hinaus kann der Ladungsträgergenerationsprozess auch von der Molekülstruktur abhängen. In dieser Arbeit wird untersucht, wie sich die Länge von Alkylseitenketten auf die Energieniveaus der Moleküle, aber auch auf die Absorptions- und Lumineszenzeigenschaften der Materialien in reinen und in Mischschichten mit dem Akzeptor C60 äußert. Die ermittelten Unterschiede bezüglich der Molekülordnung (geordneter für kürzere Seitenketten) und der Phasengrößen in Mischschichten (größere Phasen bei kürzerer Kettenlänge) werden in der Untersuchung der Temperaturabhängigkeit der Lebensdauer von Triplettexzitonen mittels PIA-Messungen bestätigt. Für Solarzellen ist von Bedeutung, ob sich die Seitenkettenlänge auf die Wechselwirkung zwischen D und A auswirkt. Der vermutete Zusammenhang wird hier nicht bestätigt. Ein ähnlicher Photostrom für alle untersuchten Verbindungen in Solarzellen mit planaren Heteroübergängen unterstreicht diese Schlussfolgerung. Unterschiede im Wirkungsgrad werden auf Änderungen der Energieniveaus und die Morphologie in Mischschichtsolarzellen zurückgeführt. Des Weiteren wird in einer Machbarkeitsstudie der Einfluss des elektrischen Felds auf die Generationsausbeute freier Ladungsträger untersucht. Dafür werden halbtransparente Solarzellen verwendet, die es ermöglichen, PIA-Messungen in Transmissionsgeometrie durchzuführen. Als mögliche Erklärung für das Auftreten zweier Rekombinationskomponenten in der Analyse des Rekombinationsverhaltens der durch Licht erzeugten Ladungsträger werden eingefangene Ladungsträger und gebundene Ladungsträgerpaare an der D/A-Grenzfläche genannt. Das Mischverhalten von D und A kann durch ein Heizen des Substrates während des Verdampfungsprozesses eingestellt werden, was von entscheidender Bedeutung für eine weitere Steigerung des Wirkungsgrades ist. Für DCV4T:C60-Mischschichtsolarzellen wird jedoch eine Verschlechterung des Wirkungsgrads zu höheren Substrattemperaturen beobachtet. Durch optische Messungen und Methoden zur Schichtstrukturbestimmung wird dieser Effekt auf eine Umordnung der DCV4T-Kristallite für hohe Substrattemperaturen und die damit verbundene Verringerung der Absorption und damit auch des Photostroms zurückgeführt. Bei einer Substrattemperatur von 90° C sind die D- und A-Komponenten fast vollständig entmischt. Dieses Beispiel ist von besonderer Bedeutung, weil hier die Ursachen für ein Verhalten aufgezeigt werden, das entgegen den Beispielen aus der Literatur eine Abnahme des Wirkungsgrads beim Aufdampfen der aktiven Schicht auf ein geheiztes Substrat zeigt. Schließlich werden die Optimierungsschritte dargelegt, mit denen Solarzellen mit einer DCV5T-Verbindung als Donatormaterial auf einen Rekordwirkungsgrad von 7,7% gebracht werden. Dabei wird die Substrattemperatur, die Dicke der aktiven Schicht und die Transportschichten angepasst.
18

Oligothiophene Materials for Organic Solar Cells - Photophysics and Device Properties

Körner, Christian 18 July 2013 (has links)
The rapidly increasing power conversion efficiencies (PCEs) of organic solar cells (OSCs) above 10% were made possible by concerted international research activities in the last few years, aiming to understand the processes that lead to the generation of free charge carriers following photon absorption. Despite these efforts, many details are still unknown, especially how these processes can be improved already at the drawing board of molecular design. To unveil this information, dicyanovinyl end-capped oligothiophene derivatives (DCVnTs) are used as a model system in this thesis, allowing to investigate the impact of small structural changes on the molecular properties and the final solar cells. On thin films of a methylated DCV4T derivative, the influence of the measurement temperature on the charge carrier generation process is investigated. The observed temperature activation in photoinduced absorption (PIA) measurements is attributed to an increased charge carrier mobility, increasing the distance between the charges at the donor/acceptor (D/A) interface and, thus, facilitating their final dissociation. The correlation between the activation energy and the mobility is confirmed using a DCV6T derivative with lower mobility , exhibiting a higher activation energy for charge carrier generation. Another parameter to influence the charge carrier generation process is the molecular structure. Here, alkyl side chains with varying length are introduced and their influence on the intramolecular energy levels as well as the absorption and emission properties in pristine and blend films with the acceptor C60 are examined. The observed differences in intermolecular order (higher order for shorter side chains) and phase separation in blend layers (larger phase separation for shorter side chains) are confirmed in PIA measurements upon comparing the temperature dependence of the triplet exciton lifetimes. A proposed correlation between the side chain length and the coupling between D and A, which is crucial for efficient charge transfer, is not confirmed. The presented flat heterojunction solar cells underline this conclusion, giving similar photocurrent densities for all compounds. Differences in PCE are related to shifts of the energy levels and the morphology of the blend layer in bulk heterojunction devices. Furthermore, the impact of the electric field on the charge carrier generation yield is investigated in a proof-of-principle study, introducing PIA measurements in transmission geometry realized using semitransparent solar cells. The recombination analysis of the photogenerated charge carriers reveals two recombination components. Trapped charge carriers or bound charge pairs at the D/A interface are proposed as an explanation for this result. The miscibility of D and A, which can be influenced by heating the substrate during layer deposition, is of crucial importance to obtain high PCEs. In this work, the unusual negative influence of the substrate temperature on DCV4T:C60 blend layers in solar cells is investigated. By using optical measurements and structure determination tools, a rearrangement of the DCV4T crystallites is found to be responsible for the reduced absorption and, therefore, photocurrent at higher substrate temperature. The proposed blend morphology at a substrate temperature of 90° C is characterized by a nearly complete demixing of the D and A phases. This investigation is of particular relevance, because it shows the microscopic origins of a behavior that is contrary to the increase of the PCE upon substrate heating usually reported in literature. Finally, the optimization steps to achieve a record PCE of 7.7% using a DCV5T derivative as donor material are presented, including the optimization of the substrate temperature, the active layer thickness, and the transport layers.:Abstract - Kurzfassung Publications Contents 1 Introduction 2 Elementary Processes in Organic Semiconductors 2.1 Introduction 2.2 Optical Excitations in Organic Materials 2.2.1 Introduction 2.2.2 Radiative Processes: Absorption and Emission 2.2.3 Non-radiative Relaxation Processes 2.2.4 Triplet Excitons and Intersystem Crossing 2.3 Polarization Effects and Disorder 2.4 Transport Processes in Disordered Organic Materials 2.4.1 Charge Transport 2.4.1.1 The Bässler Model 2.4.1.2 Marcus Theory for Electron Transfer 2.4.1.3 Small Polaron Model 2.4.1.4 Functional Dependencies of the Charge Carrier Mobility 2.4.2 Diffusive Motion 2.4.3 Exciton Transfer Mechanisms 2.4.4 Characteristics of Exciton Diffusion 2.5 Charge Photogeneration in Pristine Materials 3 Organic Photovoltaics 3.1 General Introduction to Solar Cell Physics 3.2 Introduction to the Donor/Acceptor Heterojunction Concept 3.3 The Open-Circuit Voltage in Organic Solar Cells 3.4 Doping of Organic Semiconductors 3.5 Introduction to the p-i-n Concept 3.6 Charge Transfer Excitons in Donor/Acceptor Heterojunction Systems 3.6.1 Introduction 3.6.2 Verification of Charge Transfer Excitons in Donor/Acceptor Systems 3.7 The Process Cascade for Free Charge Carrier Generation in Donor/Acceptor Heterojunction Systems 3.7.1 The Initial Charge Transfer Step 3.7.2 The Binding Energy of the Charge Transfer Exciton 3.7.3 \"Hot\" Charge Transfer Exciton Dissociation 3.7.4 \"Cold\" Charge Transfer Exciton Dissociation 3.7.5 Supposed Influence Factors on Charge Transfer Exciton Dissociation 3.7.6 Recombination Pathways for Charge Transfer Excitons 3.7.7 Free Charge Carrier Formation and Recombination 4 Experimental Methods 4.1 Sample Preparation 4.2 Material Characterization Methods 4.2.1 Optical Characterization 4.2.2 Cyclic Voltammetry 4.2.3 Ultraviolet Photoelectron Spectroscopy 4.2.4 Atomic Force Microscopy 4.2.5 Grazing Incidence X-Ray Diffraction 4.2.6 Organic Field-Effect Transistor 4.3 Photoinduced Absorption Spectroscopy 4.3.1 Introduction 4.3.2 Derivation of the PIA Signal 4.3.3 Recombination Dynamics 4.3.4 Intensity Dependence of the PIA Signal 4.4 Solar Cell Characterization 4.4.1 External Quantum Efficiency 4.4.2 Spectral Mismatch Correction 4.4.3 Current-Voltage Characteristics 4.4.4 Optical Device Simulations 4.4.5 Optical Device Transmission Measurements 5 The Oligothiophene Material System 5.1 Introduction 5.2 Thermal Stability 5.3 Energy Levels 5.4 Optical Properties of the Pristine Materials 5.5 The Donor/Acceptor Couple: DCVnT and C60 5.6 Solar Cell Devices 5.7 Summary 6 Temperature Dependence of Charge Carrier Generation 6.1 Introduction 6.2 Principal Introduction to the PIA Measurements 6.2.1 Interpretation of the Spectra 6.2.2 Interpretation of the Frequency Scans 6.3 Temperature Dependence of the Spectra 6.4 Discussion of the Temperature Dependent Processes in the Blend Layer 6.5 Temperature Activated Free Charge Carrier Generation 6.5.1 Evaluation of the Activation Energy for the DCV4T-Me:C60 Blend 6.5.2 Comparison to a Sexithiophene Derivative (DCV6T-Me) 6.6 Summary 7 Side Chain Investigation on Quaterthiophene Derivatives 7.1 Energy Levels 7.2 Optical Properties 7.2.1 Solution and Pristine Films 7.2.2 Mixed Films with C60 7.3 Influence of the Side Chain Length on the Intermolecular Coupling 7.3.1 PIA Spectra of Pristine and Blend Layers at 10K 7.3.2 Recombination Analysis for Pristine and Blend Films at 10K 7.4 The Influence of the Side Chain Length on the Offset Charge Carrier Generation Rate at Low Temperature 7.5 In the High-Temperature Limit: Implications for Solar Cell Devices 7.5.1 PIA Spectra in Pristine and Blend Films at 200K 7.5.2 Recombination Analysis: Triplet Excitons and Free Charge Carriers 7.6 Solar Cells 7.6.1 Flat Heterojunction Devices 7.6.2 Bulk Heterojunction Devices 7.7 Summary 8 Electric-Field Dependent PIA Measurements on Complete Solar Cell Devices 8.1 Introduction 8.2 Semitransparent Organic Solar Cells 8.3 Photoinduced Absorption Measurements 8.4 Summary and Outlook 9 The Effect of Substrate Heating During Layer Deposition on the Performance of DCV4T:C60 BHJ Solar Cells 9.1 Introduction 9.2 The Importance of Morphology Control for BHJ Solar Cells 9.3 The Impact of Substrate Heating on DCV4T:C60 BHJ Solar Cells 9.4 Absorption and Photoluminescence 9.5 Topographical Investigations (AFM) 9.6 X-ray Investigations 9.6.1 1D GIXRD Measurements 9.6.2 2D GIXRD Measurements 9.7 Proposed Morphological Picture and Confirmation Measurements 9.7.1 Morphology Sketch of the DCV4T:C60 Blend Layer 9.7.2 Confirmation Measurements 9.8 The Equivalence of Temperature and Time 9.9 Summary 10 Record Solar Cells Using DCV5T-Me33 as Donor Material 10.1 Introduction 10.2 The Influence of the Substrate Temperature 10.3 Determination of the Optical Constants 10.4 Stack Optimization 10.5 Summary and Outlook 11 Conclusions and Outlook 11.1 Summary of the Photophysical Investigations 11.2 Summary of Device Investigations 11.3 Future Challenges Appendix A Detailed Description of the Experimental Setup for PIA Spectroscopy Appendix B Determination of the Triplet Level by Differential PL Measurements Appendix C Additional Tables and Figures Appendix D Reproducibility of the Solar Cell Results (Statistics) Appendix E Lists Bibliography Acknowledgments / Der rasante Anstieg des Wirkungsgrads von organischen Solarzellen über die Marke von 10% war nur durch länderübergreifende Forschungsaktivitäten während der letzten Jahre möglich. Trotz der gemeinsamen Anstrengungen, die Prozesse, die zwischen der Absorption der Photonen und der Ladungsträgererzeugung liegen, genauer zu verstehen, sind einige Fragen jedoch immer noch ungelöst, z.B. wie diese Prozesse schon auf dem Reißbrett durch die gezielte Änderung bestimmter Molekülstrukturen optimiert werden können. Um dieses Ziel zu erreichen, werden in dieser Arbeit Dicyanovinyl-substituierte Oligothiophene (DCVnTs) verwendet. Diese Materialien bieten die Möglichkeit, kleine strukturelle Änderungen vorzunehmen, deren Einfluss auf die molekularen und auf die Solarzelleneigenschaften untersucht werden soll. Der Einfluss der Messtemperatur auf den Prozess der Ladungsträgertrennung wird hier an einer methylierten DCV4T-Verbindung in einer dünnen Schicht untersucht. Die bei photoinduzierter Absorptionsspektroskopie (PIA) beobachtete Aktivierung dieses Prozesses mit zunehmender Temperatur wird auf eine erhöhte Ladungsträgerbeweglichkeit zurückgeführt. Der dadurch erhöhte effektive Abstand der Ladungen an der Grenzfläche zwischen Donator (D) und Akzeptor (A) erleichtert die endgültige Trennung der Ladungsträger. Durch den Vergleich mit einer DCV6T-Verbindung wird der Zusammenhang zwischen der Aktivierungsenergie und der Beweglichkeit bekräftigt. Die kleinere Beweglichkeit äußert sich dabei in einer größeren Aktivierungsenergie. Darüber hinaus kann der Ladungsträgergenerationsprozess auch von der Molekülstruktur abhängen. In dieser Arbeit wird untersucht, wie sich die Länge von Alkylseitenketten auf die Energieniveaus der Moleküle, aber auch auf die Absorptions- und Lumineszenzeigenschaften der Materialien in reinen und in Mischschichten mit dem Akzeptor C60 äußert. Die ermittelten Unterschiede bezüglich der Molekülordnung (geordneter für kürzere Seitenketten) und der Phasengrößen in Mischschichten (größere Phasen bei kürzerer Kettenlänge) werden in der Untersuchung der Temperaturabhängigkeit der Lebensdauer von Triplettexzitonen mittels PIA-Messungen bestätigt. Für Solarzellen ist von Bedeutung, ob sich die Seitenkettenlänge auf die Wechselwirkung zwischen D und A auswirkt. Der vermutete Zusammenhang wird hier nicht bestätigt. Ein ähnlicher Photostrom für alle untersuchten Verbindungen in Solarzellen mit planaren Heteroübergängen unterstreicht diese Schlussfolgerung. Unterschiede im Wirkungsgrad werden auf Änderungen der Energieniveaus und die Morphologie in Mischschichtsolarzellen zurückgeführt. Des Weiteren wird in einer Machbarkeitsstudie der Einfluss des elektrischen Felds auf die Generationsausbeute freier Ladungsträger untersucht. Dafür werden halbtransparente Solarzellen verwendet, die es ermöglichen, PIA-Messungen in Transmissionsgeometrie durchzuführen. Als mögliche Erklärung für das Auftreten zweier Rekombinationskomponenten in der Analyse des Rekombinationsverhaltens der durch Licht erzeugten Ladungsträger werden eingefangene Ladungsträger und gebundene Ladungsträgerpaare an der D/A-Grenzfläche genannt. Das Mischverhalten von D und A kann durch ein Heizen des Substrates während des Verdampfungsprozesses eingestellt werden, was von entscheidender Bedeutung für eine weitere Steigerung des Wirkungsgrades ist. Für DCV4T:C60-Mischschichtsolarzellen wird jedoch eine Verschlechterung des Wirkungsgrads zu höheren Substrattemperaturen beobachtet. Durch optische Messungen und Methoden zur Schichtstrukturbestimmung wird dieser Effekt auf eine Umordnung der DCV4T-Kristallite für hohe Substrattemperaturen und die damit verbundene Verringerung der Absorption und damit auch des Photostroms zurückgeführt. Bei einer Substrattemperatur von 90° C sind die D- und A-Komponenten fast vollständig entmischt. Dieses Beispiel ist von besonderer Bedeutung, weil hier die Ursachen für ein Verhalten aufgezeigt werden, das entgegen den Beispielen aus der Literatur eine Abnahme des Wirkungsgrads beim Aufdampfen der aktiven Schicht auf ein geheiztes Substrat zeigt. Schließlich werden die Optimierungsschritte dargelegt, mit denen Solarzellen mit einer DCV5T-Verbindung als Donatormaterial auf einen Rekordwirkungsgrad von 7,7% gebracht werden. Dabei wird die Substrattemperatur, die Dicke der aktiven Schicht und die Transportschichten angepasst.:Abstract - Kurzfassung Publications Contents 1 Introduction 2 Elementary Processes in Organic Semiconductors 2.1 Introduction 2.2 Optical Excitations in Organic Materials 2.2.1 Introduction 2.2.2 Radiative Processes: Absorption and Emission 2.2.3 Non-radiative Relaxation Processes 2.2.4 Triplet Excitons and Intersystem Crossing 2.3 Polarization Effects and Disorder 2.4 Transport Processes in Disordered Organic Materials 2.4.1 Charge Transport 2.4.1.1 The Bässler Model 2.4.1.2 Marcus Theory for Electron Transfer 2.4.1.3 Small Polaron Model 2.4.1.4 Functional Dependencies of the Charge Carrier Mobility 2.4.2 Diffusive Motion 2.4.3 Exciton Transfer Mechanisms 2.4.4 Characteristics of Exciton Diffusion 2.5 Charge Photogeneration in Pristine Materials 3 Organic Photovoltaics 3.1 General Introduction to Solar Cell Physics 3.2 Introduction to the Donor/Acceptor Heterojunction Concept 3.3 The Open-Circuit Voltage in Organic Solar Cells 3.4 Doping of Organic Semiconductors 3.5 Introduction to the p-i-n Concept 3.6 Charge Transfer Excitons in Donor/Acceptor Heterojunction Systems 3.6.1 Introduction 3.6.2 Verification of Charge Transfer Excitons in Donor/Acceptor Systems 3.7 The Process Cascade for Free Charge Carrier Generation in Donor/Acceptor Heterojunction Systems 3.7.1 The Initial Charge Transfer Step 3.7.2 The Binding Energy of the Charge Transfer Exciton 3.7.3 \"Hot\" Charge Transfer Exciton Dissociation 3.7.4 \"Cold\" Charge Transfer Exciton Dissociation 3.7.5 Supposed Influence Factors on Charge Transfer Exciton Dissociation 3.7.6 Recombination Pathways for Charge Transfer Excitons 3.7.7 Free Charge Carrier Formation and Recombination 4 Experimental Methods 4.1 Sample Preparation 4.2 Material Characterization Methods 4.2.1 Optical Characterization 4.2.2 Cyclic Voltammetry 4.2.3 Ultraviolet Photoelectron Spectroscopy 4.2.4 Atomic Force Microscopy 4.2.5 Grazing Incidence X-Ray Diffraction 4.2.6 Organic Field-Effect Transistor 4.3 Photoinduced Absorption Spectroscopy 4.3.1 Introduction 4.3.2 Derivation of the PIA Signal 4.3.3 Recombination Dynamics 4.3.4 Intensity Dependence of the PIA Signal 4.4 Solar Cell Characterization 4.4.1 External Quantum Efficiency 4.4.2 Spectral Mismatch Correction 4.4.3 Current-Voltage Characteristics 4.4.4 Optical Device Simulations 4.4.5 Optical Device Transmission Measurements 5 The Oligothiophene Material System 5.1 Introduction 5.2 Thermal Stability 5.3 Energy Levels 5.4 Optical Properties of the Pristine Materials 5.5 The Donor/Acceptor Couple: DCVnT and C60 5.6 Solar Cell Devices 5.7 Summary 6 Temperature Dependence of Charge Carrier Generation 6.1 Introduction 6.2 Principal Introduction to the PIA Measurements 6.2.1 Interpretation of the Spectra 6.2.2 Interpretation of the Frequency Scans 6.3 Temperature Dependence of the Spectra 6.4 Discussion of the Temperature Dependent Processes in the Blend Layer 6.5 Temperature Activated Free Charge Carrier Generation 6.5.1 Evaluation of the Activation Energy for the DCV4T-Me:C60 Blend 6.5.2 Comparison to a Sexithiophene Derivative (DCV6T-Me) 6.6 Summary 7 Side Chain Investigation on Quaterthiophene Derivatives 7.1 Energy Levels 7.2 Optical Properties 7.2.1 Solution and Pristine Films 7.2.2 Mixed Films with C60 7.3 Influence of the Side Chain Length on the Intermolecular Coupling 7.3.1 PIA Spectra of Pristine and Blend Layers at 10K 7.3.2 Recombination Analysis for Pristine and Blend Films at 10K 7.4 The Influence of the Side Chain Length on the Offset Charge Carrier Generation Rate at Low Temperature 7.5 In the High-Temperature Limit: Implications for Solar Cell Devices 7.5.1 PIA Spectra in Pristine and Blend Films at 200K 7.5.2 Recombination Analysis: Triplet Excitons and Free Charge Carriers 7.6 Solar Cells 7.6.1 Flat Heterojunction Devices 7.6.2 Bulk Heterojunction Devices 7.7 Summary 8 Electric-Field Dependent PIA Measurements on Complete Solar Cell Devices 8.1 Introduction 8.2 Semitransparent Organic Solar Cells 8.3 Photoinduced Absorption Measurements 8.4 Summary and Outlook 9 The Effect of Substrate Heating During Layer Deposition on the Performance of DCV4T:C60 BHJ Solar Cells 9.1 Introduction 9.2 The Importance of Morphology Control for BHJ Solar Cells 9.3 The Impact of Substrate Heating on DCV4T:C60 BHJ Solar Cells 9.4 Absorption and Photoluminescence 9.5 Topographical Investigations (AFM) 9.6 X-ray Investigations 9.6.1 1D GIXRD Measurements 9.6.2 2D GIXRD Measurements 9.7 Proposed Morphological Picture and Confirmation Measurements 9.7.1 Morphology Sketch of the DCV4T:C60 Blend Layer 9.7.2 Confirmation Measurements 9.8 The Equivalence of Temperature and Time 9.9 Summary 10 Record Solar Cells Using DCV5T-Me33 as Donor Material 10.1 Introduction 10.2 The Influence of the Substrate Temperature 10.3 Determination of the Optical Constants 10.4 Stack Optimization 10.5 Summary and Outlook 11 Conclusions and Outlook 11.1 Summary of the Photophysical Investigations 11.2 Summary of Device Investigations 11.3 Future Challenges Appendix A Detailed Description of the Experimental Setup for PIA Spectroscopy Appendix B Determination of the Triplet Level by Differential PL Measurements Appendix C Additional Tables and Figures Appendix D Reproducibility of the Solar Cell Results (Statistics) Appendix E Lists Bibliography Acknowledgments

Page generated in 0.0366 seconds